
Paper Title:
Generic Framework for Video Analysis

Authors:

Luís Filipe Tavares
INESC Porto
lft@inescporto.pt

Luís Teixeira
INESC Porto, Universidade Católica Portuguesa
lmt@inescporto.pt

Luís Corte-Real
INESC Porto, Faculdade de Engenharia da Universidade do Porto
lreal@inescporto.pt

In:
Proceedings of RECPAD’2002 - 12th Portuguese Conference on Pattern Recognition
June 27th- 28th, 2002
Aveiro, Portugal

Generic Framework for Video Analysis

Luís Filipe Tavares1, Luís Teixeira1,2, Luís Corte-Real1,3

1 Instituto de Engenharia de Sistemas e Computadores do Porto
Praça da República, 93 r/c, 4050-497 Porto, PORTUGAL

email: lft, lmt, lreal@inescporto.pt

2 Universidade Católica Portuguesa
R. Diogo Botelho, 1327, 4169-005 Porto, PORTUGAL

email: lmt@porto.ucp.pt

3 Faculdade de Engenharia da Universidade do Porto
R. Dr. Roberto Frias, 4200-465 Porto, PORTUGAL

email : lreal@fe.up.pt

Abstract - In this paper we propose a framework for
development of video analysis and description systems, in an
easy and interactive way. Due to the architecture design the
developed software can run on different operating systems
and on distributed environments.

I. INTRODUCTION

Due to the noticeably fast development in the digital
world, we now have available a wide range of video
analysis tools to satisfy the needs that arise with such new
technologies. New different approaches are emerging
everyday, each one with its own purposes, requirements
and data structures. This diversity comes up like a
problem in the integration of such video tools. Providing a
way to simplify the integration and thus the reusability of
the video tools in different contexts is the main goal of
our work. The first tools to be integrated had been
developed in internal research projects but the
environment allows the integration of external toolkits
such as Open Computer Vision Library or the Java
Imaging Lib [1,2]. The proposed framework will satisfy
the following constrains:

• to provide a comfortable, user-friendly graphical
environment,

• seamless integration of video analysing tools
developed by INESC or externals;

• expansibility by allowing the integration of new
algorithms in the application;

• portability between Unix and Windows;
• capability to perform in a distributed environment;
• support for reusable super-structures;
• fast development of prototypes.

In section II, we make a short description of some issues
that lead us to adopt the proposed solution. Main

implementation and structure aspects are presented,
justifying the choices we have adopted. Then we make a
brief description of the application. After referring a few
architecture details, section III introduces the Graphical
User Interface and presents its main components. The
section ends with a simple example of a processing system
built with this application. Section IV first refers to
technical details about the overall functioning of the
application and the interaction between the different
modules. Here, we take a closer look on key aspects like
data flow, control and synchronization scheme. We then
describe some of the features available in the current
version. The section ends evaluating the suggestion of two
user profiles for this application. In section V we make
some final remarks.

II. SYSTEM IMPLEMENTATIONS ISSUES

One of the main problems we dealt with in the design of
our application was the diversity of data video formats
and structures handled by all the video tools. For instance,
we can be working with image data and image statistics
using different video tools. Performance is also important
as most of video processing tools impose hard
requirements on system resources.

Another requirement was the system portability (including
graphical environment). Java was chosen for the GUI
implementation due to its high level architecture and
portability inherent characteristics. Most of the algorithms
were already available in C language due to performance.
We could include C routines as native code inside Java,
using JNI – Java Native Interface. This solution was
avoided as it would slow down the execution and it would
not support algorithms implemented in certain languages.
We decided to use standalone-processing engines, one for
each algorithm. Each individual video tool is encapsulated
with a module that allows it to exchange information via

mailto:lreal@inescporto.pt
mailto:lmt@porto.ucp.pt
mailto:lreal@fe.up.pt

socket with the system environment. A communications
protocol was defined (section III).

III. SYSTEM ARCHITECTURE

A. Communication Architecture

The communication is made via UDP sockets, following a
“One Server – Multiple Clients” philosophy (see Fig.1).
The server module, “Communications Manager”, is
implemented in Java. The server block allocates a thread
and a unique socket address per video tool (engine). The
sockets are the channels that the processing engines (the
C routines that actually do all the processing) use to
communicate with the server (Java) side.

During the initialisation process, each engine also creates
its own socket. This allows the Communications Manager
to instruct any pair of engines to establish a direct
message exchange between them.

Each engine has its own associated inputs and outputs,
which are identified within the algorithm by their ID
numbers. Thus it is possible to instruct one process to
send the data available in a specific output (an array of
bytes containing image data, for instance) to a specified
input in another process. So data flows directly from one
algorithm to the other.

The synchronization also relies on the exchange of “event
messages” between both sides of the application (Section
IV).

The adopted communication scheme, besides allowing the
interaction between the Java and the C sides, also
represents a solution for the other problem we mentioned
in Section III: the data diversity issue. In fact, sockets
support all types of digital data (image data, image
statistics, etc), allowing the integration level we seek with
this work.

The use of network resources to support the Inter-Process
Communication has yet another advantage. In fact, a
simple change from UDP to TCP sockets would make it
very simple to spread the engines over several machines.
This satisfies another proposed requirement: the ability to
run in a distributed environment.

B. Graphical User Interface

Processing engines are represented in the GUI by
components we call Processing Blocks, whose inputs and
outputs are represented by nodes. Nodes are related to
their respective Processing Blocks by an ownership
association.

To make a block diagram (Fig.2), the user inserts the
desired blocks and associates them by connecting their
outputs to compatible inputs of other Processing Blocks
establishing therefore a “Parent-Child” relationship.
These associations represent not only the data flow
between the correspondent inputs and outputs, but also the
event notifications that need to be given to the server. A
Producer-Consumer relationship is established between
two related nodes regarding the notification scheme.

There are two special types of Processing Blocks:

• File;
• Test point.

The first one represents a connection to a source, like a
file containing image data. The source could also be some
kind of capture device. A “Test point” provides the user
with the possibility of monitoring the sequence at any
point of the processing system.

Fig. 1 - Communications Architecture

Fig.2 – Simple Processing System

The first block in the processing chain in Fig.2 represents
the input video file or a stream outputted by a capture
device. Looking at the diagram, one can see that the
sequence is submitted three parallel processing stages.
From the top to the bottom, one can see a Pass-Through
Codec, a chain composed by an Optical Flow detector
(performed by the Lucas-Kanade algorithm) and it’s
correspondent arrow image generator and another chain
composed by a binarization block followed by a contour
detector.

Fig.3 presents the results obtained with the system of
Fig.2. In the left upper corner one can see the last frame of
the original sequence. The results of the processing

blocks, namely the binarization block, the optical flow
detection block and the contour detector block, are also
presented. The layout of the results window is defined in
the editing mode.

The processing chain shown in Fig.2 can also be kept as a
reusable block (super-structure) for future use. As
expansibility was one of our requirements, we have
provided a way to add new algorithms to the application
(Section IV)

IV. APPLICATION OVERVIEW

The application has two separate modes of operation: the
Editing Mode and the Execution Mode. In the first mode
the user creates a system, adding blocks to the workspace
and associating them. In the Execution Mode, the
application executes the operations defined in the editing
mode. The synchronization of all the processes is Event-
Oriented, because of variable delay in different processing
task. The control is centralized in the Java side of the
application, which keeps trace of the current state of every
node in the system.

The synchronization of all the modules relies on a
notification scheme, where each component in the system
notifies its directly associated components of every state
change.

A. Implemented Features

The current version has already a wide variety of tools
that one can use to perform some interesting operations.

We will now enumerate some of the image and video
analysis algorithms that we have included:

• Global features extraction
• Histogram expansion.
• Image combination, rotation, scaling.
• Filters like Low-Pass, High-Pass, Median Filter,

Gaussian, etc.
• Peak detection.
• Binarization and multilevel threshold.
• Region growing.
• Edge detection.
• Template matching.
• Object thinning.
• Hough transform.
• Fast Fourier Transform.
• Subtitle and logo extraction.

B. Expansibility

In the first approach to this goal, the integration of a new
tool was made adding a line to an index file. The line
contained simple information about the algorithm to be
added:

• Name of the GUI component.
• Location of the executable.
• Number of inputs and outputs.
• The type of the different inputs and outputs (image,

regular text, statistics…). Fig. 3 – Results Window

When we began testing other algorithms in the
framework, we were confronted with the need to provide a
more detailed description of the new tool, not only to
provide validation of the whole processing system, but
also to allow a complete customisation of the behaviour of
each tool. For instance, we must include a description of
the customisable parameters for the new tool, their data
type and the allowed range of variation for each
parameter. To avoid this level of complexity, we have
decided to use one file for each algorithm.

The user integrates a new tool in the framework by
accessing a menu “Add new Tool”, selecting the previous
hand generated description file and selecting the tool
group.

Regarding the engines code, we need to add a code
segment before inputs processing, another to control loop
processing and the last one after the processing is
complete. The first segment of code forces the engine to
wait for a “load inputs” command (sent by the manager in
the Java side). After the reception of this command, the
engine retrieves the data from the appropriate source (file
or socket) and sends an “inputs loaded” notification to the
manager. The second segment of code to be included
simply forces the engine to wait for a “begin processing”
command. The third code segment notifies the manager of
the completion of the task, which means that new data is
available at the outputs of the engine.

We also need to include a function to parse the command
line arguments, like the input and output filenames and the
algorithm’s specific set of parameters (stored in a file with
the extension “*.par”). This simple method of integration
provides our application with the desired expansibility.

C. Modularity

The desired modularity features are still in development.
In the final version of the described framework, the
application will provide two extra features:

• Creation of new modules from user-defined
systems. These modules will act like subsystems in
a larger and more complex project. Within this
project, each module is seen like a black-box for
which we can configure a pre-determined set of
parameters.

• Use the modules referred in the last paragraph as
stand-alone applications, meant to accomplish a
very specific task.

Thus we expect to simplify the design of complex
systems, by decreasing both implementation and graphical
complexity associated with a system containing a large
number of Processing Blocks. By grouping a subset of
functions that cooperate to the same task, we can see this
subsystem from a higher perspective, disregarding details
that would distract us from our higher-level objectives. At
the same time, the capability of creating subsystems
greatly simplifies the process of testing and debugging, by
proving the user with the possibility of testing the
functionality of the newly created groups.

The capability of creating stand-alone applications with
systems developed in this framework is meant to allow the
development of prototypes suited for a specific task, like,
for instance, motion detection in a surveillance system.

D. User profiles

We have consider two profiles of users for this
application:

1. The user who is experienced with video processing
techniques, and needs a simple tool to develop
complex systems. This user may employ the
available algorithms to easily build a system
capable of performing complex high-level
operations, without having to develop a whole
software package to accomplish his goals.

2. The user who needs an application to accomplish a
specific task, without having to worry about inner
details. Because this user only needs to have
control over a few of the parameters involved in the
processing system, the application provides the
interface to control only the parameters the user is
interested in.

V. CONCLUSIONS

We have presented a framework for the development of
video processing and analysis systems, in an easy and
interactive way. Regarding the performance of the created
application, we can say that the graphical environment has
good responsiveness and interaction with the user. Some
of the interesting features of this application are:

• Portability - The application is portable or OS
independent, due to the fact that none of the C
routines deals with the graphics system. This way,
we can have it running in several Operating
Systems, as long as we recompile the source code
in the correct environment. The Java modules are,
of course, system-independent.

• Modularity - The application is modular, meaning
that we can build blocks to be reused latter.

• Expansibility - The application is expansible, since
new algorithms can easily be added to extend
functionalities.

The proposed framework was designed with the following
applications in mind:

• Content Video Description (useful for intelligent
coding and content based video retrieval).

• Fast Application Development.
• Information Description (by the moment, this

application is a proprietary system. In the future we
plan to include support for XML, to be used in
MPEG7).

• Academic usage, offering the possibility of
teaching video analysis in an interactive way.

VI. ACKNOWLEDGEMENTS

This work was supported by the project CORAL - COntent-
aware Resource ALlocation for digital TV service
(POSI/CPS/34445/99).

REFERENCES

[1] Open Computer Vision Library
http://support.intel.com/support/performancetools/libraries/ipl/index.
htm

[2] Java Advanced Imaging API Specification, version 1.1, August 7,
2001

http://support.intel.com/support/performancetools/libraries/ipl/index.htm
http://support.intel.com/support/performancetools/libraries/ipl/index.htm

	I. Introduction
	II. System Implementations Issues
	III. System Architecture
	B. Graphical User Interface

	IV. Application Overview
	V. Conclusions
	VI. Acknowledgements
	References

