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The optimization and control of biochemical processes require the previous establish-
ment of mathematical models that can describe the effect of process variables on their
actual kinetics. Environmental temperature is a modulating factor to which the algal
cells respond continuously by adjusting their rates of cellular reactions, their
nutritional requirements, and, consequently, their biomass composition. Light intensity
is an exhaustible resource, indispensable to autotrophic organisms. The effects of light
intensity and temperature on growth of the microalga Pavlova lutheri, which have
hardly been considered to date in a simultaneous fashion, were experimentally assessed
using a factorial experimental design; in this way, the effects of each variable
independently and their interactions could be quantified, using maximum biomass
(Xmax) or maximum specific growth rate (µmax) as objective functions. The preliminary
results produced indicated that light intensity plays a more important role on µmax
than temperature; in the case of Xmax, both temperature and, to a lesser extent, light
intensity do apparently play a role. The highest values of Xmax were associated with
low temperatures and high light intensities; a similar behavior could be observed for
µmax concerning light intensity, although the dependency on temperature did not seem
to be as important. A more complex mechanistic model was then postulated,
incorporating light and temperature as input variables, which was successfully fitted
to the experimental data generated during batch cultivation of P. lutheri.

Introduction
Microalgae are currently employed in such diverse

fields as agriculture, wastewater treatment, aquaculture,
bioremediation, and manufacture of fine chemicals (1).
Among the latter, the Prymnesiophyceae Pavlova lutheri
is being studied as a potential source of the polyunsatu-
rated fatty acids eicosapentaenoic acid (EPA) and docosa-
hexaenoic acid (DHA), which are in high demand by the
market. These fatty acids bring about health benefits to
the human organism, so they are a point of great interest
to the food industry, where they act as functional
ingredients (2). However, the feasibility of their industrial
manufacture is dependent on their production costs,
which can be rationally minimized only if a deeper
knowledge of the independent and combined effects of
several key parameters upon growth is available.

When a microalgal cell is placed in a given environ-
ment that is adequate in terms of prevailing physico-
chemical conditions, it will grow exponentially until a
processing parameter becomes growth-limiting. The up-
take of nutrients from the surroundings and the release
of cell metabolites thereto occur at rates that depend on
internal cell control mechanisms, including adaptability
to environmental conditions and genetic heritage. Even

if the intrinsic characteristics of the cell population
remain somewhat constant, the culture medium can be
engineered in terms of several parameters (e.g., temper-
ature, pH, and incident light intensity), whereas certain
phenomena (e.g., acid-base equilibrium, ion strength,
gas-liquid equilibrium, and rheological properties) elimi-
nate further degrees of freedom (3). This metabolic com-
plexity makes it rather difficult to describe cell kinetics
as related to the combined effects of physical and chemi-
cal parameters. However, as pointed out before, efficient
design and control of a photobioreactor demands perfor-
mant mathematical models, especially if some degree of
prediction is sought. Hence, as a starting point, the
most important parameters should be related via an
unsegregated and unstructured model; the complexity of
the physical situation and the intended application of the
kinetic model will dictate its further detail.

Light and temperature are major processing factors
that affect overall biomass productivity in photosynthetic
algal systems (4, 5). While light is used by cells as energy
source, the effects of temperature on cell cultures con-
cern mainly two factors: one relates to the tempera-
ture dependence of the structure of cell components
(especially proteins and lipids), and the other pertains
to the temperature coefficients of reaction rates, which
in turn depend on the activation energies of those
reactions. As a consequence of these primary effects,
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there will be secondary effects on metabolic regulatory
mechanisms, specificity of enzyme reactions, cell perme-
ability, and cell composition (6).

Although there are a number of studies available
concerning light intensity and temperature effects inde-
pendently, extrapolation from studies that hold irradi-
ance constant while varying temperature, or instead hold
temperature constant while varying irradiance may be
misleading. There is indeed evidence that some species
may shift their acclimation strategies in response to
combination of those parameters in a different way than
if they acted independently (7). Other studies concern
simultaneous interactions between those factors, but in
such a particular way that hampers its application to
other growth conditions, because of the need to determine
several biochemical or physiological indicators (8). Fur-
thermore, EPA and DHA are mainly produced by the end
of the exponential growth phase, which means that if
they are to be produced efficiently, a batch culture system
should be employed. However, few studies of the kinetics
of batch cultures of this microalga are available, a
limitation shared by other species (9).

In this research work, the microalga P. lutheri was
subjected to several combinations of light intensity and
temperature, laid out as a star factorial scheme; in this
way, both the effects of each variable independently and
the interactions among them could be quantified in terms
of biomass production, first based on an empirical model.
The preliminary relationships thus obtained allowed
more complex mechanistic models to be proposed after-
ward and appropriately tested, including variations in
the functional forms of the particular dependencies on
temperature and light intensity.

Theoretical Considerations
To describe the growth behavior of P. lutheri, the

logistic model of Weiss and Ollis (10) was used as a
starting point. This rather simple model, often applied
to batch fermentations, describes growth satisfactorily,
both in the exponential and stationary phases. Unlike
traditional growth models, which typically relate growth
only with cell number, this model provides a correction
in the form of an inhibitory term, which becomes more
important as the stationary phase is approached, viz.

where µmax is the maximum specific growth rate, X
denotes biomass, t denotes time, and Xmax represents the
maximum biomass the culture can support.

Estimates of the parameters µmax and Xmax were ob-
tained, for each experiment, by nonlinear regression to
the data using the General REGression software package,
GREG (11), following integration of eq 1. This program
performs nonlinear, multiresponse regression analyses
to the data, using finite differences as approximants of
the derivatives of the objective function with respect to
each parameter; the objective function is minimization
of the sum of squares of residuals between model and
experimental data.

To establish relationships between the input processing
parameters (light intensity and temperature) and the
output adjustable parameters (Xmax and µmax), two dif-
ferent modeling processes were followed: (i) an empirical
determination of functional relationships between pa-
rameters, followed by (ii) a mechanistic determination
of said relationships. Whereas the former describes the

data in a useful mathematical relationship without
biological significance, the latter derives from theoretical
considerations, hence providing interpretations of the
responses observed in terms of the underlying physico-
chemical mechanisms (12).

The empirical approach was implemented by fitting a
second-order polynomial equation to the data, viz.:

where x and y denote absolute temperature and light
intensity, respectively, z denotes either Xmax or µmax, and
a-f are adjustable parameters. Polynomial probability
models are the most common type of empirical models
(13), although they sometimes suffer from an intrinsic
inability to adequately predict the effect of sufficient fac-
tor combinations across the entire interval of study (12).

In terms of the mechanistic approach, several proposals
for the functionality of the adjustable parameters were
checked, in the general form µmax ) µmax(L,T) and Xmax )
Xmax(L,T), always based on the integrated form of the
biomass balance depicted in eq 1. The parameter esti-
mates for those various forms were again obtained with
the aid of GREG.

Materials and Methods

Microalga Source. Pavlova lutheri (strain SMBA 60)
was obtained from Instituto Português de Investigação
MARı́tima (IPIMAR, Portugal).

Cultivation Protocol. Cultures were grown in 250-
mL Erlenmeyer flasks. The culture medium was ASW
(14) with slight modifications: (i) the medium was
enriched with 1 mg/L thiamin-HCl, 2 µg/L biotin, and 1
µg/L vitamin B12 (an essential compound for this mi-
croalga) (15); (ii) silicates and glycylglycine were removed,
the former because of redundancy and the latter because
of toxicity (16); and (iii) EDTA was increased to 50 mg/L
so as to guarantee improved stability of the medium (data
not published), whereas Tris-HCl was added at 1 g/L. The
pH was adjusted to 8.0 prior to sterilization. The medium
was prepared with deionized water and analytical grade
chemicals (Merck, Germany).

A set of 38 Erlenmeyer flasks containing the afore-
mentioned cultures were incubated (for each experi-
ment) in a Gallenkamp orbital incubator (Sanyo, UK),
at preset temperature and light regimes, as laid out in
Figure 1. Light intensity was measured as PAR (Photo-
synthetic Active Radiation) with an LI-190SA Quantum
Sensor (LI-COR), coupled to an LI-1000 data logger. For
the sake of simplicity, values of light intensity are
presented in percentage of incident light; the conversion
of such relative values (X) to the corresponding abso-
lute values (conveyed as PAR) (Y) is directly obtained via
the experimentally determined relationship Y ) 2.97X.
The experiment to be run at 14 °C and 35% light intensity
was not performed because it was a posteriori found that
such a region was uninteresting toward high growth (as
desired). Initial cell concentrations were similar in all
experiments (ca. 4 × 105 cell mL-1).

Assaying Procedure. Sampling along the incubation
time was performed by random selection and recovery
of at least two flasks in each day. Along the experiment,
the places left empty by the collected flasks were reoc-
cupied with flasks containing sterilized culture with a
similar volume, to maintain the self-shading constant.

Determination of cell number was performed with a
Neubauer Improved bright-line haemocytometer (Supe-

dX(t)
dt

) µmax X(t)(1 -
X(t)
Xmax

) (1)

z ) a + bx + cy + dx2 + ey2 + fxy (2)



rior, Germany), using appropriate dilutions, under an
Olympus CH-2 microscope (Japan).

Results and Discussion
Monitorization of Biomass Evolution. The varia-

tion of biomass during the experiments, expressed in
terms of cell number versus time, is depicted in Figure
2. Results were grouped by variation in one single
variable (when possible), so as to facilitate inspection and
detection of trends. The biomass increased exponentially
with time until it reached a plateau, as expected; the time
to reach such status depended on the combined conditions
of light and temperature set forth. Inspection of the data
in Figure 2 indicates that, for a constant light regime of
50% (Figure 2a), the maximum cell number (Xmax)
increases with decreasing temperature; this pattern is
also observed for a constant light regime of 65% (Figure
2b). Regarding the effect of light intensity on Xmax, at 18
°C the lowest value is obtained at the highest light
intensity (80%) (Figure 2c), but no significant change in
performance seems to occur at 22 °C for the two light
intensities tested (35% and 65%). This discrepancy in
behavior apparently indicates that the effect of light
intensity on cell biomass may be temperature-dependent.
In attempts to mathematically describe this growth
behavior, eq 1 was fitted independently to each dataset
(obtained at a given temperature and a given light
intensity). The parameter estimates and associated infer-
ence intervals are presented in Table 1. It can be
observed that Xmax does in fact decrease with increases
in temperature, a result consistently noticed at the two
light intensities studied. Light intensity has a similar
effect, again observed for the two temperatures tested,
although less pronounced for the experiments run at 22
°C. Regarding µmax, an inconsistent trend with temper-
ature was observed at 50% light intensity, but at 65%
there was an increase with temperature. Although in this
study one did not measure photosynthetic rates, the
observed behavior of maximum specific growth rate with
light intensity and temperature resembles trend re-
sponses on the photosynthetic rate of Anabaena variabilis
with those parameters (6). Since photosynthesis consists
of a light reaction (photochemical), which is temperature-
independent, and a dark reaction (chemical), which
increases in rate with temperature, changes in temper-
ature may not or may affect the rate of photosynthesis,
depending on whether the system is light-limited at the
time (17). Consequently, the photosynthetic rate (and
µmax) may have not increased with increasing tempera-
ture at 50% light intensity because of the conditions of

low light intensity, but the reverse probably occurred at
65%, as light intensity was then more intense.

Predicted results using the Weiss and Ollis model are
also plotted in Figure 2, overlaid on the experimental
data for comparison purposes. Since the former overlay

Figure 1. Experimental design followed in the experiments
performed at several combinations of light intensity and tem-
perature.

Figure 2. Experimental (symbols) and theoretical (line) cell
number concentrations throughout time, using eq 1 at the
various combinations of temperature and light intensity tested:
(a) experiments run at 50% light intensity and 10, 18, and 26
°C; (b) experiments run at 22 °C, and 35% or 65% light intensity,
and 14 °C and 65% light intensity; and (c) experiments run at
18 °C and 20% and 80% light intensity. Experimental values
are presented with 95% error bars.

Table 1. Parameter Estimates, and Associated 95%
Marginal Inference Intervals (MII) for the Parameters in
Eq 1 Fitted to Each Set of Experimental Data

experiment parametera estimate ( MII

10 °C, 50% L µmax (3.38 ( 0.49) × 10-1

Xmax (1.47 ( 0.15) × 107

18 °C, 50% L µmax (2.48 ( 0.39) × 10-1

Xmax (1.19 ( 0.16) × 107

26 °C, 50% L µmax (3.36 ( 0.33) × 10-1

Xmax (5.44 ( 0.42) × 106

14 °C, 65% L µmax (2.84 ( 0.33) × 10-1

Xmax (1.87 ( 0.17) × 107

22 °C, 65% L µmax (3.49 ( 0.50) × 10-1

Xmax (1.31 ( 0.12) × 107

22 °C, 35% L µmax (3.35 ( 0.39) × 10-1

Xmax (1.41 ( 0.11) × 107

18 °C, 20% L µmax (2.95 ( 0.23) × 10-1

Xmax (1.20 ( 0.10) × 107

18 °C, 80% L µmax (6.75 ( 0.58) × 10-1

Xmax (7.95 ( 0.55) × 106

a µmax is expressed in d-1; Xmax is expressed in cell mL-1



quite well on the latter, it can be concluded that the
model predictions are satisfactory for all datasets; Xmax
is particularly well-estimated in all cases, although µmax
is somewhat underestimated in the experiments per-
formed at 22 °C and 35% or 65% light intensity, as well
as in the experiment run at 14 °C.

Determination of Functional Empiric Relation-
ships. To assess the effect of each input variable (i.e.,
light intensity and temperature) on the model param-
eters (i.e., Xmax and µmax), the classical one-variable-at-
a-time study would lead to the “best” values of param-
eters but only for specific values of the input variables.
If those input variables were simultaneously modified,
the only possible way to gain knowledge into the nature
of the effect of light and temperature would be to reason
in terms of a joint functional dependence; such depen-
dence would be better assessed on the basis of experi-
mental data generated by a “star” experimental design.
Owing to the existence of three levels of concentration
for each variable, the estimated values of Xmax and µmax,
as previously obtained with GREG for each set of
experimental data, were fitted by the second-order
polynomial equation depicted in eq 2. In this way, the
combined influence of light intensity and temperature on
the response parameters was duly assessed. The results,
expressed in the form of response surface graphs (so as
to facilitate observation of the general tendencies of the
data), are presented in Figure 3.

On the basis of such plots, a first conclusion can be
drawn that relates to the optimum conditions in the
light-temperature domain: the highest values of Xmax
are associated with low temperatures and high light

intensities; a similar behavior can be observed for µmax
concerning light intensity, although the dependency on
temperature does not seem to be as important in this
case. Surface response trends for light intensity and
temperature in terms of effect on the photosynthetic rate
of Anabaena variabilis (6) also denoted the dominant
influence of light intensity, with optimum values at a
combination of high light intensities with low tempera-
tures. Inspection of the parameter values pertaining to
µmax (see Table 2) demonstrates that both the first- and
second-order coefficients associated with temperature
(i.e., b and d) are small and are associated with large
standard errors. On the other hand, coefficients associ-
ated with light intensity (i.e., c and e) exhibit higher
values, whereas the term for the interaction thereof (i.e.,
f) is very low. Hence, given the relatively large variation
in growth rate derived from changes in light intensity,
any increase in temperature will probably lead to a small
increase in biomass productivity; thus, light intensity
plays a more important role on µmax than does temper-
ature. A somewhat different conclusion can be drawn
with regard to Xmax: the linear coefficient associated with
temperature is larger (about 10-fold) than its light
intensity counterpart (see Table 2). In the case of Xmax,
both temperature and, to a lesser extent, light intensity
apparently do play a role.

At this point, the relative importance of each input
parameter upon µmax and Xmax could be estimated, yet
the resulting fit attained was relatively poor, as well as
the understanding of the mechanism underlying the
observed behavior. Therefore, it was necessary to go one
step further and resort to a more mechanistic modeling
approach, as detailed below.

Determination of Functional Mechanistic Rela-
tionships. (a) Determination of µmax. Many species of
microalgae show similar physiological responses in terms
of growth rate to irradiance (for a constant temperature),
which are characterized by an essentially proportional
relationship (until saturation is reached) (18). On the
other hand, the Arrhenius Law (which describes the
temperature dependence of chemical reactions in a gen-
eral fashion) has often been employed by microbiologists
in attempts to model bacterial growth as a function of
temperature. Such a relationship has the general form

where R is a preexponential (frequency) factor, E is the

Figure 3. Response surface graphs of the various combina-
tions of temperature and light intensity tested on (a) µmax
and (b) Xmax.

Table 2. Parameter Estimates, and Associated 95%
Marginal Inference Interval (MII) for the Parameters in
Eq 2 Fitted to the Overall Set of Experimental Dataa

parameter value ( MII

µmax
a (2.80 ( 2.02) × 10-1

b (-0.01 ( 2.00) × 10-1

c (1.32 ( 2.00) × 10-1

d (0.11 ( 3.16) × 10-1

e (1.94 ( 3.16) × 10-1

f (-0.08 ( 7.90) × 10-1

Xmax
a (1.43 ( 1.74) × 107

b (-3.85 ( 13.41) × 106

c (-6.43 ( 134.00) × 105

d (-3.14 ( 24.41) × 106

e (-3.33 ( 24.42) × 106

f (-6.44 ( 53.27) × 106

a Note: x ) (T - 18)/8, with T expressed in °C; y ) (L - 50)/30,
with L expressed in %, to normalize the input values; µmax is
expressed in d-1; xmax is expressed in cell mL-1.

µmax ≡ R‚e-(E/RT) (3)



activation energy and R is the ideal gas constant.
Nevertheless, poor fitting is often obtained when trying
to apply the Arrhenius Law to experimental data (19).
In fact, since the Arrhenius Law is universally valid only

for elementary chemical reactions, it is not surprising
that such complex biological processes as growth rates
will hardly obey such a law (20). Therefore, the limita-
tions of this simplistic form have urged an upgrade of

Figure 4. Experimental (symbols) and theoretical (lines) cell number concentrations throughout time, using eqs 1 and 5 (- - -),
eqs 1 and 7 (- - -), and eqs 1, 5, and 7 (s) at the various combinations of temperature and light intensity tested.



the Arrhenius basic expression. As pointed out previously
(21), for a given temperature there seems to be a direct
relationship between light intensity and activation en-
ergy, which prompts the convenience to consider E as a
light-de-
pendent parameter. On the other hand, the saturation
light intensity, consubstantiated in parameter R, is also
temperature-dependent and should, in general, also de-
pend on light intensity. Hence, eq 3 was conceptually
modified in order to incorporate such realizations, viz.

Several expressions were postulated, departing from
eq 4, and duly fitted to the whole experimental dataset,
to assess which one would provide the best fit. In a first
approach, E was made constant and then set proportional
to L; R was in both cases set proportional to L/T. The
sum of squares of the residuals of the model versus the
data was lower for the latter, so eq 4 was modified
accordingly; various alternative formulations for the
functional form of the proportionality constant termed
preexponential factor, as depicted in Table 3, were
further tested.

From all of the functionalities postulated, the one that
yielded the lowest sum of squares of residuals was
substituted in eq 4 to give

where K1, K2, and K3 are constants; the best estimates
of these parameters (and associated 95% confidence
intervals) were -2.90 ( 0.50, -0.264 ( 0.008, and 141.5
( 11.25, respectively.

The theoretical values predicted using eq 5 are plotted
in Figure 4. By visual inspection and comparison with

Figure 2, it can be stated that the differences are indeed
minor. To further confirm whether this modified model
fits the dataset adequately, a likehood ratio test was
used. This test leads to an assessment of the extra sum
of squares due to the extra parameters involved in going
from the complete model, i.e., eq 1, applied independently
to eight partial datasets, to the partial model, i.e., eqs 1
and 5, applied simultaneously to the whole dataset. The
results of the extra sum of squares analyses involved in
going from the complete model (16-parameter model, 2
for each set of 8 experiments) to the partial model (3-
parameter model for all sets of experiments) are sum-
marized in Table 4. Inspection of this table indicates that
the partial model is statistically not different from the
full model, so the former suffices to describe the overall
dataset from a statistical standpoint.

A model based on a linear relationship of the square
root of µmax with temperature, viz.

where R and â are constants and T is the absolute
temperature, was also tested. Such model has been
claimed (20) to provide excellent fits to data encompass-
ing bacterial growth, although it possesses no underlying
theoretical explanation. The best estimates of R and â
(and associated 95% confidence intervals) were 0.107 (
0.9750 and (-2.309 ( 3.367) ×10-3, respectively, whereas
the sum of squares of the residuals of the model versus
the data was 2.55980 × 103. Such overall poor fitting is
not surprising, since the model only accounts for the
influence of temperature while light intensity is of utmost
importance for autotrophic organisms.

The model that yielded the best fit unfolds a Monod-
type behavior regarding light intensity. Such finding is
somewhat reasonable if one realizes that light is an
essential “nutrient” for autotrophic cells, and that light
availability (in a batch culture) decreases with time as
any other nutrient from the culture medium, although
due to a different reason: the increasing cell density,
which blocks access of (putatively constant) incident light.
As a result, the photosynthetic rate also decreases, with
a concomitant decrease of carbon intake. Therefore, light
limitation indirectly leads to an inadequate supply of
carbon for photosynthesis, so a similarity emerges be-
tween carbon stress and photoadaptation. The impact of
temperature on µmax is weaker than that of light inten-
sity. This realization is not totally unexpected and is
consistent with trends already perceived in the response
surface analysis. The influence of temperature on µmax
in the case of Thalassiosira pseudonana grown at 10 and
18 °C was also claimed to be minor (18); more specifically,
P. lutheri has been pointed out (4) as representative of a
group of microorganisms with relatively poor µmax-vs-T
temperature response.

It is interesting to notice that the model proposed for

Table 3. Functional Forms Postulated for r(L,T) in Eq 4
and Associated Sums of Squares of Residualsa

expression proposed sum of squares of residuals

K1L

T

2.53842 × 103

K1L

(K2 + L)T

2.53181 × 103

K1L

K2T + L

2.51062 × 103

K1L

K2 + L

2.53027 × 103

K1L

K2e
-K3/RT + L

2.53735 × 103

a Note: K1, K2, and K3 are constants.

Table 4. Incremental Sum of Squares Analyses in Going from Eq 1 to Eqs 1 and 5, from Eq 1 to Eqs 1 and 7, and from
Eq 1 to Eqs 1, 5, and 7

source
sum of squares

of residuals
degrees of
freedom

mean
square Fratio

standard Fratio
(5% significance level)

extra parameters 0.21355 × 103 13 16.4269 0.436 1.893
8 × eq 1 2.29707 × 103 61 37.6569
eqs 1 and 5 2.51062 × 103 74
extra parameters 0.32270 × 103 13 24.8231 0.659 1.893
8 × eq 1 2.29707 × 103 61 37.6569
eqs 1 and 7 2.61977 × 103 74
extra parameters 0.31309 × 103 10 31.309 0.831 1.990
8 × eq 1 2.29707 × 103 61 37.657
eqs 1, 5, and 7 2.61016 × 103 71

µmax(L,T) ≡ R(L,T)‚e-(E(L)/RT) (4)

µmax(L,T) ≡ K1L
K2T + L

‚e-(K3L/RT) (5)

xµmax ) R + âT (6)



determination of µmax as a function of L and T (see eqs 1
and 5) is somewhat similar to another model, initially
described by Goldman (21), for calculation of the specific
growth rate (µ): growth was hypothesized to hold a
Monod-type dependency on the limiting nutrient (from
the culture medium), whereas µmax was reported to hold
an Arrhenius-type dependency on temperature. Never-
theless, said expression was applied only to experiments
run at constant light intensity, whereas in our case it
was adapted to variable light intensity conditions.

(b) Determination of Xmax. A rationale similar to that
encompassing µmax was followed in the postulation of a
functional dependency of the maximum cell number
attained on temperature and incident light. The biblio-
graphic information pertaining to this subject is scarce,
so simple models were proposed and duly tested, on the
basis of trends observed experimentally. The models
tested are tabulated in Table 5. Most of them did not
converge to estimates of all parameters, so they were
promptly discarded. The only exception was

with best parameter estimates of (1.46 ( 0.65) × 108,
-(4.57 ( 2.16) × 105, and -(3.15 ( 10.8) for K4, K5, and
K6, respectively. This functional form for Xmax was
incorporated in eq 1; the values obtained thereafter are
depicted in Figure 4, laid on the experimental data. The
goodness of fit is reasonable in general, except for the
experiments run under the extreme values of tempera-
ture (26 °C at 50% light intensity) and light intensity
(80% at 18 °C). To assess the goodness of the fit, nested
model statistics were again employed; the results thereof
are presented in Table 4. Inspection of this table indicates
that the combination of eqs 1 and 7 should be selected to
describe the experimental data, because the higher sum
of squares of residuals obtained is statistically not
significant given the decrease in the number of param-
eters. The apparent discrepancy between statistical sim-
ilarity and observed dissimilarity relies solely on the
intrinsic variability of our data.

Finally, all pieces of information were collected via
lumping eqs 1, 5, and 7 into a model bearing 6 param-
eters, viz., K1, K2, K3, K4, K5, and K6; the best estimates
of those parameters (and associated 95% confidence in-
tervals) are (-2.72 ( 0.86), (-2.86 ( 0.20) × 10-1, (1.29
( 0.22) × 102, (1.19 ( 0.59) × 108, (-3.69 ( 1.95) × 105,
and (-1.24 ( 1.40) × 101, respectively. The predicted val-
ues obtained with this set of estimates are plotted also
in Figure 4. The extreme environmental conditions of
temperature and light intensity cause the highest devia-
tions of the predicted values relative to the actual ones.
Although the residuals may look large by visual observa-
tion, the analysis of the sum of squares associated with
such a model makes it not statistically different from the

one by Weiss and Ollis (Table 4); such apparent discrep-
ancy derives again from the intrinsic variability of our
data.

Conclusions

The optimization and control of biochemical processes
requires postulation of mathematical models that can
describe the kinetics of the relevant process variables.
Environmental temperature is a nuclear parameter, as
it controls the basic rate of all chemical reactions that
take place in algal cells. On the other hand, light inten-
sity is a primordial metabolic resource for autotrophic
microorganisms. Our research effort generated the de-
velopment of mechanistic equations that permit predic-
tion of the maximum growth rate and the maximum
biomass of P. lutheri, in response to those combined en-
vironmental conditions; the resulting estimates yield good
fits to actual experimental data.
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