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Why nature has elected Michaelis-Menten kinetics for
enzymes: a tentative rationale from variational calculus
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The kinetic performance of enzymes, the catalysts designed by nature to
accelerate the chemical reactions that support life, has traditionally been
described in terms of a rate expression first derived by Michaelis and Menten
in the beginning ofthis century. Why nature has selected such kinetic behaviour
remains, however, a mystery. A tentative rationale based on Euler's equation
was developed and, after having eliminated functional forms due to physico-
chemical unfeasibility, a final open-form objective function (written as an
infinite series and including dependencies on the substrate concentration, on
the reaction rate, and on the derivative thereof with respect to concentration) is
found. The integral of such an objective function is maximized by Michaelis-
Menten kinetics and yields its maximum value when the upper integration limit
is roughly equal to the Michaelis- Menten constant.

.1. Introduction

Enzymes are globular proteins with catalytic properties, i.e. enzymes bring
about increases in the rate of biochemical reactions without undergoing a
permanent chemical change [1]. Such increases are obtained, under mild environ-
mental conditions, at the expense of lowering the activation energies of said
reactions via more favourable reactional mechanisms. Enzymes are of universal
occurrence in biological materiais and life itself depends on a complex network of
chemical reactions brought about by specific enzymes [2]. Another unique feature
of enzymes with respect to inorganic catalysts is their high specificity towards
substrates, which is thought to be a consequence of their elaborate, energy-
dependent three-dimensional architecture. Enzyme studies have enjoyed remark-
able growth in recent years because of their ever growing importance in scientific
and technological terms; enzymology has permitted relevant contributions to such
widespread activities as brewing, food flavour additives, pest control, dry cleaning,
detergents, and analytical determinations [2].

Since the pioneering work of Michaelis and Menten back in 1913, the catalytic
performance of enzymes has been widely described by a rectangular hyperbolic
function of substrate concentration that departs from first-order behaviour at nil
concentration and eventually approaches a horizontal asymptote at saturating
concentrations. Knowing that nature tends to evolve so as to.optimize its own
resources, as would be predicted by Darwinistic approaches, one would expect the
Michaelis-Menten rate expression to provide the best compromise between
various intrinsic factors on the cellular levei that might play a role in biochemical
reactions in vivo.
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It is well established that enzymes possess two major features as biocatalysts,
namely their activity and their controllability. The former relates to the high rates
observed for enzyme-catalysed reactions when compared with the uncatalysed
reaction counterpart. The latter may be substantiated by the capacity the enzyme
possesses to modulate its own activity in response to microenvironmental factors,
namely via substrate and/or product inhibition and heterologous activation [3]. It,
is therefore reasonable to expect that educated attempts to find an objective
function that nature might have tried to optimize should encompass the con-
centration of substrate, C (i.e. the intrinsic cell processing variable), the reaction
rate, r (i.e. the measure of the enzyme activity), and the derivative of the latter with
respect to the former, r' (i.e. the measure of the enzyme co~trollability) as
variables. On the other hand, the whole physiological range of living activity of
the cell should be considered, namely in terms of an average behaviour, and so the
integral of the objective function extended to the range of concentrations of
interest would to advantage be considered rather than a simple, point value located
somewhere in that range. I t is the purpose of this work to formally build an
objective function along these lines that meets the constraints of biochemical

performance and leads to the Michaelis-Menten rate expression as the functional
optimal formo

2. Mathematical analysis
In order to facilitate the analysis, dimensionless (and normalized, wherever

possible) variables will be used hereafter. Recalling the form of Michaelis-Menten
rate expression, the dimensionless concentration, rate, and derivative of the rate
with respect to concentration may be written as

C*=~
Km

* r C*r =-=-
Vmax 1 + C*

and

r' 1,* --
r = Vmax- (1 + C*)2

Km

respectively, where C, r, and r' denote the substrate concentration, the reaction
rate, and the derivative of the latter with respect to the former, Km is the
Michaelis-Menten constant, and Vmaxis the maximum reaction rate. The variation
of r* and r'* are depicted in Figure 1.

Using equations (1)-(3), the integral of the objective function introduced
previously will read

J
C;'",j{C*, r*, r'*} dC*

I[r*] = O *
Cmax

where I is a functional of r*, and C;'"ax is the upper limit of the concentration range
of interest; the goal of the present analysis is thus to choose the function j so. that
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o Figure 1. Variation of the dimensionless rate, r*, and the dimensionless derivative of the
rate with respect to the substrate concentration, ~'*, versus the dimensionless
substrate concentration, C*.

the functional has a maximum value. Clearly there are several forms of r* = r*{C*}
that yield a maximum for the above functional; however, most of them violate
physicochemical constraints and are therefore not eligible for our purpose.

In view of previous considerations, it is logic to postulate that the contributions
from the rate, on the one side, and the derivative thereof, on the other, should be
somewhat combined in the integrand functionf; the simplest way of doing so is by
adding such two contributions. On the other hand, the weight ascribed to each of
those functions should depend on the actual concentration. U sing these postulates,
the integrand in equation (4) tentatively becomes

where cjJand <1>are univariate functions of C*, 'Ij;is a univariate function of r*, and
'I' is a univariate function of ri *.

Each univariate function playing the role of a weight parameter may, for the
sake of simplicity, be considered to be well described by a power function.
Furthermore, it is convenient that (i) from the point of view of efficiency of
enzymatic action, the substrate molecules should be consumed as fast as possible,
with this issue being of particular relevance for low concentrations of substrate (i.e.
cjJshould take high values for low C* and low values for high C*), and that (ii) from
the point of view of efficiency of the intrinsic concentration-based control
mechanism of enzymatic action, a small variation in the concentration of substrate

molecules should trigger a large variation in the rate of reaction, with this issue
being of particular relevance for high substrate concentrations (i.e. <1>should take
low values for low C* and high values for high C*). These postulates are consistent
with the following assumption

f{ C*, r*, r'*} = cjJ{C*}'Ij;{r*} + <1>{C*}'I'{r'*}

o

~

...

1

<1>{C*} = c*m = cjJ{C*}
(m> O)

(5)

(6)

where m is a parameter yet to be determined.
Finally, each univariate function playing the role of the intrinsic contribution

of r* and r'* inf may in principIe be expanded as a Taylor series, or equivalently,
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be described by an integer power series of the type
00

1jJ{r*} = L airÚ
i=O

00

'P{r'*} = L bir'Ú
i=O

where the aiS and the bis denote real coefficients yet to be determined.
Returning to equation (4), one is'dealing with a typical problem of calculus of

variations (or theory of functionals). The necessary condition that r* must satisfy
in order to I yield a stationary value is given by Euler's equation [4]:

(
8j

) -~
{(

~ ) }
=O

8r* C',r" dC* 8r'* C',r'

Combination of equations (5)-(8) gives

c*-m (f iair*i-l ) - mC*m-l (f ibir'Ú-l ) - c*mr"* (f i(i,.- 1)b;r'*i-2) = O
,=1 ,=1 ,=2

(9)

where r"* is the second derivative of r* with respect to C*. Recalling equations
(1)-(3), equation (9) finally becomes

(
00' CÚ-m-l

) (
00 .bc *m-l

) (
00 2

'

(
'

l)bc
*m

)
za' ml . 1 1 - .

~(1'+ C*)i-l - ~(1 +'C*)2i-2 + ~ (1 + C*)'2i-l = O
(10)

Due to the open form of equation (10), solutions are to advantage obtained by
selecting, at each time, the ith term of the second summation and the ith term of
the third summation in equation (10) followed by equating such two terms with
those remaining that exhibit the same functional form for the denominator, i.e. the
(2i-l)th and the (2i)th terms, respectively, of the first summation in equation (10).
Due to the sufficient condition for every term that must be met by two infinite
series in order to be equal to one another, two equations result each time the
aforementioned process is applied; one such equation encompasses the a and b
multiplying coefficients, whereas the other encompasses the m exponent coeffi-
cient. It is interesting to note that solutions of equation (10) can be found only
for discrete values of m; the (positive) eigenvalues are of the general form
(2n-l)/2(n=2,3,4,...). For each such eigenvalue, solution of equation (10)
yields a particular solution (i.e. an eigenvector or eigenfunction), which is given by
a2n-l=(n/2)bn and a2n = -(n - l)bn. The general form of functionj must then be

written as the sum of alI eigenvectors for each positive eigenvalue m, thus yielding

j{C*, r*r'*} = ~ bn(C*-(2n-l)/2 (~rdn-l - (n - 1)r*2n) + c*(2n-l)/2r,*n)
(11)

which, in combination with equations (2) and (3), becomes
00

(
nC*(2n-l)/2 (n - 1)C*(2n+l)/2 C*(2n-l)/2

)j {C* r* r'* } - "" b - +
" - ~ n 2(1 + C*)2n-l (1 + C*)2n (1 + C*)2n

(12)

where bn denotes an arbitrary constant. In the absence of any particular rationale
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o Figure 2. Variation of the partial dimensionless objective function relating to the activity
of the enzyme, f {C', r'}, and the partial dimensionless objective function relating to
the controllability of the enzyme, f{ C', r'*}, versus the dimensionless substrate
concentration, C'.

for selecting different weights for different n terms, the simplest (nontrivial) value

of unity was considered hereafter for every constant bn. The independent

contributions arising from r' (i.e. f{ C', r'}, or the first two terms of the

summation in equation (12)) and from r" (i.e. f{ C', r"}, or the last term of the
summation in equation (12)) are plotted in Figure 2. The whole function

f { C' , r' , r"} is depicted in Figure 3.
Combination of equations (4) and (12), after appropriate change of variable to

C' = X2, yields

2 00 vlc;...",

( nx2n (n - 1)X2(n+l) x2n )d
max I[r'] = C;'"ax~L 2(1 + x2)2n-l - (1 + x2)2n + (1 + x2)2n X

(13)

o which, after some algebraic manipulation, becomes

, - ~ ~
J

vlc;"""

((1+ (n/2))X2n+ (1 - (n/2))x2(n+l) )max I[r ] - C, ~ (1 2)2n dXmaxn=2 O + X
(14)

and finally, after suitable expansion in partial fractions, gives

~

2 00. 2n

(J

v'c.max A, + B,

)max I[r'] = c;- L L (1'+ ;~ dXmax n=2 ,=1 O X
(15)

~

where the Ais and the Bis are real constants. As a consequence of the even nature

of the exponents of X and the absence of zero order terms in equation (14), it can be

easily shown that all Bis are zero. The terms Ai may then be determined by

simultaneous solution of the following set of linear algebraic equations

t (t (2nj-i)X2i)Ai= (1 +~ )x2n + (1 - ~ )x2(n+l)
n = 2,3,...

(16)
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Figure 3. Variation of the dimensionless objective function, j{C*,r*,r'*}, and the
dimensionless integral thereof, I[r*], versus the dimensionless substrate concentra-
tion, C*, or versus the upper limit of the dimensionless substrate concentration,
C~ax'

o

where advantage should be taken from the following recurrence relation [5]

J
",c.max A.

t d
O (1 + X2)j X

AiVC;:: 2j -3
J

Yc':n= Ai

= 2(j -1)(1+ C~ax)j-l + 2(j -1) O (1+ X2)j-l dX
i= 1,2,...,2n
j = 2,3, . . . , i

(17)

coupled with

JYc':n=~dX = Ai arctg {JC~ax}
1 + X2O

i = 1,2,..., 2n (18)

The optimum value of I, and the corresponding optimal value of j, as depicted in
equation (15), are plotted versus C~ax' or C*, in Figure 3. o

3. Discussion

It should be emphasized that the objective function obtained is not the only
function whose integral is maximized by the Michaelis-Menten rate expression; in
fact, a multitude of objective functions, e.g. j{ C*, r*, r'*} = (1 + C*)r*2 + r'*C*2,
can be derived that also meet the aforementioned crjterion. However, justification
of the mathematical form of most of these alternative functions is much more

difficult than of the one considered, which makes them of lesser discussion interest.
The strategy of solution followed in the problem developed above is inspired,

to some extent, by the Frobenius method for the series solution of linear second-
order ordinary differential equations (where each actual value of parameter m
results from solution of the indicial equation that is obtained from equation (10)
for each integer power of r'*), on the one hand, and by the method of separation of
variables for the solution of linear second-order partial differential equations
(where particular solutions are obtained in series form which, although not

sufficiently general to completely fulfil the goals of a pu~e mathematician, allow

1-
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11

one to be directed by the type of boundary conditions to be imposed), on the other
hand.

It is noteworthy that the contributions of r* and r'* to the objective function f

(i.e. f{ C*, r*} andf{ C*, r'*}, respectively) are quite similar (see Figure 2), and this

observation suggests that the maximum of I for each selected value of C:nax is
actually obtained from balanced contributions of r* and r'*. Therefore, one would
expect (as observed in Figure 3) that the whole objective function f{ C*, r*, r'*}

would exhibit the same shape as its individual components f{ C*, r*} and
f {C* , ri *}. I t is remarkable that, although the maximum value of f is achieved at
C* = 0.6, the highest value of I (i.e. the average of f over the whole concentration
range) is obtained in the vicinity of C:nax = 1 (see Figure 3), or, recalling equation
(1), when C = Km. Inspection of classicalliterature (e.g. [1]) indicates that there is
a dominating tendency for cells to operate at intracellular concentrations that are
usually not much above the Michaelis-Menten constant, say 10-2 to
10 moI m-3[3]; hence mathematical confirmation that nature has followed optimal
conditions in terms of an average behaviour is apparent.
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N otation

}

a = parameter
A = parameter
b = parameter
B = parameter

C = substrate concentration (moI m-3)

C* = dimensionless counterpart of C

C:nax = dimensionless upper limit of concentration range of interest

f = integrand function
i = dummy integer variable
j = dummy integer variable

O I = functional
Km = Michaelis-Menten constant (moI m -3)
m = exponential parameter
max = maximum value

n = integer dummy variable

r = reaction rate (molm-3s-1)
r* = dimensionless counterpart of r

ri = derivative of r with respect to C(s-l)
r'* = dimensionless counterpart of ri

vmax = maximum reaction rate (moI m -3 s -1)".

x
rp
<1>

'lj;

'P

= dummy integration variable
= univariate function of C*
= univariate function of C*
= univariate function of r*

= univariate function of r'*
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