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ABSTRACT 

Decreasing consumption of high fat milk and dairy products is driving the dairy industry to seek 

other uses for increasing surplus of milkfat. Enzyme catalyzed modification of milkfat using lipases is 

receiving particular attention. This review examines lipase-mediated modification of milkfat. Especial 

attention is given to industrial applications of lipases for producing structured and modified milkfat 

for improved physical properties and digestibility, reduced caloric value, and flavor enhancement. 

Features associated with reactions such as hydrolysis, transesterification, alcoholysis and acidolysis 

are presented with emphasis on industrial feasibility, marketability and environmental concerns. 

Future prospects for enzyme catalyzed modification of milk fat are discussed. 
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INTRODUCTION 

Enzyme catalysis is now widely used commercially [119]. One area of application of enzymes is in 

the chemical redesign of milkfat for improving physical, chemical and/or nutritional properties. 

Lipases are the enzymes that are principally used. Lipase-mediated technology has the advantages of 

requiring only mild reaction conditions, displaying high selectivity and mimicking natural pathways 

for controlled hydrolysis, (inter- and intra-) transesterification, acidolysis and alcoholysis ofmilkfat. 

Convenience, safety, nutritional balance and sensory satisfaction are the basic driving forces 

behind the modification of existing food products and the development of new ones [83]. Growing 

consumer demand for healthier fat spreads that are palatable, can be used for cooking and possess 

good textural properties are the impetus for the production of modified butters and butter-based 

spreads. Milkfat currently ranks third in the worldwide production of edible fats and oils [76], but 
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there has been an overall decline in the per capita consumption of butter in most European countries 

[49]. In addition, demand for milks of lower fat content and concomitant increase of the global 

surplus of milkfat [49] have promoted research into developing innovative uses of this surplus fat. 

As an essential component of the human diet, fats provide high levels of palatability (tenderness 

and flakiness), flavor (fat-soluble flavors), satiety and mouthfeel (lubricity and moistness) to the 

foods in which they are incorporated [44]. The rich creaminess of ice cream and the crispness of 

potato chips are but two examples of these attributes. Fats are broadly classified into three chemical 

groups based on the degree of saturation of their fatty acids: saturated, monounsaturated and 

polyunsaturated fats. Saturated fats are mainly derived from foods of animal origin (e.g., butterfat, 

tallow and lard) but can also be found in large amounts in some vegetable products such as coconut 

oil (92% saturated), palm kernel oil (84%) and palm oil (50%). They are normally solid at room 

temperature and play a key role in providing structure to foods. Monounsaturated fats, such as high- 

oleic-acid safflower oil (80% monounsaturated), olive oil (72%) and canola oil (60%), are found 

primarily in plants; they are generally liquid at room temperature and used for frying and seasoning 

of foods. Polyunsaturated fats are found mostly in plants such as safflower (77% polyunsaturated), 

sunflower (70%), soybean (60%) and corn (57%), as well as in fish oils (from e.g. anchovy, codfish, 

mackerel, herring and sardine) (1-18%) [48]. Polyunsaturated fats are also liquid at room 

temperature and have been claimed to possess pharmaceutical activity [48]. In general, unsaturated 

fats are healthier than saturated ones and the former have been associated with decreases in human 

serum cholesterol levels and risk for coronary heart disease, as well as decreased probability of 

tumor development [44]. Physical properties influenced by fat include structure (e.g., in chocolate 

and margarine), body (e.g., in mayonnaise and salad dressings), aeration (e.g., in icings and cakes), 

barrier properties (e.g., cereals) and preservation (e.g., immersion of Feta cheese in olive oil). 

Although miikfat possesses a unique, universal appeal that is well entrenched in the history of 

culinary science and has yet to be completely matched by any other food component, increasing 
public awareness of negative health effects of  fat ingestion has driven the food industry to 

reformulate products that would otherwise contain high levels of (saturated) fat. Several 'healthier' 

fats have thus been obtained via a number of approaches: (i) biotechnology, including strains 

modified by genetic engineering that produce desired fats and enzymatic techniques for downstream 

modification of fats using lipases; (ii) chemical fat substitutes, which can directly replace 

conventional fats and provide nearly all their functionality [13,33], e.g. Olestra TM (Procter & 

Gamble, U.K.), Simplesse TM (NutraSweet, U.S.A.), Trailblazer TM (Kraft General Foods, U.S.A.), 

Finesse TM (Reach Associates, U.S.A.), Lira TM (Opta Foods, U.S.A.), Bindex TM (Sanofi, France), 

Litesse TM (Pfizer, U.S.A.), Stellar TM (Staley Man. Corp., U.S.A.), Slendid TM (Copenhagen Pectin, 

Denmark), Oatrim TM (Rhone Poulenc, France & Quaker Oats, U.S.A.), Lycadex TM (Roquette, 

France), Maltrin TM (Grain Processing, U.S.A.), Paselli SA2 TM (Avebe, Holland), Tapiocaline TM 

(Tipiak, France), Jojoba Oil TM (Nestle, Switzerland & Lever Bros., U.K.), Caprenin TM (Procter & 

Gamble, UK.)  and Salatrim TM (Nabisco, U.S.A.); and (iii) nonconventional plant crops, e.g. 
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purslane (rich in c0-3 fatty acids), Lesquerella fendleri (a plant belonging to the mustard family, 

whose seed contains ca. 25% oil, 55% of which is lesquerolic acid and the remaining 45% is 

accounted for by oleic, linoleic and linolenic acids) and Limnanthes alba (a low-growing herbaceous 

winter annual wildflower that produces meadowfoam oil with more than 95% C20 and higher 

monounsaturated fatty acids) [3,44]. 

Enzymatic routes are clearly some of the most promising ways to modify fats. Enzymes are 

biological catalysts that selectively lower the activation energies of chemical reactions [113]; 

therefore, very high specificities and accelerations can be achieved over nonenzymatic rates [25]. 

The favorable activation energies, the high catalytic efficiency and selectivity of enzymes are 

associated with their structure. Enzymes are polymers of tens of thousands of amino acid residues, 

but only a small fraction of the enzyme linear amino acid sequence is actually involved in catalysis. 

The long amino acid chain can bend, twist and fold back upon itself so that the relative positions of 

those few amino acid residues that constitute the catalytic site can be precisely arranged three- 

dimensionally to allow unusually efficient specific interactions with complementary groups on the 

substrate [80,113]. 

The enzymes designed by nature to hydrolyze fats and oils are termed lipases. The industrial 

versatility and unique catalytic performance of lipases have attracted much attention. In 1989 lipases 

represented less than 4% of the overall enzyme market (75,000 tons) [73], but that figure has been 

steadily climbing [7]. Current annual sales oflipases amount to US$ 20 million [124]. Although this 

figure excludes several newly developed processes, it is still moderate compared with the market for 

other hydrolytic enzymes, which is about ten times larger [124]. Improving extraction and 

purification of lipases, as well as production via genetic engineering and cloning, are expected to 

enhance the acceptability of lipase-catalyzed processes as viable alternatives to bulk oleochemical 

processes. Lipases have been extensively investigated for novel biotransformations and hundreds of 

elegant bio-organic syntheses based on lipases have been described; furthermore, the diversity of the 

current and proposed applications of lipases greatly exceeds that of proteases or carbohydrases 

[124]. 

CHARACTERISTICS OF MILKFAT 

Lipids consist of  a broad group of compounds that are generally soluble in organic solvents but are 

only sparingly soluble in water. Glycerol esters of fatty acids, which constitute ca. 99*/, of the lipids 

of plant and animal origin, have traditionally been called fats and oils, and their low solubility in 

water arises from their hydrophobic fatty acid residues. The distinction between a fat and an oil is 

made on the basis of  whether the material in question is solid or liquid at room temperature. The 

predominant fatty acids in the lipids of natural origin possess an even number of carbon atoms 

because of  their biosynthetic pathway [79]. Neutral fats are mono-, di- and triesters of glycerol with 

fatty acids and are thus systematically termed monoacylglycerols, diacylglycerols, and 
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triacylglycerols, respectively. Although glycerol by itself is a symmetrical molecule, the central 

carbon acquires chirality if one of the primary hydroxyl groups (on carbons 1 and 3) is esterified, or 

if these two primary hydroxyls are esterified with different acids [93]. 

Milk has been described as nature's most nearly perfect food due to its particularly high nutrient 

density including protein, fat, sugar, minerals and vitamins. In addition to being an important source 

of dietary fat, milkfat imparts excellent flavor and superior mouthfeel to dairy products. The various 

components of milkfat perform many desirable and critical functions such as organoleptic (buttery 

aroma, creamy mouthfeel, overall sensory satisfaction and satiety effects), physical (buttery structure 

and texture) and nutritional (source of energy and essential fatty acids and facilitators of fat-soluble 

vitamin absorption). For a number of years, however, questions have been raised as to the health 

value of milkfat [27] and it has been often claimed as hypercholesterolemic [96]. Because cholesterol 

has consistently been implicated in coronary heart disease [109], the World Health Organization has 

recommended reduction in consumption of milkfat. The hypercholesterolemic effect of milkfat in 

human diets is associated mainly with lauric, myfistic and palmitic fatty acid residues [96,123]. 

Recent work [27,31] has provided evidence that stearic acid, as well as oleic acid, are conversely 

effective in lowering plasma cholesterol levels when either replaces palmitic acid in the human diet. 

Short-chain fatty acids (containing fewer than 12 carbon atoms) do not apparently raise the 

cholesterol level [42]. Polyunsaturated fatty acids lower the levels of high density lipoprotein (HDL) 

and low density lipoprotein (LDL) cholesterol, while monounsaturated fatty acids lower only the 

LDL cholesterol level [42,123]. Therefore, selective modification of the fatty acid residue structure 

of the triacylglycerol molecules of milkfat is a potentially suitable approach for developing a healthier 

milkfat. 

Milkfat is probably the most complex of all natural fats [16], being a mixture of more than 

100,000 different triacylglycerols which possess a wide range of molecular weights (470-890 g/mol) 

and correspond to acyl carbon numbers ranging from 24 to 54 [78]. The fatty acid profile of milkfat 

is unique in that (i) it is primarily constituted by ca. 50 mol% long-chain saturated fatty acid residues 

and ca. 15 mol% short- and medium-chain fatty acid residues [16] and (ii) the distribution of fatty 

acid residues bound to the glycerol moiety is nonrandom (e.g. butyric and caproic acids are found 

almost exclusively at the sn-3 position and at the sn-1 and sn-3 positions, respectively). As many as 

ca. 400 different fatty acid moieties have been reported to exist in milkfat [52], 25% of which are 

accounted for by short-chain saturated residues and 45% by long-chain saturated residues [28]. 

Nutritionally, milkfat contains a high percentage of  hypercholesterolemic saturated fatty acids, 

located predominantly at the sn-2 position [72]. This myriad of triacylglycerols and fatty acid 

moieties is responsible for the unique flavor and physical properties of butterfat [111 ]. The medium- 

and long-chain saturated fatty acids and their stereochemical distribution among the glycerol 

backbones [111] gives rise to relatively high melting points [98]: at room temperature miliffat is a 

mixture of oil, especially the triacylglycerols with 26-40 acyl carbon atoms, and semihard and hard 

fat, especially the triacylglycerols with 42-54 acyl carbon atoms [11]. The melting range of these 
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components extends from -30 °C to 37 °C [16]. Saturated fatty acids like C16 and longer are in 

general not as well absorbed as their unsaturated counterparts, particularly when the former are 

esterified to the sn-l,3 positions. Saturated fatty acids in the sn-l,3 positions are released by 

pancreatic lipase during the digestive process and tend to form poorly absorbed insoluble soaps with 

calcium [26]. The same fatty acids esterified in the sn-2 position of triacylglycerol are efficiently 

absorbed as a sn-2-monoglyceride, partly because soap formation is prevented. This is widely 

believed to be one of the major reasons why human milkfat, which contains a large proportion of 

major saturated fatty acids (e.g., C16) in the sn-2 position, is so well absorbed by infants when 

compared with plant fats of similar fatty acid composition where the saturated fatty acids are mainly 

esterified to the sn- 1,3 positions [26]. 

CHARACTERISTICS OF LIPASES 

Lipases, also known as glycerol ester hydrolases (EC 3.1.1.3), belong to the hydrolase enzyme class. 

These enzymes apparently evolved for hydrolyzing ester bonds in substrates insoluble in water. In 

addition to plants and animals, many natural or genetically engineered microorganisms produce such 

enzymes both in endogenous and exogenous forms. Lipases also have the ability to catalyze ester 

synthesis reactions--i.e., the reverse of hydrolysis --under microaqueous conditions. These two 

basic processes can be combined in a sequential fashion to generate a set of reactions termed 

interesterifications. A range of such lipase-catalyzed reactions have been comprehensively reviewed 

elsewhere [ 10]. The mechanisms of lipase-catalyzed reactions resemble closely the natural metabolic 

pathways; hence, lipase-based processes may be viewed as more environment-friendly than some 

bulk chemical syntheses. Owing to their chemical- and stereo-selectivity, lipases can produce high- 

added value products. Because of  low activation energies, lipase-mediated processes require mild 

temperature and pH, thus energy consumption is small and there is little thermal damage to reactants 

and products. 

Microbial lipases can be divided into two major groups according to their specificity: (i) non- 

specific, which act independently of the position esterified in the glyceride molecules (e.g., lipases 

produced by Candida cylindracea, Staphylococcus aureus, Chromobacterium viscosum and 

Pseudomonas spp.); and (ii) 1,3-specific, which catalyze reactions only at the outer positions (i.e. sn- 

1 and sn-3) of the glycerol backbone (e.g., lipases from Aspergillus niger, Mucor javanicus, 

Humicola lanuginosa, Rhizopus de&mar, Rhizopus oryzae, Candida lipolytica, Rhizopus niveus and 

Penicillium roquefortii). 

In the hydrolysis of  an ester bond by a lipase several steps take place in a sequential fashion [50]: 

first, a nucleophilic attack by the oxygen of the serine side chain on the carbonyl carbon atom of the 

ester bond leads to the formation of a tetrahedral intermediate, which is assisted by a histidine 

residue; the tetrahedral intermediate decomposes into an acyl-enzyme complex as the alcohol moiety 
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leaves and the free lipase is regenerated by a reaction mediated by a water molecule, thus releasing a 

free fatty acid moiety [50]. 

Several theories have been postulated to explain the observed enhancement of lipase activity 

upon formation of  an interface [10]. Theoretical interpretations have been aided by X-ray 

crystallographic determination of the 3D structure and characterization of the kinetic behavior and 

stereoselectivity of lipases from Rhizomucor miehei, human pancreas, Candida geotrichum, Candida 

rugosa, Pseudomonas glumae, Candida antarctica, Humicola lanuginosa, Pseudomonas putida, 

Fusarium solani and Penicillium camembertii [ 118]. It is now well established that all lipases share 

primary sequence homologies including significant regions His-X-Y-Gly-Z-Ser-W-GIy or Y-Gly-His- 

Ser-W-Gly (where X, Y, Z, and W denote generic amino acid residues) [6]. The structures oflipases 

from Rhizomucor miehei, Humicola lanuginosa and Penicillium camembertii are in fact structurally 

homologous [118] and their active site is accounted for by a catalytic triad of three residues: a serine 

residue that hydrogen-binds to a histidine residue which in turn hydrogen-binds to a carboxylic acid 

residue; the carboxylic acid may be either an aspartic or a glutamic acid residue [50,118]. The nature 

and architecture of the catalytic triad oflipases is similar to that found in serine proteases [50]. Most 

lipases and esterases so far examined share common features, including a socalled ogl3-hydrolase fold 

consisting of a central 8-member 13-sheet with several a-helices packed at both sites [105] and their 

catalytically active serine located in a turn connecting one of the a-helices with the 13-strand 

[50,105]. Such Ser residue is, in the native structure of the enzyme, occluded by a polypeptide flap 

(or ct-helical lid), thus resulting in inaccessibility of the active site to substrate in aqueous media. 

Interfacial activation occurs when such flap (or lid) opens upon contact of the lipase with an ordered 

interface. Such opening leads to restructuring of the lipase by creating an electrophilic region (the 

socalled oxyanion hole) around the aforementioned serine residue, by exposing hydrophobic residues 

and by burying hydrophilic ones, all of which increase the affinity of the complex for lipid substrates 

and help stabilize the negatively charged transition state intermediate generated during the 

nucleophilic attack of the carbonyl bond of the substrate during catalysis [120,121,125]. Structure 

resolution of inhibited lipases has shown that the oxyanion hole is formed by two main polypeptide 

chains [ 17,97,120]. The topological location of  the iipase flap varies among lipases and its length and 

complexity increases with the size of the molecule. The presence and composition of the lid covering 

the active site, the geometry of the catalytic triad, the structure of the oxyanion hole and the 

dynamics of the lid opening have now been established as the features that impart lipases their unique 

structure-function characteristics and their specific activation in the presence of oil/water interfaces. 

The requirement for an interface (irrespective of  its nature) is critical; even if one uses a hydrophobic 

solvent as the sole, homogeneous reaction medium, there are small local pools of water entrapped 

within the folded structure of the lipase which may provide the local interface necessary for enzyme 

activation. 
One of the intriguing questions within enzyme research today is the different behavior for 

hydrolysis in aqueous solutions versus synthesis or interesterification reactions in organic solvents. 
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Enzymes such as esterases, phospholipases, cholesterolesterases, thioesterases and cutinases can also 

act as lipases if appropriate conditions are provided. The spectrum of side activities for lipases are 

broad, but although these enzymes have their highest specific activity on actual triacylglycerols, 

selectivity and/or specific activity can be improved by protein engineering [118]. Most industrially 

relevant protein engineering has focused on improving hydrolytic efficiency, peracid generation 

(perhydrolysis) and protease stability (especially for applications in the detergent industry); protein 

engineering for improvement of specificity is still a relatively minor research area because, in terms 

of commerce, the fine chemical syntheses continue to lag behind manufacture of detergents. 

Nonetheless, better processes based on engineered lipases will eventually be developed. 

MILKFAT ENGINEERING 

A dairy herd can be schematically viewed as a factory that takes food (feedstock) and produces 

milkfat (product). Hence, three types of modifications of milkfat are possible: those taking place 

upstream (i.e., changes of the feeding regime), in the process (i.e., genetic engineering of the cow's 

mammary gland) and downstream (i.e., physical fractionation and chemical modification). Genetic 

engineering is a long term effort; how exactly the bovine genetic code affects production and 

characteristics of milkfat is not entirely clear [30]. On the other hand, feeding efforts aimed at 

obtaining a fat with desired properties will also affect the protein content and quality of the milk 

[92]. Therefore, in the short term, the best results are likely to accrue from focusing on downstream 

processing of milkfat. An area of considerable interest is the use of butterfat in confectionery as a 

replacement for cocoa butter [18]. In the U.S.A. and several other countries milkfat is a legally 

recognized ingredient in milk and dark chocolates and is less expensive than cocoa butter. 

Unfortunately, milkfat cannot find unlimited use in chocolate manufacture because excessive 

incorporation causes undesirable softening as well as changes in tempering conditions, gloss and 

contraction [18]. Physical modification of milkfat can be brought about via fractionation, whereas 

milkfat chemical modification can be effected via hydrogenation, interesterification (chemical or 

enzymatic), hydrolysis and alcoholysis. Chemical modification of the fatty acid profile of milkfat can 

be effectively and efficiently brought about by lipases: whereas in the presence of excess water these 

enzymes catalyze the cleavage of the ester bonds of glycerides thus releasing free fatty acids, in 

microaqueous systems the hydrolysis and ester synthesis can occur sequentially in a process known 

as interesterification. Interesterification is currently receiving much attention. A literature search has 

indicated that interesterification accounts for ca. 36%, hydrolysis for 34%, transesterification for 

12%, acidolysis for 10% and alcoholysis for 8% of the numerous references available on lipase- 

catalyzed modification of milkfat. 
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Physical Modification 

Fractionation. The melting and crystallization patterns of milkfat offer interesting possibilities for 

fractionation based on a wide range of melting points of their constituent triacylglycerols. Methods 

available for this type of  modification encompass vacuum distillation and crystallization at different 

temperatures with or without solvents [5]. The fractionation of milkfat using solvents is a commonly 

used method, especially at the laboratory scale. Crystallization of fat occurs in the fat-solvent 

mixture at a certain temperature and for a certain time [5]. In solventless fractionation, crystallization 

and separation of crystals from the supernatant melted fat are technically more difficult because of 

viscosity problems. The lack of functionality for the intermediate consumer (e.g., poor plasticity and 

hardness for puff pastry) and for the final consumer (e.g., poor spreadability after refrigerated 

storage) restricts potential uses of plain milkfat in the food industry [28]. Many such functionality 

constraints and seasonal variation of milkfat may be completely, or at least largely, overcome by 

fractional crystallization. 

Single-step fractionation yields a hard fraction (called stearin) and a soft or liquid fraction (called 

olein) [28]. Over 800 tons per day of milkfat are currently fractionated in Europe via the Tirtiaux TM 

dry fractionation process [28]. On an industrial scale, milkfat is heated and then cooled in stainless- 

steel crystallizers equipped with a cooling coil and a variable-speed agitator; the crystals are 

recovered either by horizontal filtration under vacuum or by membrane filtration under pressure [28]. 

The liquid fraction contains more short chain saturated and unsaturated acids and less long chain 

saturated acids than the solid fraction [5]: the former fraction possesses a concentrated butter aroma 

and is appropriate for specialty bakery products [18,122]. Although the hard fraction can be used in 

the manufacture of extra hard butter, milk powder and ice cream as well as in the confectionery, 

bakery and chocolate industry [5], the hard fractions are especially suitable for manufacture of 

margarine, in which case the hydrogenation step could be skipped. Fractionation results in 

intensification of existing properties of milkfat rather than introduction of any novel properties; the 

milkfat remains chemically unchanged. 

Chemical Modification 

Hydrogenation. Approximately one third of all edible fats and oils produced in the world are 

hydrogenated, and of this only ca. 10% are interesterified [47]. Hydrogenation is largely used in the 

U.S.A.; the European companies prefer to use interesterification for a wider variety of products 

including margarines [47]. Hydrogenation is aimed at increasing the hardness of an oil, although the 

resulting product also gains oxidative stability and functionality that permit use in margarines, solid 

cooking fats and baker shortenings [47]. Hydrogenation, a chemical process that reduces the degree 

of unsaturation of fat [49], is based on reduction with gaseous hydrogen. Hydrogenation is seldom 

applied to milkfat because milkfat is expensive relative to other fat feedstocks. Furthermore, 
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monoenes form in a cis or trans geometrical configuration during hydrogenation. The trans isomer is 

more stable [46] and helpful in ensuring that fats remain firm below body temperature and melt easily 

and rapidly above it; hydrogenation is used to improve such products by maximizing the 

concentration of this trans component via nickel-based catalysts. However, trans fatty acids have 

been reported to play an active role in increasing cholesterol [46], therefore alternative catalysts that 

reduce production of trans isomer are being investigated. During hydrogenation, molecular hydrogen 

is intimately mixed with the solubilized oil in the presence of catalyst particles. Relatively high 

temperature and pressure are required. After hydrogenation, the slurry is filtered at elevated 

temperature to remove residual cataiyst. The solvent is removed, and the oil is bleached with 

adsorbent clays; traces of the catalyst are chelated with citric acid [47]. 

Hydrolysis. The triacylglycerols of milkfat possess an unusually large proportion of short-chain 

fatty acid residues. Lipase-catalyzed release of these moieties as free fatty acids can impart 

sensations of richness, creaminess, buttery flavor and a variety of cheese aromas to the product. 

Controlled enzymatic hydrolysis of milkfat has been used in the dairy industry to produce butter-like 

or cheese-like flavor products and additives [8,73]. Lipolyzed milkfat has been extensively used in 

oils, fats, cereals, snacks and baked goods. One classic example is the oil used to pop corn, or to 

cover popped corn. Flavor profiles associated with lipolyzed milkfat can impart a range of effects on 

organoleptic character of food: at very low addition levels, a sensation of richness is imparted 

without any detectable free fatty acid flavor; as addition levels are increased, the flavors imparted 

resemble cream or butter. When addition levels are relatively high, the flavor imparted suggests 

cheese. 

The essential manufacturing steps of lipolyzed milkfat include: (i) preparation of condensed milk 

or butteroil substrate; (ii) preparation of standardized lipase system in water; (iii) combination of 

milkfat substrate and lipase system; (iv) homogenization to form a stable emulsion (thereby 

promoting the maximum rate of  enzyme activity); (v) incubation at a controlled temperature (until a 

specified degree of hydrolysis has been achieved); (vi) pasteurization (to completely inactivate 

residual lipase); and (vii) final standardization, spray-drying (or alternative formulation) and 

packaging. Lipase-modified milkfat products include [45,95]: (i) chocolate products, e.g. milk 

chocolate, compound coatings and chocolate flavor syrups and beverages; (ii) butter flavors, e.g. 

margarine, butter creams and butter sauces; (iii) milk and cream flavors, e.g. coffee whiteners, 

imitation sour cream and imitation milks; and (iv) cheese flavor additives, e.g. Italian cheese flavor. 

Lipolyzed milkfat emulsions are also very effective carders for such flavor adjuncts as synthetic fatty 

acids, diacetyl, butter esters and lactones. The addition of lipase-treated milkfat to bakery/cereal 

products (cakes and cookie mixes, chemically leavened bakery formulations, sweet doughs, cheese 

cake mixes, pancake mixes and cereal flakes), candy/confectionery products (milk chocolate, creams, 

toffee and caramel fudges), dairy products (cheese dips and coffee whiteners) and other 

miscellaneous products (margarines, popcorn, popcorn oils, salad dressings, sauces, snack foods, 
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soups and cooking oils and fats) results in clear buttery flavors [32]. Enzyme-modified milk creams 

and cultured creams can also be incorporated as dairy flavor enhancers in coffee whiteners, candies, 

cheese cakes, dips, sauces, sweet doughs, soups and baked goods [32]. Lipolyzed milkfat emulsions, 

which may vary in fat content from 25 to 95% [45] with an average of 50% [95], are the most usual 

commercial form of lipase-treated milkfat. Whole lipolyzed milk powder, analogous in gross 

composition to unmodified whole milk powder, and spray-dried lipolyzed emulsion on a carrier such 

as plain whey solids or added milk solids have been also advertised [95]. Arnold et al. have shown 

that butterfat, modified by lipases from different sources, improved the flavor of bread after 24 h of 

storage if 35-40% of the shortening was replaced by enzyme-modified butterfat [8]. 

Recognition of  the potential of milkfat in terms of production of flavors for use within the food 

industry has prompted numerous applications of lipase-catalyzed hydrolyses and several patents have 

been issued on enzyme-modified milkfat products and additives for use in baked products and other 

foods [73]. Major examples of commercial lipolyzed products are noted in Table 1. Suitable lipases 

for modification of milkfat emulsions for incorporation into baked goods are produced by a range of 

sources: milk (lipoprotein lipase), pancreas (pancreatic lipase), molds (Aspergillus ntger, 

Geotrichum candidum and Penicillium roquefortii), bacteria (Achromobacter lipolyticum and 

Pseudomonasfluorescens) and gastrointestinal tract (kid and lamb pregastric esterases) [73]. Milkfat 

modified by the action of these enzymes possessed better flavor than when modification was carded 

out with enzymes from other sources. However, modification of milkfat for the purpose of 

incorporation into bread formulations should not use Achromobacter lipolyticum, Penicillium 

roquefortii and Geotrichum candidum lipases because soapy and sometimes musty flavors develop 

in bread [73]. In addition, kid and lamb esterases should not be used because they impart a rancid 

flavor "[73]. A process for preparation of a cheese-like product used a lipase preparation from 

Penicillium roquefortii that was used to lipolyze milkfat previously emulsified with fermented 

condensed skim milk [114]. A lipase from Rhizopus delemar has also been industrially used for 

enhancing flavors of such dairy products as milk, butter and cheese [ 114]. 

Otting [100,101] used steapsin to modify milkfat in milk, whereas Kempf et al. [69] used milk 

lipase to prepare lipolyzed milk products, in which part of the volatile fatty acids released were 

removed by steam distillation. Famham et al. [36,37] have described use of a pregastric esterase in 

the preparation of modified whole milk powder. The specificity of pregastric esterase for short-chain 

fatty acid residues is especially useful in exploiting the high content of short-chain fatty acid residues 

in milkfat [41 ] for flavor development and possible interesterification purposes. This approach was 

used by Garcia et al. (1991) with a lipase from Aspergillus niger acting on butteroil emulsions [39] 

and with a lipase from Candida cylindracea immobilized onto a spiral wound membrane reactor for 

treating plain butterfat [40]. Malcata [80] and Malcata and Hill [83,84] have assessed the technical 

feasibility of employing an immobilized lipase from Aspergillus niger to effect the controlled 

hydrolysis of melted butterfat in a hollow fiber reactor, whereas Claus [22] described a process for 

producing low moisture modified fats via lipase extracted from papaya. Furthermore, Pangier [103] 
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Table 1. Examples of commercial modified milkfat products. 

Trade name Manufacturer Description Major application 

Marstar L-33 Miles Laboratories Lipolyzed cultured Caramel candy 
milk or cream 

DAC-1600 Dairyland Food Lipolyzed cultured Caramel candy 
Laboratories milk or cream 

Marstar L-60, L-80, L- Miles Laboratories Lipolyzed milkfat Butterscotch hard 
95 candy 

LBO Dairyland Food Lipolyzed milkfat Butterscotch hard 
Laboratories candy 

Butter Buds Morton-Norwich Lipolyzed milkfat Butterscotch hard 
candy 

MIL LAIT Dairyland Food Modified whole milk 
Laboratories powder 

Marstar L-50, L-55 Miles Laboratories Imitation blue cheese 
flavor 

BETAPOL Unilever Infant formula fat, Incorporation into 
mimicking the fatty infant formulas 
acid structure of 
human milkfat 

Provolone cheese 
flavor 

Romano cheese flavor 

CPS 7305 Dairyland Food 
Laboratories 

CPF 7405 and CPF Dairyland Food 
74205 Laboratories 

CPF 7505 and CPF Dairyland Food 
75205 Laboratories 

CPF 7605 Dairyland Food 
Laboratories 

Dariteen 310 Miles Laboratories 

Dariteen 245 Miles Laboratories 

Dariteen L-22 Miles Laboratories 

Dariteen L-95 Miles Laboratories 

Cremoral Land O'Lakes & 
Amerchol 

Parmesan cheese 
flavor 

Mozzarella cheese 
flavor 

Romano cheese flavor 

Cheddar cheese flavor 

Lipolyzed cream flavor 

Lipolyzed butteroil 

Fractionated milkfat 

Snacks and crackers 

Snacks and crackers 

Snacks and crackers 

Snacks and crackers 

Tomato sauce 

Cheese analogues, 
spaghetti sauces, 
cheese sauces 

Cheddar cheese soup, 
caramel candy 

Butterscotch hard 
candy 

Cosmetics 
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described the consecutive use of  lactic cultures and lipolytic enzymes to produce modified milkfat 

products. Milkfat, after having been subject to lipolysis catalyzed by microbial lipases, yields 

different types and amounts of fatty acids, as seen in Table 2. The lipase from Achromobacter 

lipolyticum releases linoleic acid very selectively. The lipase of Geotrichum candidum liberates 

linoleic or oleic acid to a greater extent than does Achromobacter lipolyticum lipase; while lipase 

from Aspergillus ntger preferentially hydrolyzes stearic acid. Because the free fatty acid profiles vary 

significantly with the type of lipase used, different keynotes can be imparted to the flavor of the final 

product. 

If milkfat in cream is pretreated with lipases and then subject to thermal treatment prior to 

inoculation with Lactobacillus bulgaricus to develop further acidity (arising mainly from formation 

of lactic acid), then alternative products, generally termed lipolyzed cultured cream products, can be 

generated. These products can enhance dairy flavors in candies, cheesecakes, sauces, dips, salad 

dressings, sweet doughs, soups and baked goods. Typical ratios of addition are 0.05-0.10% for 

subtle flavorings and 0.1-0.5% for more pronounced flavors, based on weight of finished product. 

Finally, it should be noted that lipolysis may be an essential preceding step in other important 

flavor development pathways. For example, free fatty acids generated by the lipase of Penicillium 

roquefortii from milkfat, serve as precursors for additional flavor compounds, including methyl 

ketones and secondary alcohols [32], both of which are essential to the typical blue cheese flavor 

[54,115]. 

Intramolecular interesterification. Interesterification using plain milkfat (also known as ester 

interchange or randomization) involves the exchange and redistribution of acyi groups among 

triacylglycerols of milkfat. This technology, which was initially developed as high-temperature 

interesterification [49] and normally took advantage of such chemical catalysts as sodium methoxide, 

now frequently uses lipases. The modifed milkfat produced exhibits the same total fatty acid residue 

composition as the starting material, but different triacylglycerol stereochemical composition (see 

Table 3) and hence distinct physical properties. Such interesterification is employed for the 

manufacture of margarines, shortenings and confectionery fats. Unlike happens with lipase-mediated 

processes, when chemical catalysts are used to promote random interesterification the final product 

needs usually to be bleached and deodorized, which impairs nutritional safety and may destroy the 

fine buttery flavor that is so much appreciated by the consumer [60]. 

Better spreadability was reported after random interesterification of milkfat by 

Chromobacterium viscosum lipase [45], but this process led to development of a wax-like 

mouthfeel. Lipase-catalyzed randomization of milkfat has also been suggested [18] to yield a 

substitute of cocoa butter for manufacture of chocolate. Randomized milkfat has been claimed to 

have a beneficial effect upon blood serum cholesterol levels: as much as 12% reduction in plasma 

cholesterol level has been reported [23] after replacement of native milkfat by chemically randomized 
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milkfat in the human diet, but other researchers [45] could not provide evidence for any reduction in 

such level following long term ingestion of enzymatically randomized milkfat. 

Numerous other examples of modification of plain butterfat have been reported, including 

modification by an sn-l,3-specific lipase from Mucor javanicus immobilized by adsorption onto 

hydrophobic hollow-fibers [11], by a (non-specific) lipase from Candida cylindracea immobilized on 

Celite [56,64,71] using hexane as solvent; by a (non-specific) lipase from Pseudomonasfluorescens 
immobilized on Celite in the presence or absence of solvents [58,59,60]; by a lipase from 

Pseudomonasfragi suspended in phosphate buffer and acting on a microemulsion system [102]; and 

by lipases from Rhizopus niveus, Rhizopus delemar, Mucor javanicus and Mucor miehei [112]. As 

can be concluded from Table 4, in dairy-oriented work both specific and non specific (microbial) 

lipases are used to similar extents. 

Acidolysis. In acidolysis, an acyl moiety is displaced between an acylglycerol and a caxboxylic acid 

[10]. Because the physical properties of milkfat depend directly on the types of fatty acid residues, 

changing such structure in a controlled fashion may lead to tailor-made fats with added value [ 107]. 

Research efforts pertaining to acidolysis include the solvent-free interesterification of milkfat 

catalyzed by a (non-specific) lipase from Pseudomonasfluorescens immobilized on Celite [55,60,62] 

and by a (sn-l,3-specific) lipase from Mucor miehei immobilized on a macroporous anion exchange 

resin [14]. Interesterification of milkfat with oleic acid has been reported. In separate studies, the 

reaction was catalyzed by a lipase from Rhizopus oryzae immobilized on controlled pore glass 

particles [98] and by a lipase from Mucor javanicus immobilized by physical adsorption onto a 

bundle of hydrophobic hollow-fibers [12]. Interesterification with caprylic acid was catalyzed by a 

(specific) lipase from Pseudomonas cepacia immobilized onto microporous polypropylene powder 

[110]. Similarly, interesterification with free undecanoic acid has been reported [76]. It has been 

claimed that during the initial stages of acidolysis a portion of the triacylglycerols will be actually 

hydrolyzed, thus consuming water and releasing free fatty acids [43]; however, after this transient 

step of hydrolysis, interesterification can proceed smoothly because the pool of water molecules 

available has been lowered and maintained as such in a balanced fashion. 

Lipids are the major source of energy for food in infants fed on human milk or infant formulas 

[68]. Hence, modification of fats and oils for infant formulas in order to obtain not only the correct 

fatty acid composition but also the same positional distribution as in human milkfat via 

interesterification is being investigated. In recent work [24,26] in this area, milkfat was interesterified 

with concentrates of unsaturated fatty acids using an immobilized sn-l,3-specific lipase from 

Rhizomucor miehei, thus a milkfat analogue could be prepared for inclusion in infant formulas. The 

total content of short- and medium-chain fatty acids was reduced from 23.1% to 9.5% whereas the 

linoleic acid content increased from 2.0% to 11.3% and long-chain polyunsaturated fatty acids could 

be easily introduced. Diets enriched in monounsaturated fatty acids are advantageous in infant 

feeding: unsaturated fatty acids are absorbed better than saturated ones of the same chain length 
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because monounsaturates are less prone to soap formation with calcium. In addition, because of a 

lower degree of unsaturation, monounsaturates are less susceptible to peroxidation than 

polyunsaturated fatty acids [24]. Although acidolysis may be used to lower the saturated fatty acid 

content ofmilkfat, it can also, depending on the reaction conditions and the selectivity characteristics 

of the lipase used, produce glycerides with such a fatty acid profile that the base milky flavor is 

eliminated; hence, special care is necessary dun.'ng processing [9,12,98]. 

Alcoholysis. In alcoholysis, an acyl moiety is displaced between an acylglycerol and an alcohol [10]. 

Although this kind of reaction is not often reported for milkfat, a few examples exist: the 

modification of  milkfat via lipase-mediated alcoholysis reactions with primary alcohols (ethanol, 1- 

butanol, 1-octanol, 1-undecanol, 1-dodecanol and pentadecanol), secondary alcohols (see-butanol 

and 2-octanol) and tertiary alcohols (t-butanol and linalool) [76]. Similarly, alcoholysis with butanol, 

methanol, ethanol, 1-propanol, 2-propanol, 1-dodecanol, cyclohexyl methanol, butane-l,4-diol and 

2-fluoroethanol catalyzed by a lipase from Mucor miehei immobilized on an ion exchange resin has 

been reported [ 116]. 

Monoacylglycerols (MAG) and diacylglycerols (DAG) are widely used as emulsifiers in food 

systems [ 126], where they account for ca. 75% of the world production of emulsifiers [75], as well 

as in the pharmaceutical and cosmetic industries [15]. MAG and DAG can be formed by controlled 

hydrolysis of triacylglycerols or controlled esterification of glycerol and fatty acids, or alternatively, 

via acyl exchange between excess glycerol and triacylglycerols (an alcoholysis process frequently 

termed glycerolysis) [126]. Yang et al. [126] have screened several commercial lipase preparations 

(porcine pancreatic lipase, Candida cylindracea, Rhizopus arrhizus, Pseudomonas spp., Rhizopus 

javanicus, Rhizopus de&mar, Geotrichum candidum and Mucor javanicus) for alcoholysis of 

milkfat in the presence and absence of solvent with the purpose of producing MAG and DAG from 

this resource. 

Transesterification. In transesterification, two acyl moieties are exchanged between two 

acylglycerols [10]. To perform this kind of  reaction, two fats or oils are usually blended and added 

with a lipase. Therefore, controlled changes in the structure of millffat can be achieved by 

interchange of given fatty acid moieties with another fat or oil. Transesterification of the solid 

fraction of milkfat with rapeseed oil using Candida cylindracea lipase has been reported [67]. 

One major disadvantage of transesterification is the difficult downstream separation: the 

modified milk:fat and the remaining oil are more alike than for example modified milkfat and free 

fatty acids or modified millffat and alcohols. Separation problems prevent widespread use of this 

technique. 

Reduction of cholesterol level. Milkfat contains, on average, 7.3 mgcholesterol/gmilkfa t [33]. 
Biological procedures for cholesterol removal utilize microorganisms that convert cholesterol into 
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harmless compounds. Enzymes responsible for cholesterol removal are being investigated. For 

example, attempts are underway to identify the best sources of  cholesterol reductase [2], which 

converts cholesterol to coprostanol. The latter is poorly absorbed as it passes through the digestive 

tract. Such enzymatic methods can remove cholesterol without disrupting the milkfat globular 

membrane; however, the scale-up of this technology to the industrial level is at present .both 

complicated and expensive [16,49]. 

INDUSTRIAL FEASIBILITY 

Enzymes have several well-known advantages in industrial processing [106]. Lipases, in particular, 

have a number of potential industrial applications: in the production of esters and specialty fats, in 

the acceleration of cheese ripening, in the fermentation of  vegetables, in the curing of meat products, 

in the processing of fish, in the refinement of rice flavor, in the modification of soybean milk, in the 

treatment of carp prior to smoking, in flavor improvement of alcoholic beverages, in improvement of 

whipping quality of egg whites, in the cosmetic industry, in the pharmaceutical industry, in the 

treatment of  leathers, in the preparation of aliphatic acids from dark and highly acid oils and fats, in 

chewing gums and tooth pastes, in sewage treatment, in flavor enhancement and in improvement of 

detergents [106,114]. However, industrial use of lipases as alternatives to bulk chemical or physical 

processes for modification of edible fats (including milkfat) and oils is relatively recent. Wider use of 

lipases hinges upon their stability [34]. Lipases need to be stable against proteolytic action, against 

thermal processing and also against oxidative compounds and detergent ingredients [34]. Although 

lipases have been improved by genetic engineering, site directed mutagenesis and random 

mutagenesis [ 1,34,99,118], more effort is needed to provide more capable lipases. 

Prospects for use of lipases are greatest in food and pharmaceutical processing. Improved 

understanding is needed concerning the stereopreference of lipases acting on triacylglycerols from 

milkfat or on compounds of pharmaceutical interest. Such understanding may eventually lead to 

deliberate specific modification of  the active site and the binding site of lipases [34] through protein 

engineering techniques. In addition, the economic and efficient use of lipases as industrial catalysts 

also requires development of  suitable systems for catalyst-reactant contacting that permit recovery 

and subsequent reuse of the catalyst [81]. These goals can be reached either by (i) attaching the 

enzyme to a support that is immiscible with the reaction medium; (ii) changing the nature of the 

reaction medium in such a way as to permit precipitation of  the enzyme; or (iii) confining the enzyme 

to a localized region in space using a mechanical barrier [10,81]. 

ENVIRONMENTAL CONCERNS 

Enzyme technology offers industry and consumers the opportunity to replace classical polluting 

processes by milder, non-toxic enzymatic processes. Enzyme-mediated processes have a minimal 
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impact on the environment [35] and resemble more closely the natural metabolic pathways. 

Compared to many traditional chemical syntheses, enzymatic processes are more environment- 

friendly. The discriminating abilities (e.g., stereospecificity, selectivity and substrate specificity) of 

enzymes are much greater than those of other catalysts. Thus, enzymes can be used to produce high- 

added value products at higher levels of purity. Catalytic efficiency (a result of much lower activation 

energies) of enzymes reduces energy requirements from non-renewable sources. 

In addition, within the edible oils and fats industry, enzyme technology offers several 

opportunities for reducing the high BOD effluent streams that pollute water bodies. One approach is 

to reduce the fat load in effluent streams by diverting the fat to lipase-catalyzed processing 

[80,83,84]. Also, lipases can be employed for improving degradation of fat-containing waste. For 

example, lipases have been used in combination with a microbial cocktail (trade name Combizyme TM) 
designed by Biocatalysts (U.K.) for treating fat-rich effluent from an ice-cream plant [ 124]. 

MARKETABILITY 

Over the last two decades, world consumption of butter has steadily declined [49] because of factors 

such as health impact and functional limitations [16,111 ]. The major barriers to increased butter sales 

[49] include price, health image, poor spreadability, absence of product innovation, and legislation 

and regulatory restrictions (e.g., legislated amounts of fat in commercial milk). On the other hand, 

increasing demand for milk with higher protein contents but lower fat contents is promoting 

increasing surplus of milkfat. Improved feeding of the cows aimed at obtaining milk with higher 

protein contents also leads to higher fat contents, more extensive defatting requirements, and greater 

surpluses of milkfat. To counteract growing stocks, dumping has been a common practice in the 

more developed countries. Between 300,000 and 400,000 tons of butter have been sold annually for 

several years in the U.S.A. at reduced prices to the pastry, ice cream and chocolate industries in 

attempts to outgrow competition with vegetable fats [4]. 

Although the flavor and mouth feel of milkfat are greatly superior to those of other fats, poor 

spreadability of refrigerated butter make it unattractive to many consumers. Also, the margarine and 

spread industry can easily tailor a low-price competitor product despite the many advances in the 

ability to alter the texture and rheology (spreadability) of butter via lipase-mediated pathways. 

Hence, it is doubtful that a single market for milkfat will be found that will compensate for the 

decrease in butter sales. Therefore, it will be necessary to look for a large number of relatively small 

outlets (some of which have been discussed above). 

FUTURE PROSPECTS 

Severe compulsive cuts in the production of milk are not a reasonable solution to the ever increasing 

surplus of milkfat. Similarly, relying upon aggressive advertisement of existing dairy products is 
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insufficient. Any workable solution must involve a two pronged approach: (i) creating technology for 

tailor-made products derived from milkfat, and (ii) promoting such new products. Conventional 

glyceride modification in the fat and oil industry is based on chemical catalysis, but in many instances 

use of lipases is technically feasible and preferable from an environmental point of view. Improved 

quality and a more natural image are other benefits of enzyme catalyzed modification of milkfat. 

Interesterification mediated by lipases has become a powerful tool for the modification and 

optimization of both the structure and properties of milkfat. With the advent of fatty acid-specific 

lipases (e.g., that produced by Geotrichum candidum which is specific for hydrolysis of  fatty acids 

such as oleic, linoleic and linolenic acids [51,53,74,77,117] that contain cis A9 double bonds), 

exciting developments such as the use of unsaturated fatty acid residues in production of more 

spreadable milkfat will be possible [91,108]. The incorporation of c0-3 fatty acids into milkfat--a 

long-time goal of the dairy industry--will also be feasible via enzymatic interesterification of milkfat 

with fish oils. 

The lower processing temperatures and the absence of harsh chemicals in lipase-based 

processing should improve both the shelf life and the quality of the final product. As less expensive 

and more stable lipases become available and improved large-scale lipase bioreactors are developed, 

many fat and oil processes should switch from bulk chemical to lipase-mediated technology. 

However, even though the catalytic efficiency of lipases surpasses that of chemical catalysts and cost 

of producing lipases is currently dropping, enzymatic processes will always be more expensive than 

the conventional ones. Hence, extensive industrial use will be feasible provided that the new 

products developed possess a higher added value because of improved or unique nutritional and/or 

functional properties. Thus, accordingly, randomization of milkfat using lipases seems economically 

unfeasible at present, but transesterification of milkfat with polyunsaturated fatty acid concentrates 

via catalysis by sn-l,3-specific lipases seems to have excellent prospects. Lipase catalyzed 

interesterification is currently being used as a research tool by food technologists and nutritionists to 

explore the relationship between structure and function of triacylglycerols, with the ultimate aim of 

developing new products. Many challenges remain to be overcome, but the possible impact on the 

dairy industry is likely to be great. With accumulation of knowledge about the relationships between 

the structure of lipases and their catalytic and stability properties, new substantial improvements in 

lipase-mediated biotransformation ofmilkfat should be possible. 
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