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Abstract

The optimum experimental design for systems following the ®rst-order Arrhenius model under linearly increasing temperature

pro®les was studied by determining the sampling conditions that lead to a minimum con®dence region of the model parameters. It

was found that experiments should be started at the lowest possible temperature and, for each initial temperature, there is an optimal

heating rate. This heating rate is often too high to be feasible, implying that experiments have to be conducted at a lower practicable

heating rate. In this situation the experiments should be replicated in order to improve the precision of the estimates. If both the

initial temperature and the heating rate are ®xed at their optimal values, the optimal sampling times correspond to fractional

concentrations that are irrational numbers (approximately 0.70 and 0.19) whose product is exactly 1=e2, as earlier found for the

Bigelow model. A case study based on the estimation of the kinetic parameters of the acid hydrolysis of sucrose is also present-

ed.
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1. Introduction

First-order reaction kinetics are widely used for de-
scribing chemical and microbiological changes in food
processing and storage. When the e�ect of temperature is
to be assessed, the so-called Arrhenius and Bigelow
models are the most common. Both rely on ®rst-order
type kinetics. Several researchers that have compared the
two models suggested that both ®t experimental kinetic
data well (Jonsson, Snygg, H�arnulv & Zacrisson, 1977;
Manji & van de Voort, 1985; Ramaswamy, van de Voort
& Ghazala, 1989; David & Merson, 1990; Ocio, Fer-
nandez, Alvarruiz & Mart�õnez, 1994; Saraiva, Oliveira,
Hendrickx, Oliveira & Tobback, 1996). In spite of the
never-ending discussion about the relative merits of each
model, both are empirical and the variability of most
kinetic data does not allow to distinguish between the
quality of the ®t of the two models (Holdsworth, 1985).

Methods for estimation of kinetic parameters may be
broadly divided into constant and varying-conditions
methods, in the case of temperature, isothermal and
non-isothermal methods. The isothermal analysis of
kinetic data involves a considerable amount of experi-
mental work at constant temperatures under a speci®c
range of interest, resulting in an expensive and time-
consuming procedure. An additional problem may arise
if the parameter estimates correspond to a biased solu-
tion, that is, although yielding a good ®t to the experi-
mental data are actually quite di�erent from the true
values. In this situation, when they are used for pre-
dicting processes under non-isothermal conditions, they
may lead to signi®cant deviations (Van Loey, 1996).
However, isothermal methods are necessary for assess-
ing the dependency of the kinetic parameters on tem-
perature. Most of the kinetic parameters reported in
literature were estimated by regression of experimental
data obtained with isothermal experiments.

Non-isothermal methods, on the other hand, are
based on a single experiment in which temperature and
the factors under study are recorded as function of
time. Thus, kinetic parameters are evaluated from a
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single test covering the desired temperature range.
These methods have signi®cant advantages: minimisa-
tion of experimental requirements, overcoming thermal
lag problems and providing a dynamic situation closer
to the reality of most thermal processes. Of course,
they require the previous knowledge of the functional
relationship between the kinetic parameters and tem-
perature. The use of non-isothermal methods was ®rst
introduced by Rogers (1963) and has been reported for
the Arrhenius model (Rhim, Nunes, Jones & Swartzel,
1989a,b; Nunes, Rhim & Swartzel, 1991). Moreira,
Oliveira, Silva and Oliveira (1993) compared isother-
mal and non-isothermal methods for estimation of the
parameters of a mass di�usion model with an Arrhenius
type temperature dependency. Non-isothermal methods
may use di�erent temperature programming methods,
as reviewed by Rhim et al. (1989a). They can be clas-
si®ed as: (i) non-linear temperature programs (hyper-
bolic, logarithmic, exponential, linearly increasing
inverse absolute temperature, etc.) and (ii) linear tem-
perature programs. The later are the most commonly
used because the temperatures have the same weight in
the calculation of the kinetic parameters. Additionally,
most of the software related to time±temperature pro-
grams allows constant heating rates only.

The experimental design for non-isothermal methods
under linearly increasing temperature requires the de®-
nition of the initial and ®nal temperature and of the
heating rate, as well as sampling times. Most of the re-
searchers select the initial and ®nal temperatures so that
the range of temperatures of interest is covered, the
heating rate is mostly dictated by the capabilities of the
available equipment, and sampling times are usually
de®ned according to heuristic designs. It was however
shown that parameter estimation is quite sensitive to the
sampling times and particularly to the heating rate used
(Brand~ao & Oliveira, 1997).

The in¯uence of the experimental design on param-
eter estimation has long been recognised. Box and Lucas

(1959) proposed an optimum design criterion for non-
linear models, based on establishing the sampling con-
ditions that lead to a minimum con®dence region, for a
standard situation of a number of observations (n) equal
to the number of parameters (p), which is also known as
the D-optimal design (Bates & Watts, 1988). Oliveira,
Silva and Oliveira (1995) applied this concept for mass
transfer processes controlled by internal di�usion under
non-isothermal conditions (linearly increasing tempera-
ture pro®le), assuming an Arrhenius temperature de-
pendence of the di�usion coe�cient. These authors
reported that both the accuracy and precision of the
parameter estimates are maximum at intermediate val-
ues of the heating rate, the optimal heating rate being
dependent on the parameter values. Cunha, Oliveira,
Brand~ao and Oliveira (1997), on the other hand, have
applied this concept to the Bigelow model under iso-
thermal and non-isothermal conditions. They reported
that, for linearly increasing temperature pro®les, both
the accuracy and precision of the parameter estimates
are maximum at the lowest possible initial temperature
and at the highest possible heating rate.

The main objective of this work was to establish the
experimental conditions corresponding to the D-optimal
design for systems described by the Arrhenius model for
non-isothermal experimental plans with a linearly in-
creasing temperature pro®le.

2. Mathematical methods

For any choice of the design variable (i.e., the inde-
pendent variable, t) the size of the parameters joint
con®dence region is proportional to the Jacobian
j�FTF�jÿ1=2

of the derivative matrix F (where F � �fi;j�,
with fi;j � ogi=ohj evaluated at t � ti, with i ranging
from 1 to n; g represents the system response and h a
kinetic parameter). Thus, a logical choice of the design
criterion is to choose sampling points so that the size of

Nomenclature

Ci number or concentration of a component or quality factor at

time ti

C0 number or concentration of a component or quality factor at

time t � 0

DT decimal reduction time at a given temperature T (min)

Ea activation energy (kJ molÿ1)

F matrix of the derivatives of the response function in order to

the model parameters

kref reaction rate constant at a reference temperature Tref (minÿ1)

kT reaction rate constant at the temperature T (minÿ1)

m heating rate (°C minÿ1)

mopt heating rate for optimal parameter estimation (°C minÿ1)

n number of experimental points

p number of parameters

R ideal gas constant (kJ molÿ1 Kÿ1)

T temperature (°C, K)

Ti temperature for the ith experiment (°C)

T0 initial temperature (°C, K)

Tref reference temperature (°C, K)

t time (min)

ti sampling time for the ith experiment (min)

z thermal death time parameter (°C)

Greek symbols

D modulus of the determinant of F (minÿ1 or minÿ1 °Cÿ1)

Dmax modulus of the determinant of F for a ®xed temperature

pro®le (minÿ1 °Cÿ1)

Dopt modulus of the determinant of F for optimal experimental

conditions (minÿ1 °Cÿ1)

gi fractional concentration for the ith experiment

h vector of p parameters

f e�ciency factor �f � Dmax=Dopt � 100� (%)



this joint con®dence region is minimised, that is, the
determinant D � jFTFj should be maximised. It was
found that, for several chemical reactions involving
non-linear models, the optimal design for n experi-
ments (with n > p) consists of n/p replications of the
optimal sampling points for the case n � p (Atkinson
& Hunter, 1968; Box, 1968, 1970). This has certainly
simpli®ed the evaluation of optimal designs. According
to Box and Lucas (1959), in the case where n � p, the
D-optimal design can be simpli®ed from the maximi-
sation of D � jFTFj to the maximisation of D �
mod�jFj� (D denotes the modulus of the determinant of
the matrix F).

The changes of concentration over time for the ®rst-
order Arrhenius model, and for a linearly increasing
temperature pro®le, are given by

gi � exp

�
ÿ kref

Z
ti

0

exp

�
ÿ Ea

R
1

T0 � mt

�
ÿ 1

Tref

��
dt
�
:

�1�
Integrating and rearranging Eq. (1), one obtains (see

Appendix A)

gi � exp

�
ÿ kref

mR
R T0�
���

� mti�

� exp
Ea

R
1

Tref

��
ÿ 1

T0 � mti

��
ÿ T0 exp

Ea

R
1

Tref

��
ÿ 1

T0

���
� Ea exp

Ea

RTref

� �
Ii

���
; �2�

where

Ii �
Z yi

y0

eÿy

y
dy; y � Ea

R T0 � mt� � : �3�

Di�erentiating Eq. (2) in relation to kref and Ea:

oCi

okref

� ÿ C0 exp

���
ÿ kref

mR
R T0�
���

� mti�

� exp
Ea

R
1

Tref

��
ÿ 1

T0 � mti

��
ÿ T0 exp

Ea

R
1

Tref

��
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T0

���
� Ea exp
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RTref
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�����
mR
�
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��

� mti� exp
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R
1

Tref

��
ÿ 1
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��
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R
1
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��
ÿ 1

T0

���
� Ea exp

Ea

RTref
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�4�

oCi

oEa

� ÿ C0kref exp

���
ÿ kref

mR
R T0�
���

� mti�

� exp
Ea

R
1

Tref

��
ÿ 1

T0 � mti

��
ÿ T0 exp

Ea

R
1

Tref

��
ÿ 1

T0

���
� Ea exp

Ea

RTref

� �
Ii

�����
mRTref

�
� exp

Ea

RTref

� �
T0�

�
� mti� exp

Ea

R T0 � mti� �
� �

ÿ T0 exp
Ea

RT0

� �
� Tref

�
� Ea

R

�
Ii
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These equations may be simpli®ed if written in terms
of gi

oCi

okref

� C0gi ln gi� �
kref

; �6�

oCi

oEa

� ÿC0krefgi

mRTref

exp
Ea

RTref

� �
Xi; �7�

where Xi is a dummy variable used for further con-
densed notation

Xi � T0�
�

� mti� exp
Ea

R�T0 � mti�
� �

ÿ T0 exp
Ea

RT0

� �
� Tref

�
� Ea

R

�
Ii

�
: �8�

The determinant of the matrix of the derivatives of
Eq. (2) in order to the model parameters at the two
sampling times, D, may be calculated from Eqs. (4)±(7),
yielding

D � mod

oC1

okref

oC1

oEa

oC2

okref

oC2

oEa

�����
�����

 !
� mod

C2
0g1 ln g1� �g2 ln g2� �

mRTref

�
�exp

Ea

RTref

� �
X1

ln g1� �
�

ÿ X2

ln g2� �
��
: �9�

Due to the complexity of this equation, numerical
optimisation was performed (using Mathematicaâ for
Windows-3.0, enhanced version (Wolfram, 1996), which
applies a steepest descent minimisation method).

3. Results and discussion

To have a ®rst insight into the behaviour of the non-
isothermal ®rst-order Arrhenius model, the D-optimal
design was numerically computed for di�erent experi-
mental conditions, with T0 ranging from 0°C to 110°C
and m ranging from 1°C minÿ1 to 100°C minÿ1. A de-
sign e�ciency was de®ned, f � Dmax=Dopt � 100, where
Dmax is the maximum value of the determinant for ®xed
m and T0 conditions (that will be referred to as



sub-optimal design), and Dopt is the optimum value of
the determinant within the range of experimental con-
ditions tested. These calculations were based on a given
set of parameters: k121°C � 0:048 minÿ1 and Ea � 43 kJ/
mol. These values are equivalent to the Dref and z values
used by Cunha et al. (1997) for the Bigelow model under
non-isothermal conditions (D121°C � 48 min and z �
59°C). They were calculated as k121°C � ln�10�=D121°C

and Ea � R�Tref ÿ z�Tref ln�10�=z (Lund, 1975). The re-
sults are depicted in Fig. 1, where it can be seen that a
very good precision can be obtained when the initial
temperature is low. For high initial temperatures, in-
creasing the heating rate signi®cantly improves the
precision of sub-optimal designs, but very high heating
rates would be required to reach e�ciency values above
90%. For low T0 values the heating rate does not a�ect
so much the e�ciency of the design, and curiously Fig. 1
shows that f actually decreases as m increases. A more
detailed analysis showed that for each initial tempera-
ture the design e�ciency has a maximum for interme-
diate m values, as illustrated in Fig. 2.

This behaviour is di�erent from the observed for the
Bigelow model, where the higher the heating rate, the
higher is the design e�ciency (Cunha et al., 1997). It was
further observed that, for each T0, the heating rate at
which the design e�ciency is maximum corresponds to
the sampling times required to reach a fractional con-
centration of 0:70322 . . . and 0:19245 . . ., being the co-
logarithm of the product of the fractional concentra-
tions g1 and g2 equal to 1=e2 (see Fig. 3). These values
are identical to those obtained for the Bigelow model
under non-isothermal conditions (Cunha et al., 1997)

and to the Weibull probabilistic model under isothermal
conditions (Cunha, Oliveira & Oliveira, 1998). Fur-
thermore, when increasing the values of T0, the heating
rates required to achieve maximum e�ciency increase

Fig. 1. In¯uence of the initial temperature (T0) and of the heating rate

(m) on the design e�ciency (f) for the ®rst-order Arrhenius model

under non-isothermal conditions (kref � 0:048 minÿ1, Ea � 43 kJ molÿ1

and Tref � 121°C).

Fig. 2. In¯uence of the heating rate (m) on the design e�ciency (f) for

the ®rst-order Arrhenius model under non-isothermal conditions

(kref � 0:048 minÿ1, Ea � 43 kJ molÿ1 and Tref � 121°C).

Fig. 3. Dependence of the design e�ciency (f) for the ®rst-order

Arrhenius model under non-isothermal conditions on the fractional

concentrations g1 and g2, for di�erent values of the initial temperature

(T0) (kref � 0:048 minÿ1, Ea � 43 kJ molÿ1 and Tref � 121°C). Each

value g1 � g2 corresponds to the optimal sampling times at a di�erent

heating rate.



exponentially, whereas the e�ciency of the design de-
creases linearly (see Fig. 4).

4. Case study

To clarify the application of these concepts in food
research, a case study is provided, using data from lit-
erature. Pinheiro-Torres and Oliveira (1999) estimated
the kinetic parameters of acid hydrolysis of sucrose in a
range of pH, under non-isothermal conditions, assum-
ing that the kinetics followed a ®rst-order Arrhenius
model. The experiments were initiated at a temperature
of 50°C and the heating rate varied between 1.43°C
minÿ1 and 2.39°C minÿ1, depending on the [H�] con-
centration (some of the experimental conditions are
summarised in Table 1). The activation energy of the
process was found to be independent of pH and equal to
98 kJ/mol, whereas the rate constant at a reference
temperature of 77°C was reported to increase exponen-
tially with [H�]: k77°C � 0:098 exp�21:6�H��� minÿ1.

For each set of conditions summarised in Table 1, the
optimal sampling times were computed and the corre-

sponding value of D was considered as Dmax. The opti-
mal heating rate for the initial temperature used (50°C)
and the corresponding optimal sampling times were also
computed, the corresponding D value being considered
as Dopt. As can be observed on Fig. 5, the optimal
heating rates increase linearly with the values of the
reaction rate constants, reaching values that are physi-
cally impossible to apply (300±4100°C minÿ1). The de-
sign e�ciency is shown in Fig. 6, as a function of the rate
constant. As expected, the design e�ciency decreases as
the heating rate increases, which implies that the ex-
perimental conditions applied by Pinheiro-Torres and
Oliveira (1999) would inherently lead to a lower preci-
sion at the higher acid concentrations tested. As a
matter of fact, this may be observed in the results re-
ported by Pinheiro-Torres and Oliveira (1999), as the

Fig. 4. Dependence of the design e�ciency (f) for the ®rst-order

Arrhenius model under non-isothermal conditions and of the corre-

sponding optimal heating rate (m) on the initial temperature (T0)

(kref � 0:048 minÿ1, Ea � 43 kJ molÿ1 and Tref � 121°C).

Table 1

Experimental conditions used by Pinheiro-Torres and Oliveira (1999)

in the study of the kinetics of acid hydrolysis of sucrose using a linearly

increasing temperature pro®le starting at 50°C, and estimated rate

constants, a reference temperature of 77°C

[H�] (mol lÿ1) m (°C minÿ1) k77°C (minÿ1)

0.0376 1.570 0.2208

0.0047 1.524 0.1085

0.0521 1.430 0.3020

0.0631 1.688 0.3830

0.0744 1.559 0.4888

0.0803 1.590 0.5553

0.0998 1.879 0.8461

0.1185 1.826 1.2672

0.1253 2.388 1.4677

Fig. 5. Optimal heating rates (mopt) for the model parameter estimation

of the acid hydrolysis of sucrose under linearly increasing temperature,

with an initial temperature of 50°C (Tref � 77°C, data from Pinheiro-

Torres and Oliveira (1999)). The line represents a linear ®t

(mopt � 2798:7� k77°C; R2 � 1).

Fig. 6. Dependence of the design e�ciency (f) for the estimation of the

model parameters of the non-isothermal acid hydrolysis of sucrose on

k77°C (T0 � 50°C, m values given in Fig. 5). The line represents a log-

arithmic ®t (f � ÿ15:724� ln�k77°C� � 56:725; R2 � 0:9823).



con®dence intervals for the reaction rate estimates ob-
tained from the experiments performed at higher acid
concentration are clearly larger than those obtained for
the lower acid concentrations. However, this problem
cannot be overcome by the application of the optimal
design, because as earlier-mentioned, the required
heating rates would be impracticable. If one wants to
maintain the initial temperature at 50°C, the design
might be improved by using a constant heating rate but
taking more replicates as [H�] increases. The optimal
sampling times, according to the D-optimal design cri-
terion, for T0 � 50°C and m � 2°C minÿ1 are summar-
ised in Table 2, as well as the corresponding design
e�ciency. Fig. 7 shows the number of replicates required
for each [H�] value, so that all the experiments would
yield the same generalised variance of the parameters
(determined as the inverse of the fractional design e�-
ciency (Atkinson & Donev, 1992)). It can be seen that
the number of required replicates increases linearly with

[H�] and at the highest concentration tested the number
of replicates should be approximately twice those at the
lowest concentration. Another alternative to improve
parameter estimation would be to lower the initial
temperature. It was found that if T0 was lowered to
20°C, the optimal heating rates would range from 7°C
minÿ1 to 100°C minÿ1. As an example, for k77°C � 0:0047
minÿ1, the optimal sampling design would correspond to
a heating rate of 7.6°C minÿ1 and to sampling times
t1 � 8:7 min and t2 � 10:9 min, covering a range of
temperatures from 20°C to 103°C.

5. Conclusions

For improving the estimation of the parameters of
the ®rst-order Arrhenius model from experiments with
linearly increasing temperature pro®les, experiments
should be started at the lowest possible temperature
and, for each initial temperature, there is an optimal
heating rate. This heating rate is often too high to be
feasible, implying that experiments have to be conducted
at a lower practicable heating rate. In this situation the
experiments should be replicated in order to guarantee
estimates precision and the number of replicates re-
quired may be evaluated from the design e�ciency.

If both T0 and m are ®xed at their optimal values, the
optimal sampling times correspond to the fractional
concentrations g1 � 0:70322 . . . and g2 � 0:19245 . . .,
with g1g2 � 1=e2, as earlier found for the Bigelow model.
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Table 2

Experimental conditions determined according to the D-optimal design criterion for the joint estimation of the reaction rate constants (k77°C) and of

the activation energy of the non-isothermal acid hydrolysis of sucrose with a ®xed heating rate of 2°C minÿ1 (T0 � 50°C)

k77°C (minÿ1) t1 (min) t2 (min) T1 (°C) T2 (°C) moptimal (°C minÿ1) f (%)

0.1085 12.18 19.43 74.4 88.9 303 88.46

0.2208 9.31 15.96 68.6 81.9 618 81.09

0.3020 8.16 14.51 66.3 79.0 845 76.94

0.3830 7.33 13.44 64.7 76.9 1072 73.41

0.4888 6.53 12.37 63.1 74.7 1368 69.47

0.5553 6.13 11.82 62.3 73.6 1554 67.29

0.8461 4.91 10.09 59.8 70.2 2368 59.56

1.2672 3.89 8.53 57.8 67.1 3546 51.62

1.4677 3.56 7.99 57.1 66.0 4108 48.66

Fig. 7. Number of replicates needed to obtain the maximum genera-

lised variance of the model parameters of the non-isothermal acid

hydrolysis of sucrose, using a ®xed heating rate of 2°C minÿ1, as a

function of k77°C (T0 � 50°C). The line represents a linear ®t (no. of

replicates � 0:6677� k77°C � 1:0952; R2 � 0:9961).



Appendix A

Considering the equation that describes changes of
concentration over time for the ®rst-order Arrhenius
model, and for a linearly increasing temperature pro®le

gi � exp

�
ÿ kref

Z
ti

0

exp

�
ÿ Ea

R
1

T0 � mt

�
ÿ 1

Tref

�
dt

��
:

�A:1�
Let

y � Ea

R T0 � mt� � : �A:2�

Then

t � 1

m
Ea

Ry

�
ÿ T0

�
; �A:3�

dt � ÿ Ea

mRy2
dy: �A:4�

Substituting Eqs. (A.3) and (A.4) in Eq. (A.1) and re-
arranging

gi � exp
Eakref exp�Ea=RTref�

mR

Z yi

y0

eÿy

y2
dy

� �� �
; �A:5�

where

yi � Ea

R T0 � mti� � and y0 � Ea

RT0

: �A:6�

Noting thatZ b

a

u�y� dv�y�
dy

dy � u�b�v�b� ÿ u�a�v�a�

ÿ
Z b

a

du�y�
dy

v�y�dy �A:7�

and considering

u�y� � eÿy ;
du�y�

dy
� ÿeÿy ; �A:8�

v�y� � 1

y
;

dv�y�
dy
� ÿ 1

y2
: �A:9�

Eq. (A.5) can be integrated yielding

gi � exp

�
ÿ Eakref exp�Ea=RTref�

mR
eÿyi

yi

��
ÿ eÿy0

y0

� Ii

���
;

�A:10�
where

Ii �
Z yi

y0

eÿy

y2
dy: �A:11�

Substituting Eq. (A.2) in Eq. (A.10) and re-arranging

gi � exp

�
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���
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��
ÿ 1

T0 � mti� �
��

ÿ T0 exp
Ea

R
1

Tref

��
ÿ 1

T0

���
� Ea exp
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: �A:12�
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