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Abstract Application of Fick's ®rst law to substrate un-
dergoing chemical reaction catalyzed by an enzyme im-
mobilized in a porous slab-shaped bead leads to substrate
concentration pro®les that are ¯atter when the ratio of
stoichiometric coef®cients of product to reactant (m) is
lower. Since the actual effectiveness factor decreases when
m increases (at approximately the same rate irrespective of
the value taken by the Michaelis-Menten parameter), then
considerable overprediction of the conversion levels ob-
tained within a given reaction timeframe will occur if the
simplistic (and more easily modelled) situation of equi-
molar counterdiffusion is taken for modelling purposes
when m > 1.

List of symbols
A cross-sectional area of the catalyst slab �m2�
Ctot total molar density of the mixture �mol � mÿ3�
DSP binary diffusivity of S and P �m2 � sÿ1�
E enzyme
kcat ®rst order kinetic constant associated with formation

of P �sÿ1�
Km Michaelis-Menten constant associated with dissocia-

tion of enzyme/substrate complex �mol � mÿ3�
K�m normalized value of Km �ÿ�
L half-thickness of the slab �m�
N total number of iterations �ÿ�
NP molar ¯ux of P �mol � mÿ2 � sÿ1�
NS molar ¯ux of S �mol � mÿ2 � sÿ1�
NS;z uni-dimensional component of vector

NS �mol � mÿ2 � sÿ1�
P product
S substrate
Th Thiele modulus �ÿ�
vmax maximum rate of reaction �mol � mÿ3 � sÿ1�
vP molar volume of P �m3 � molÿ1�
vS molar volume of S �m3 �molÿ1�
xS molar fraction of S �ÿ�
yS auxiliary variable �ÿ�
y
�i�
S value of yS at the i-th iteration �ÿ�

z unidimensional linear coordinate [m]
z� normalized value of z �ÿ�

Greek letters
g effectiveness factor of catalyst slab �ÿ�
m stoichiometric coef®cient of P �ÿ�

1
Introduction
Although enzymes are synthesized and operate in vivo at
concentration levels that are high when compared with the
actual concentration levels of their substrates, industrial
practice has it that the concentration of substrate is to be
raised to the highest possible value, so as to approach the
maximum possible rate ever, and the concentration of
catalyst is to be maintained as low as possible, so as to
approach the minimum operating costs ever. The reason
for these apparently opposing behaviors hinges on the
constraints posed on the aforementioned processes, which
are metabolic in the former case and economic in the
latter. Since enzymes are molecules possessing a para-
mount number of degrees of freedom in virtue of their size
and tridimensional nature as peptide bonds, partial or
total deactivation is easy and occurs at high rates unless
the rigidity of their amino acid residue backbone is con-
strained via an externally engineered microenvironment;
the easiest way to accomplish this deed is via immobili-
zation of the enzyme onto a solid support.

Since the shape of the immobilization bead is not of
crucial importance provided that the characteristic length
scale for intraparticle diffusion and the speci®c volumetric
activity of enzyme are similar (Smith, 1981), a slab-shaped
bead seems appropriate for modelling purposes because of
the mathematical simplicity derived from its unidimen-
sional nature and constant cross section along the direc-
tion of ¯ow, and has accordingly been considered by
several authors (e.g. Malcata, 1991; Moreira and Malcata,
1996). The case of 1:1 stoichiometry has dominated es-
sentially all theoretical analyses; in situations where a
different stoichiometry exists, description of molecular
transport has traditionally been effected via Fick's law of
equimolar counterdiffusion, but the results obtained in
terms of effectiveness factors may be excessively conser-
vative when the molecularity of the chemical reaction in-
creases considerably from reactants to products.

It is the purpose of this communication to mathemati-
cally assess the effect of stoichiometry upon the substrate
concentration gradient within a slab-shaped bead where
an enzyme-catalyzed reaction following Michaelis-Menten
kinetics takes place, and use such reasoning to predict the
variation of the effectiveness factor of the enzyme bead
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with stoichiometric coef®cients and physicochemical and
processing parameters.

2
Theory
Consider a chemical reaction that takes place in a binary
solution of substrate S and product P and is brought about
by an enzyme E according to the following mechanism:

E� S ! 
Km

ES !kcat
E� mP ; �1�

where Km is the equilibrium constant associated with
dissociation of the enzyme-substrate complex (ES), kcat is
the intrinsic kinetic constant associated with formation of
product, and m is the stoichiometric coef®cient of product
P. Consider, in addition, that said enzyme is uniformly
immobilized in a microporous bead; in this situation,
transport of molecular species S and P occurs by diffusion
only, according to Fick's ®rst law:

NS � xS�NS � NP� ÿ Ctot DSP r xS ; �2�
where NS and NP denote the diffusion ¯ux of S and P,
respectively, relative to stationary coordinates, xS the
molar fraction of S;Ctot the total molar density of the
mixture of S and P, and DSP the diffusivity in the binary
system formed by S and P.

The stoichiometry relationship between S and P as ap-
parent in Eq. (1) allows one to write:

NP � ÿm NS ; �3�
which, upon combination with Eq. (2), restriction to a single
(dominant) direction, and algebraic rearrangement, yields:

NS;z � ÿ Ctot DSP

1ÿ �1ÿ m�xS

dxS

dz
; �4�

where NS;z is the uni-dimensional counterpart of NS and z
is an uni-dimensional linear coordinate.

A shell mass balance to S within the slab-shaped bead
(Bird et al., 1979), which considers molar transport by
diffusion as given by Eq. (4) and transformation by
chemical reaction as depicted in Eq. (1), gives:

DSP
d

dz

Ctot

1ÿ �1ÿ m�xS

dxS

dz

� �
ÿ vmax Ctot xS

Km � Ctot xS
� 0 ;

xS z � Lf g � 1 ;

dxS

dz
z � 0f g � 0 ; �5�

where L is the half-thickness of the slab and vmax is the
maximum rate of reaction, calculated as the product of kcat

by the total concentration of available active enzyme.
Assume, for the sake of simplicity, that the total molar

density of the mixture is approximately constant, which
will be the case if S and P are not too dissimilar com-
pounds; in this case, Eq. (5) becomes:

d

dz�
1

1ÿ �1ÿ m�xS

dxS

dz�

� �
ÿ Th2 xS

K�m � xS
� 0 ;

xS z� � 1f g � 1 ;

dxS

dz�
z� � 0f g � 0 ; �6�

where the normalized Michaelis-Menten constant is de-
®ned as:

K�m �
Km

Ctot
; �7�

the Thiele modulus as:

Th � L

���������������
vmax

Ctot DSP

r
; �8�

and the dimensionless coordinate as:

z� � z

L
: �9�

Equation (6) may be rewritten as:

d2yS

dz�2
ÿ Th2 1ÿ exp ÿ�1ÿ m� ySf g

�1ÿ m�K�m � 1ÿ exp ÿ�1ÿ m�ySf g � 0 ;

yS z� � 1f g � ÿ lnfmg
1ÿ m

;

dyS

dz�
z� � 0f g � 0 ; �10�

provided that the auxiliary variable yS is de®ned as:

yS � ÿ ln 1ÿ �1ÿ m� xSf g
1ÿ m

: �11�

The effectiveness factor of the porous catalyst slab, g, de-
®ned as:

g �
2 A

R L
0

vmax Ctot xSfzg
Km�Ctot xSfzg dz

2 A L vmax Ctot

Km�Ctot

; �12�

where A denotes the cross-sectional area of the catalyst
slab, may, in view of the dimensionless variables intro-
duced above, be rede®ned as:

g � K�m � 1
ÿ �
�
Z 1

0

1ÿ exp ÿ�1ÿ m� ySfzgf g
�1ÿ m�K�m � 1ÿ exp ÿ�1ÿ m� ySfzgf g dz� :

�13�
Since Eqs. (10) and (13) do not possess any analytical
solution, a numerical method based on ®nite differences
was employed to solve them:

y
�0�
S � y0;

y
�1�
S � y

�0�
S ;

y
�i�2�
S � 2y

�i�1�
S ÿ y

�i�
S

� Th2
1ÿ exp ÿ�1ÿ m� y

�i�1�
S

n o
�1ÿ m�K�m � 1ÿ exp ÿ�1ÿ m� y

�i�1�
S

n o ;

i � 0; 1; . . . ;N ÿ 2 ; �14�



where superscript (i) denotes the i-th iteration, N the total
number of iterations, and y0 an arbitrary initial estimate,

which is to be updated if y
�N�
S 6� ÿ�lnfmg=�1ÿ m��, and:

g � 1� K�m
N

XNÿ1

i�0

1ÿ exp ÿ�1ÿ m� y
�i�1�
S

n o
�1ÿ m�K�m � 1ÿ exp ÿ�1ÿ m� y

�i�1�
S

n o ;
�15�

respectively. The molar fraction pro®les of S throughout
the catalyst slab as obtained via Eq. (14) for the interme-
diate case of Th and K�m both equal to unity are plotted in
Fig. 1, whereas the variation of the effectiveness factors
with the Thiele modulus for various values of K�m and m as
obtained via Eq. (15) are depicted in Fig. 2.

3
Discussion and conclusions
Assumption that the total molar density of the binary
mixture of S and P remains constant may be seen as a
result of the implicit requirement that vS � mvP, where v
denotes molar volume; in the case of liquids, which are the
normal substrates for enzymatic reactions, the molar vol-
ume is usually proportional to the volume of the mole-
cules, which in turn results from an approximate
summation of the volumes of all atoms in question; since
the total number of atoms of each kind remains constant
during occurrence of a chemical reaction, then the ap-
proximation set forth just prior to the derivation of Eq. (6)
is reasonable.

In the case of equimolecularity and consequent count-
ermolar equidiffusion (i.e. when m � 1), then the differ-
ential equation denoted as Eq. (6) reduces to:

d2xS

dz�2
ÿ Th2 xS

K�m � xS
� 0 ; �16�

which was used in Fig. 1 to obtain the corresponding
pro®le since Eq. (6) would lead to a mathematically in-
determinate behavior as m approached unity.

Inspection of Fig. 1 indicates that increases in the
molecularity of the reaction, which, after normalization
of the stoichiometric coef®cient of S, is measured by m,
lead to a distortion of the mole fraction pro®le of
substrate within the porous bead in the direction of the
molecular ¯ux. This distortion is the result of the fact
that the diffusion ¯ux of substrate relative to stationary
coordinates is the resultant of two vector quantities, as
apparent in Eq. (2): the vector xS�NS � NP�, which is the
molar ¯ux of S resulting from the bulk motion of the
¯uid, and the vector ÿCtot DSP r xS, which is the molar
¯ux of S resulting from the diffusion superimposed on

Fig. 1. Pro®le of molar fraction of substrate, xS, versus the nor-
malized longitudinal coordinate, z�, for various values of the
product stoichiometric coef®cient, m, with Th � 1 and K�m � 1

Fig. 2a-d. Variation of the effectiveness factor, g, versus the Thiele
modulus, Th, for various values of the product stoichiometric
coef®cient, m (from top to bottom: m � 0:33; m � 0:5; m � 1; m � 2;
and m � 3) with (a) K�m � 0:1; ( b) K�m � 1; (c) K�m � 10; and (d)
K�m � 100



the bulk ¯ow. In fact, as the molar ¯ow rate of product
relative to that of substrate increases owing to a higher
molecularity change during the reaction, a steeper molar
fraction gradient of substrate S will be required in order
to maintain a rate of diffusional transport compatible
with the intrinsic rate of reaction. This observation is
somewhat parallel to the existence of a convective ¯ow
through a (macro)porous bead, with the sole difference
that the molecular bulk ¯ow occurs in a balanced
fashion in two opposite directions, which implies that
the center of gravity is not displaced due to this ¯ow,
whereas the actual convective ¯ow due to an externally
applied pressure ®eld occurs in a single direction, which
leads to a ®nite displacement of the center of gravity;
hence, our results are consistent with those reported by
Moreira and Malcata (1996), who provided theoretical
evidence to support the claim that convective ¯ow
through slab-shaped beads containing an immobilized
enzyme catalyzing a Michaelis-Menten reaction actually
decreases the rate of substrate inlet to the slab-shaped
bead across the outer surface where bulk motion and
diffusional motion take place in opposite directions.

The general shape for the g vs. Th bilogarithmic plot
can be easily ascertained from inspection of Fig. 2. It is
remarkable that (i) an increasing m leads to a decreasing g
for every given combination of Th and K�m, (ii) the effect of
m becomes of a lesser importance as its value lies on the
very high side or alternatively on the very low side, and
(iii) the g vs. Th curve undergoes vertical downward shifts
with increasing m, following the same amplitude pattern
irrespective of the value of K�m. As expected, increasing
values of K�m make the apparent reaction order of the
Michaelis-Menten rate expression change from pseudo-
zero to pseudo-®rst order, and so a corresponding upward
shift of the g vs. Th plots is observed in the diffusional
regime, which leads to attainment of the kinetic regime at
higher values of Th.

It should be noted that temperature gradients, pressure
gradients and external ®eld force gradients also contribute
to the diffusion ¯ux; however, in most situations of
practical interest their effects are minor, so development of
the mathematical reasoning was deliberately restricted to
the case where the diffusion ¯ux results solely from con-
centration gradients. On the other hand, only the case of a
binary mixture was considered; although the classical sit-
uation of enzyme-catalyzed reactions encompasses dilute
solutions of substrates, the current trend of industrial
practice is towards use of substrates in the highest possible
concentrations, a situation that is most easily attained via
use of solvent-free systems. It should be noted that use of a
solvent, which is an essentially stationary species, slows
down the bulk motion of the ¯uid; hence the effect of m
upon the concentration gradients would not have been so
notorious and the mathematical rationale would not be so
straightforward due to the need to inclusion of multi-
component diffusivities.
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