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Abstract

Experimental time±temperature distributions from two di�erent industrial scale retort systems were statistically analysed. The

retort temperature was modelled as the sum of a trend value and a residual, with the trend temperatures being simple functions of

time. The residuals were modelled using time-series. The resulting impact on the lethality distribution was assessed by calculating the

F-value distribution in the centre of cans simulated via a conduction-heating ®nite element model for 180 simulated temperature

histories. Comparing the distributions obtained with those calculated using the actual experimental temperature histories validated

the applicability of this approach. The results indicated that the experimental and the modelled average lethalities were statistically

similar at 95% con®dence. The standard deviation was also similar for the F-value up to the end of holding but larger for the

modelled distribution when considering the whole cycle, which was attributed to a correlation between the heating and cooling

parameters that was not considered in the model. Ó 2000 Published by Elsevier Science Ltd. All rights reserved.

Keywords: Conduction-heating; Mathematical modelling; Finite elements; In-pack sterilisation; Time-series

1. Introduction

Conventional temperature distribution tests are per-
formed with a view to identify the coldest spot in the

Notation

a slope of the retort temperature linear trend (°C/min)

A parameter of the exponential cooling temperature

model in Retort B (°C/min)

b parameter in the trend component of the time-series

model (°C)

B back shift operator

[B] matrix of the spatial derivatives of the shape functions

cp speci®c heat (J/kg °C)

[C] capacitance matrix

CUT come up time (min)

[D] diagonal matrix with the thermal conductivity

F sterilisation value (min)

{F} force vector

h heat transfer coe�cient (W/m2 K)

k thermal conductivity (W/m K)

K parameter of the exponential cooling temperature

model in Retort B

[K] conductivity or sti�ness matrix

N element shape function

r radial coordinate (m)

rk auto-correlation coe�cient

R residual

T temperature (°C)

t time (min)

V volume (m3)

Wi weighing function

y response variable

z axial coordinate (in heat transfer equations), m or

z-value of the target micro-organism (lethality

equations) (°C)

a thermal di�usivity (m2/s)

/ coe�cient in the time-series model

h coe�cient in the time-series model

q density (kg/m3)

Subscripts

0 initial

ecu end of come up

H holding

heat heating (come-up + holding)

n nodal

R retort

tot total process

Superscripts

e element

T transpose

* Corresponding author. Fax: +353-21-276398.

E-mail address: j.oliveira@ucc.ie (J.C. Oliveira).



retort in order to specify the processing requirements.
However, from a statistical point of view it would be
preferable to describe the process variability according
to probabilities and frequency distributions for which it
would be necessary to consider a large number of data
and factors.

Some factors vary only in space (such as headspace
volume and initial temperature), others in space and
time (such as retort temperature and surface heat
transfer coe�cient) ``in a more or less noisy and un-
predictable way'' (Nicolai & Baerdemaeker, 1992).
There are a number of available published data on the
statistical analysis of thermal processes related to factors
varying in the space domain (e.g., Hicks, 1961; Lund,
1978; Patino & Heil, 1985; Hayakawa, Massaguer &
Trout, 1988; Nicolai, 1994), however the available in-
formation on the e�ect of factors that vary also in time
is quite limited.

A straightforward method to analyse retort temper-
ature and heat transfer coe�cient distributions would be
an experimental approach (Tung, Britt & Ramaswamy,
1990; Adams & Hardt-English, 1990; Park, Cables &
Collins, 1990; Campbell & Ramaswamy, 1992). How-
ever, the statistical reliability of the experimental retort
heat distribution tests is highly limited by their time
consumption and cost. In a typical study only one ex-
perimental run is made with 20±30 thermocouples dis-
tributed in a fully loaded retort and the temperature is
recorded to locate the coldest spot in the equipment
(Tung et al., 1990), which is usually identi®ed as the
location of the thermocouple that resulted in the lowest
average temperature during the holding phase of the
sterilisation cycle. The information provided by such
tests is not satisfactory due to several reasons such as the
`real' cold point might not be monitored, the lowest
average holding temperature may not result in the lowest
lethality and batch to batch variability can change its
location. Also, important sources of variability are
overlooked by not considering the temperature data
from the come-up, come-down and cooling phases.

The use of powerful numerical methods can con-
tribute to a wider body of knowledge, by allowing
comprehensive analysis with a large amount of data in
an inexpensive manner. In order to perform a reliable
heat distribution test via mathematical simulations,
three conditions must be ful®lled simultaneously: (i)
adequate heat penetration model, (ii) appropriate sta-
tistical method to `re-generate' the reality and particu-
larly its variability and in relation to that (iii) accurate
estimates of the magnitude of the uncertainty.

The general objective of this work was to develop a
modelling approach using an adequate statistical meth-
od able to mimic closely retort temperature variability in
terms of its actual impact on lethality distribution. Ex-
perimental data are required to estimate model param-
eters, which therefore have a direct physical meaning, so

that a proper link between experimental data and model
results can be made. Once a time-series model has been
extracted from experimental temperature distributions,
a large number of temperature histories can be simu-
lated and an F-value distribution can be properly in-
ferred. Such model also has the advantage of providing
a quanti®able and concise way of describing tempera-
ture variability, allowing for an objective comparison
between di�erent retorts and/or cycles.

2. Materials and methods

2.1. General concept

The process analysis is made by determining the F-
value in the geometrical centre of a can subjected to the
bulk (retort) temperature in question, considering that
(i) there is a ®nite and constant external heat resistance
between the heating medium and the can surface, (ii) all
cans are exactly the same, (iii) the product is conduc-
tion-heating. The F-values that result from this analysis
vary exclusively as a result of the temperature distribu-
tion and therefore re¯ect its potential impact on process
variability.

2.2. Temperature distribution experiments

The temperature distribution was measured in two
industrial scale horizontal water cascading retorts, one
with 6 baskets (Retort A) and another with 4 baskets
(Retort B). The experiments were performed at the in-
dustrial sites, in between normal production batches.
Retort A was equipped with 20 calibrated thermocou-
ples (ELLAB type T SSR-60020-G700-SF) distributed
in 4 baskets (baskets 1, 3, 5 and 6 numbered from the
retort end). The probes were located in the centre, top,
bottom, left and right surface of the baskets as shown in
Fig. 1 and Table 1. The vessel was fully loaded (17
container layers) with pet food in ¯exible packages.

Thirty calibrated home made thermocouples were
placed in basket 2 of Retort B in six layers (see also Fig.
1 and Table 2). In each layer there was a thermocouple
in the centre, back, front, left and right surface of the
container layer. The data logging time was 15 s in both
experiments.

These two designs are typical of two approaches:
analysing the full retort in a single run (case A) and
detailing one basket in a retort (case B ± in this design
the procedure is repeated in all baskets), as detailed in
May (1988).

2.3. Conduction-heating ®nite element heat transfer model

In the ®nite element method (FE), the solution of the
set of di�erential equations and boundary conditions



established is approximated by a variational statement
(Segerlind, 1984):Z

V
WiRdv � 0; �1�

where Wi is a weighing function and R is given by
FourierÕs second law for a can shaped body, as
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Limit conditions:

Initial condition: t � 0; T � T0 8x; z;
Symmetry condition: r � 0;
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where h is the heat transfer coe�cient and T(t)R is the
retort temperature as a function of time. In FE the body
is subdivided into elements, connected by nodes. Within
an element the temperature is calculated by a polyno-
mial (usually low-order) function of z and r for a given
time. The derivation of the equations can be found in
Segerlind (1984) for Cartesian and axisymmetric co-or-
dinates and in Misra and Young (1979) for spherical co-
ordinates. After discretisation of the problem domain, it
can be shown that the temperature in a given element is

T e � fNgTfTng; �3�
where Tn is the nodal temperature vector including the
temperatures at the nodes attached to that element and
NT is the row vector of the element shape functions. The
solution of Eq. (1) is given by the nodal temperature
vector that minimises R in Eq. (2). By substitution of
Eq. (3) in Eq. (1) and application of GalerkinÕs method
(stating that Wi�Ni) the weighing residual statement
can be rewritten as

�C� ofT g
ot

� �
� �K�fT g � F � 0: �4�

In Eq. (4) the element contributions to the global ca-
pacitance matrix [C], to the global conductivity matrix
[K] and to the global force vector {F} are:

c�e�
� � � Z

vol

qcpr�N ��N �T d�vol�; �5�

k�e�
� � � Z

vol

�B��D��B�T d�vol� �
Z

surf

h�N ��N �T d�surf�;
�6�

Fig. 1. Thermocouple locations in the experimental temperature distribution trials.

Table 2

Thermocouples and corresponding positions, Retort B

Thermocouple

number

Centre Left Right Front Back

Layer 1 1 2 3 4 5

Layer 2 6 7 8 9 10

Layer 3 11 12 13 14 15

Layer 4 16 17 18 19 20

Layer 5 21 22 23 24 25

Layer 7 26 27 28 29 30

Table 1

Thermocouples and corresponding positions, Retort A

Thermocouple

number

Bottom Centre Right Left Top

Basket 1 1 2 3 4 5

Basket 3 6 7 8 9 10

Basket 5 11 12 13 14 15

Basket 6 16 17 18 19 20
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Eq. (4) is a system of ®rst-order di�erential equations
which is solved using a ®nite di�erence method by
transforming the equation into a di�erence form

��C� � hDt�K��fTgt�Dt

� ��C� ÿ �1ÿ h�Dt�K��fTgt � ��1ÿ h�fF gt

� hfF gt�Dt�: �8�
In this work, the unconditionally stable Crank±

Nicholson method was applied (h � 1=2, see Chapra &
Canale, 1990). The software package ANSYS5.3
(Houston, USA) was used to build the ®nite element
model and solve the set of equations. The boundary
conditions were the discrete values of the corresponding
time step, either measured experimentally or predicted
by the temperature time-series model.

2.4. Modelling temperature distribution using time-series

2.4.1. Concept
Retort temperature histories follow a certain pattern

with time, involving both systematic and non-systematic
(or in other words `noisy') components. This fact agrees
well with the basic concept of time-series models, which
involve the analysis of observed data from random
processes with time and quantify them in order to pre-
dict future values. A general model for an arbitrary
variable can be written as

yt � ŷt � Rt; �9�
where ŷt is the expected value of yt and Rt is the residual,
with yt representing the variable of interest, in this case
the retort temperature. Subscript `t' indicates that the
continuous variable y is evaluated at speci®c observation
points in time. This ®ts well with numerical modelling,
where the temperature inside the container is also dis-
cretised in the space and time domain. Classical time-
series models treat the system as a `black box' and the
factors a�ecting its behaviour are not studied (Makri-
dakis & Wheelwright, 1989). These type of models are
mostly applied in business sciences for forecasting where
it is expected that the value of yt is further divided into
trend, cyclic and seasonal components, with some ap-
plications in engineering (Morrison, 1984). In the food
processing area, Lanoiselle, Candau and Debray (1995)
used a similar approach to predict the internal temper-
ature of canned foods during sterilisation. Nicolai and
Baerdemaeker (1992) carried out a theoretical study
evaluating the e�ect of the ambient temperature and

external heat transfer coe�cient in ovens using the
Markov process. Zanetti (1992) simulated air pollution
dispersion phenomena in 3D using a time-series model.

2.4.2. Trend model
In most modern retorts the di�erent phases of the

sterilisation cycle can be well de®ned and it is therefore
possible to identify a deterministic behaviour of the
heating medium temperature. Therefore, the expected
value of TR is a simple trend, which can be written as
simple functions of time. It is worth to note that due to
the controlling device some periodical ¯uctuations may
occur, however, this e�ect can be included in the residual
as a cyclic component.

From the recorded temperature data, in Retort A the
trend in Eq. (9) was assumed to follow a linear model in
the come-up and come-down period of the sterilisation
cycle, each with two steps. It was also assumed that after
the retort temperature reached the set cooling temper-
ature, it remained constant for the rest of the process.
For Retort B, the recorded retort temperatures showed
that the come-down phase did not follow a linear rela-
tionship, while the come-up trend could be described by
a single straight line. In this case, a negative exponential
function was selected to model the expected cooling
water temperature with time.

Fig. 2. Mathematical models for the expected retort temperatures

(trend functions).



In order to account for overshooting in the heating
phase, the following model was applied to calculate the
estimated retort temperature during the holding phase in
both retorts

T �t�R � TH � �Tecu ÿ TH�eÿ�tÿCUT�: �10�
In Eq. (10), TH, Tecu and CUT are the set heating tem-
perature, the temperature at the end of the come-up
phase and the come-up time, respectively. The assump-
tions for the estimated temperature pro®les are sum-
marised in Fig. 2.

2.4.3. Time-series model
A time-series data set �y1; y2; . . . ; yt� represents a

multivariate system with R1;R2; . . . ;Rt showing also a
multidimensional distribution, where the elements are
not necessarily independent. The residual component in
Eq. (9) can be modelled using a general AR-
IMA(p,i,q)(P,I,Q)s approach. The term ARIMA refers
to a model that includes three components: auto-re-
gression (AR), di�erencing of the data series (I) and
moving averages (MA). A detailed discussion of this
type of models can be found in Jarret (1991).

Regressive models in a simple case are generated by
®nding the relationship f �x; z; . . .� between the depen-
dent variable (y) and the independent variable(s)
(x; z; . . .) When the dependent variable is constructed
from its previous observations, a so-called auto-regres-
sive AR(p) model is obtained, which can be written as

yt � f �ytÿ1; ytÿ2; . . . ; ytÿp�: �11�
Not all data series can be characterised by the func-

tion presented in Eq. (11). An alternative approach is a
MA model that provides a prediction for yt as a linear
combination of the forecasting errors (e) in the past

yt � f �etÿ1; etÿ2; . . . ; etÿq�: �12�
AR and MA models are applicable only for data sets

that are said to be stationary or trend free. A very useful
method to achieve stationary series is to take the dif-
ference of the series by the order of d (I model). Com-
bining the equations above and substituting yt with the
residual yields

R�t��1ÿ B1 ÿ � � � ÿ Bi��1ÿ /1B1 ÿ � � � ÿ /pBp�
��1ÿ /1sB

1s ÿ � � � ÿ /psB
ps�

� �1ÿ h1B1 ÿ � � � ÿ hqBq��1ÿ h1sB1s ÿ � � � ÿ /qsB
qs�et;

�13�
where B is the back shift operator, BnR�t� � R�tÿn�, and /
and h are the time-series coe�cients. Eq. (13) is a general
ARIMA(p,i,q)(P,I,Q)s model including p � q� P � Q
di�erent coe�cients that must be estimated. A detailed
discussion of the fundamentals of multivariate random
processes can be found in many textbooks (e.g., Mor-
rison, 1984; Ripley, 1987; Priestley, 1992; Jarret, 1991).

The question arising at this point is how to choose a
particular model for a particular system.

2.4.4. Model selection and estimation of the coe�cients
The most widely used technique to build ARIMA

models is the Box±Jenkins method. The advantages of
this technique were discussed by Jarret (1991). The se-
lection of p and q requires the evaluation of two sets of
statistics, the auto-correlation coe�cients and the par-
tial auto-correlation coe�cients. Similarly to the corre-
lation coe�cient, the auto-correlation coe�cient (ACF
or rk) is a measure of the strength of the functional re-
lationship between the dependent and the independent
variable(s). However, in this case the independent vari-
able vector is built by the dependent variable with a time
lag of k and evaluated as

rk �
Pn

t�k�yt ÿ yt��ytÿk ÿ ytÿk�Pn
t�1�yt ÿ yt�2

h i1=2 Pn
t�k�ytÿk ÿ ytÿk�2

h i1=2
;

ÿ 16 rk 6 1; k � 1; 2; 3; . . . ; nÿ 1: �14�
The other important parameter is the partial auto-

correlation coe�cient (PACF). The PACF measures the
degree of association between yt and ytÿk while keeping
the e�ect of the other time lags on y constant. The cal-
culation of PACF involves the solution of a set of
equations that is discussed in Jarret (1991) and Priestley
(1992).

The model selection procedure consists of examining
the number of signi®cant ACFs and PACFs calculated
for a time-history data, at a given level of con®dence.
AR(p) model is chosen if the partial auto-correlation
coe�cients die down exponentially and the ACFs cut-o�
after p time lag. A MA(q) model is selected when the

Fig. 3. Schematic representation of the Box±Jenkins method.



ACFs die down exponentially and there are only q
signi®cant PACFs. If both parameters follow an
exponential pattern, a combined ARIMA(p,i,q) model is
the most appropriate to describe the data set. In most
cases, a model with p � 0; 1 or 2 and q � 0; 1 or 2 is
satisfactory.

After the model selection, the Box±Jenkins method
proceeds with the parameter estimation by minimising
the sum of squares of the errors between the model and
the data set. If q > 0, then the process becomes non-
linear, since et depends on the previous errors. Methods
for performing such iterative processes are provided by
most commercial statistical packages.

The last step in building ARIMA models is to check
the adequacy of the ®tted model using the v2 statistics
for the residual auto-correlation. The model is adequate
if the resulting v2 is less than the value corresponding to
a given level of signi®cance. Another way of diagnostic

checking is to look for signi®cant PACFs and ACFs in
the residual after the model ®tting. If no signi®cant
values are found, the model is accepted. A schematic
visualisation of the Box±Jenkins method is shown in
Fig. 3. For the selection and estimation of the proper
time-series model, the software STATGRAPHICS
(Rockville, USA) was used.

2.5. Simulation design

Eq. (8) was solved with the time varying boundary
condition using a commercial ®nite element program
package, ANSYS5.3. The powerful user programming
capability of the software provided a suitable environ-
ment to implement the time-series model within the
program package.

The half of a can with 8.6 cm in diameter and 11.6 cm
in height was modelled and subdivided into 64, 4 node

Fig. 4. Experimental time±temperature curves in Run 1 of Retort A.

Fig. 5. Experimental time±temperature curves in basket 2 of Retort B.



quadrilateral axisymmetric elements with decreasing size
towards the boundary. The physical properties of the
food simulated were k � 1 W/m K, q � 1010 kg=m

3
and

cp � 3000 J/kg °C. The initial temperature of the con-
tainer was 20°C. The physical properties were selected to
be su�ciently high so that at the end of the sterilisation
cycle the centre temperature did not a�ect the lethality
value and the e�ect of the variability of process times
was thus eliminated. The heat transfer coe�cient over
the entire can surface was chosen at a typical value of
500 W/m2 K (Tucker & Holdsworth, 1991; Tucker,
1991).

The time±temperature data from two retort systems
was recorded and used as boundary conditions in the FE
conduction-heating model. The parameters of the time-
series model that ®tted the whole retort temperature
data better were estimated with the Box±Jenkins meth-
od. The accuracy of the time-series models in predicting
process variability was evaluated by generating 180
temperature histories for Retorts A and B, respectively,
with the model, and comparing the resulting F-value
distributions with the experimental ones.

Normal and independent distributions were used to
describe the variability of the parameters of the tem-
perature history model, since there was no statistical
evidence for selecting any other distribution. The
lethality was calculated using the general method
with the temperature data calculated for the geomet-
ric centre of the cylindrical container both for the
heating phase only, which would be normal industrial
practice, and for the total sterilisation cycle including
also the e�ect of the process variability of the cooling
phase.

3. Results and discussion

Two experimental runs were performed in Retort A.
Fig. 4 shows the experimentally recorded retort tem-
perature pro®les in the ®rst run, which was selected for
subsequent analysis. Four experimental runs were
performed in Retort B, each analysing a di�erent bas-
ket, and Fig. 5 shows the temperature pro®les recorded
in basket 2, which was selected for further analysis
(being the one where a lowest lethality point was ob-
served). The F-values calculated by using the experi-
mental retort temperatures as time varying boundary
conditions in the FE model are given in Fig. 6. It can
be seen from Fig. 6(a) that for both runs in Retort A
the `coldest point' was located at the bottom centre of
basket 1 (see Table 1) considering the whole sterilisa-
tion cycle. The corresponding F-values for Runs 1 and
2 were 22.77 and 22.86 min, respectively. For the
heating phase, there were two least lethality locations
in the ®rst batch, one at the bottom centre of basket 1,
as before, but another one at the bottom centre in

basket 3 (4.45 and 4.5 min). In general, it can be
concluded from the results that as expected the F-value
was higher at the top (thermocouple locations 5, 10, 15

Fig. 6. F-values at the various thermocouple locations in: (a) Retort A;

(b) Retort B.

Table 3

Summary statistics of the F-value distribution in Retort A

Average r Min Max Range CV

(%)

Run 1

Fheat

(min)

6.47 1.17 4.45 8.16 3.71 18.11

Ftot

(min)

26.8 1.83 22.77 29.22 6.45 6.81

Run 2

Fheat

(min)

6.35 0.7 4.64 7.38 2.74 11.11

Ftot

(min)

26.22 1.3 22.86 28.28 5.42 4.97



and 20) and lower at the bottom of the baskets due to
the nature of the water cascading process. Comparison
of Runs 1 and 2 indicated that both lethality distri-
butions were statistically similar at 95% con®dence
level. Summary statistics of the two F-value distribu-
tions are shown in Table 3. As the lethality distribu-

tions were quite similar in both experimental runs, only
the F-values from Run 1 were used in the time-series
modelling.

Similar results were found for Retort B (see Fig. 8), in
which case the least lethality point in basket 2 was lo-
cated in the bottom layer, while there was a slight in-

Table 4

Parameters of the models of the expected retort temperature

Parameter Average CV (%)

Retort A Retort B Retort A Retort B

Slope of CU1 (a1) (°C/min) 10.27 6.06 3.05 0.7

Intercept of CU1 (b1) (°C) 27.52 47.63 17.93 2.5

Slope of CU2 (a2) (°C/min) 3.35 ± 7.2 ±

Holding temperature (TH) (°C) 129.1 125.86 0.13 0.2

Slope of CD1 (a3) (°C/min) )6.17 ± 4.89 ±

Slope of CD2 (a4), °C/min )2.52 ± )2.42 ±

A (°C) ± 7.63 ± 0.4

Table 5

ARIMA models selected and their coe�cients

Model Coe�cient White noise

Retort A

First come-up (CU1) ARIMA(2,0,0) /1 � 1:63

/2 � ÿ0:681 0.39

Second come-up (CU2) ARIMA(1,0,0) /1 � 0:52 0.11

Holding ARIMA(0,0,0) ± 0.15

First come-down (CD1) ARIMA(1,0,0) /1 � ÿ0:536 0.19

Second come-down (CD2) ARIMA(1,1,0) /1 � ÿ0:47 0.06

Cooling ARIMA(1,1,0) /1 � 0:648 0.02

Retort B

Come-up (CU) ARIMA(1,0,0) (0,0,1)4 /1 � 0:59

h1 � 0:81 0.64

Holding ARIMA(0,0,0) ± 0.15

Come-down (CD) ± ± ±

Fig. 7. Some simulated temperature histories for: (a) Retort A; (b) Retort B.



crease in the F-values towards the top layers. Summary
statistics of the calculated lethality distribution is given
in Table 7. In the top three layers, the least lethality in
each layer was found in the centre, but in the bottom
three layers this was not so.

For modelling the retort temperature distribution,
each pro®le was divided into a ®rst come-up (CU1), a
second come-up (CU2), a holding, a ®rst come-down
(CD1), a second come-down (CD2) and a cooling phase
in case of Retort A, as shown in Figs. 2(a) and 4(a), and
a come-up, a holding and a cooling phase in case of
Retort B, Figs. 2(b) and 4(b). The model parameters of
the retort trend temperatures are shown in Table 4. The
data in this table clearly indicate that Retort A was
considerably less uniform than the basket in Retort B
monitored, except for the holding temperature, which is
logical given the di�erent domains. The factors were
quite uniform in the holding and cooling phases, al-
though the initial temperature (intercept of CU1) had a
coe�cient of variation (CV) as high as 18% in Retort A.
It is noted that some of the factors described in Fig. 2
are not included in Table 4 because they are ®xed by
those given in order to avoid discontinuities in the
simulated temperature pro®les. Although there was no
strong cross-correlation between the factors, they were
not completely independent (R2

max � 0:4). In this work,
normally distributed, independent coe�cients for the
simulation of the expected retort temperature (trends)
were considered.

The residuals from the regression analysis were
analysed using the Box±Jenkins method. The results for
both vessels are shown in Table 5. The mathematical
expressions for the di�erent models can be found in
Appendix A. It is noted that although no cyclic behav-
iour was assumed in the expected temperature models,
the residual data indicated a periodical ¯uctuation in the
come-up phase for Retort B which is justi®ed by visual
observation of the experimental pro®les in Fig. 5. It is
also noted that in Retort B there was no time-series
model that could describe the residual behaviour in the
come-down phase with accuracy. In this case, it was
assumed that the retort temperature was equal to its
expected value. One hundred and eighty time±tempera-
ture pro®les were generated according to Tables 4 and 5.
Some of these temperature histories are given in Fig. 7.

Similarly to the experimental temperature pro®les,
the lethality was calculated for the geometric centre of
the food container using the simulated pro®les as

Table 6

Experimental and simulated F-value distribution in Retort A

F-value (min) Fheat Ftot

Experimental Simulated Experimental Simulated

Count (n) 20 180 20 180

Average 6.5 7.0 26.8 27.9

S.D. (r) 1.2 1.33 1.8 4.1

Minimum 4.4 3.7 22.8 18.2

Maximum 8.2 10.6 29.2 35.9

Range 3.7 6.9 6.45 17.7

CV (%) 18.1 19.0 6.81 14.9

Fig. 8. Experimental and simulated F-value distribution in Retort A

for: (a) the heating phase (beginning to end of holding); (b) the whole

sterilisation cycle.



Fig. 9. Experimental and simulated F-value distribution in Retort B

for: (a) the heating phase (beginning to end of holding); (b) the whole

sterilisation cycle.

Table 7

Experimental and simulated F-value distribution in Retort B

F-value (min) Fheat Ftot

Experimental Simulated Experimental Simulated

Count (n) 30 160 30 160

Average 0.37 0.38 3.67 3.5

S.D. (r) 0.04 0.04 0.11 0.21

Minimum 0.23 0.3 3.52 3.04

Maximum 0.43 0.47 3.94 4.09

Range 0.2 0.17 0.42 1.05

CV (%) 11.71 9.04 2.91 6.02

Fig. 10. F-value distribution calculated for the whole sterilisation cycle

using the time-series model in: (a) Retort A; (b) Retort B.



boundary condition. The elementary statistics for both
the experimental and simulated F-value distributions for
Retort A are tabulated in Table 6. It can be seen that the
simulated temperature distribution resulted in a very
similar lethality distribution compared to the experi-
mental one for the heating phase (Fheat). The di�erence
between the averages were 0.5 min, less than 8%. The
simulated `cold point' was signi®cantly lower than the
experimental one, which indicates that this procedure is
conservative, as expected. The simulated F-value distri-
bution showed a range about two times wider than the
experimental one. However, statistical analysis (t-test)
indicated no signi®cant di�erence between the two dis-
tributions at 95% con®dence (see Fig. 8(a)). The average
F-value for the whole sterilisation cycles was also well
approximated by the time-series model, with model and
experimental values being statistically similar at 95%
con®dence level (see Fig. 8(b)). The di�erence between
the experimental and simulated average values was
about 4%. However, it is evident that in this case the
dispersion of the lethality distribution was much larger.
This larger variability might be due to the factors in the
time-series model being assumed to have normal distri-
bution, which might not be true. They were also con-
sidered to follow independent distributions, but the
parameters were slightly correlated. In other words, the
locations in the retort which heated faster than the av-
erage, cooled faster too, while locations that heated
slower, cooled slower. This is also suggested by looking
at the experimental standard deviation values in Table 6.

Similar results were found for the basket monitored
in Retort B (see Table 7), however in this case the lowest
experimental F-value was lower than the simulated one.
This is probably due to the fact that there was one point
in the equipment that resulted in a signi®cantly di�erent
temperature pro®le from the rest of the equipment (see
Fig. 5). The probability of having such a pro®le is very
small, therefore this location should be studied in more
detail. The experimental range of the lethality distribu-
tion excluding this point is 0.31±0.43 min, which is very
close to the simulated distribution. Such as before, the
simulated retort pro®les for the whole cycle resulted in
larger lethality variability than the experimental tem-
perature histories. However, statistical analysis of the
results indicated that the two F-value distributions were
similar at 95% con®dence (see Fig. 9).

The number of available simulated lethality data us-
ing the time-series model allowed for an evaluation of
the type of distribution that the processing values fol-
low. It was found that, based on a v2 test and the
Kolgomorov±Smirnov statistics, the F-value approxi-
mated well a normal distribution, both for the heating
phase and for the whole sterilisation cycle. Histograms
for Ftot are given in Fig. 10. Similar distributions were
obtained for the sterilisation values calculated for the
heating phase alone. The 95% con®dence limits calcu-

lated based on the ®tted distributions were 4.98±9.6 and
19.1±36.16 min for Fheat and Ftot, respectively, in Retort
A. Signi®cantly smaller intervals were obtained for the
corresponding 95% con®dence limits, 0.31±0.45 and
3.09±3.92 min, in Retort B, where only a single basket
was monitored.

4. Conclusions

The temperature distribution in two di�erent retort
systems was analysed and modelled using a ®nite ele-
ment conduction-heating model. The temperature dis-
tribution impact was evaluated in terms of the resulting
lethality distribution at the geometric centre of the
container. The expected retort temperature (trend) was
modelled by simple functions of time. The time vari-
ability was approximated by ARIMA time-series mod-
els. The form of the time-series was selected and the
parameters were obtained from experimental data using
the Box±Jenkins method.

The experimental and simulated lethality distribu-
tions compared well, showing that the basic assumption
that residuals after application of ARIMA models were
normally distributed is acceptable. It was found that the
`generated' F-value distribution was very similar to the
experimental one for the heating/holding phase, imply-
ing that the model approach would recreate correctly
the impact of variability on the lethality distribution
that can be expected in the retort cycle. Considering the
total process, the average lethality was accurately ap-
proximated by the simulation, however the standard
deviation was smaller for the experimental values. The
reason for the larger simulated lethality distribution
might be that the factors in the model were not com-
pletely independent and the assumption of normal dis-
tribution may also be challenged.

The advantage of using the time-series is that a large
number of retort temperature histories can be generated
in a short time while the information gathered from
temperature distribution experiments are highly limited
by the number of available thermocouples and the exe-
cutable experimental runs due to cost reasons. The time-
series models allowed for the evaluation of the F-value
distribution due to the variability in the heating medium
temperature. The results indicated a normal distribution
for both equipments.
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ARIMA(1,0,0) Rt � /1Rtÿ1 � et�0; r2�
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