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Comparison Criteria: Multivariate Indices
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LINEAR MODELS WITH MULTIPLE RESPONSES
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A LINEAR HYPOTHESIS FRAMEWORK

X  =  A  +  U

SELECT COLUMNS OF X IN ORDER TO EXPLAIN H1

PARTICULAR CASES:

H0:  C =  0

(i) LINEAR DISCRIMINANT ANALYSIS

(ii)  MULTI-WAY MANOVA/MANCOVA EFFECTS

A = [1g ] = [ g] 
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ALGORITHMS BASED ON SSCP MATRICES
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ALGORITHMS BASED ON SSCP MATRICES

COMMENTS

1/4 OF THE PIVOTS UPDATE (2*2) SYMMETRIC SUBMATRICES 

…

ONE SINGLE PIVOT NEEDS TO UPDATE A (P*P) SYMMETRIC MATRIX

(i) ONLY THE RIGHT-LOWER CORNER OF A NEEDS TO BE UPDATED 

AT EACH STEP

1/2 OF THE PIVOTS JUST HAVE TO COMPUTE s2
e

TOTAL NUMBER OF FLOATING POINT OPERATIONS:

6(2p) – (1/2)p2 - (7/2)p - 6       multiplications/divisions

4(2p) – (1/2)p2 - (5/2)p - 4 additions/subtractions

10(2p) – p2 – 6p - 10 flops
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ALGORITHMS BASED ON SSCP MATRICES
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COMMENTS

BRANCH AND BOUND ALGORITHMS (FURNIVAL AND WILSON 1974)

6(2p) + O(p2) multiplications/divisions

4(2p) + O(p2) additions/subtractions

10(2p) + O(p2) flops

WORST CASE (NO PRUNING) TIME COMPLEXITY

FROM
TO

2
ys...

......

(ii)   THE SAME PROCEDURE CAN BE APPLIED MOVING BACKWARDS
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ALGORITHMS BASED ON SSCP MATRICES

COMMENTS

WORST CASE TIME COMPLEXITY:

(iiI)   AND REMAINS VALID ON APPLIED TO:

- DETERMINANTS OF THE TYPE det( 11)

- SUMS AND RATIOS OF THE ABOVE CRITERIA

SYMMETRIC, NON-SINGULAR 

AND POSITIVE-DEFINITE

(5+5r) (2p) + O(p2) flops

Lawley-Hotelling criterion
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ALGORITHMS BASED ON SSCP MATRICES

ERROR ANALYSIS

BASIC ALGORITHM   

det( 11) = det(M11)

L D L’ DECOMPOSITIONS OF  SYMMETRIC 

POSITIVE-DEFENITE MATRICES, M11, BY

GAUSSIAN ELIMINATION 

IF # X1 = K  
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-1||2

l = dim(M11)
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ALGORITHMS BASED ON SSCP MATRICES

ERROR ANALYSIS
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ALGORITHMS BASED ON SSCP MATRICES

ERROR ANALYSIS

Wilks criterion

M  =  E   or   -E-1 N  =  T   or   -T-1
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X  =  A  +  U H0:  C =  0

= R(A) = R(A)  N(C) r = dim( ) - dim( ) 
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KEY INSIGHT:

THE COMPUTATION OF ccri
2 CAN ALWAYS BE BASED ON A 

GENERALIZED SINGULAR VALUE PROBLEM

WRITING: H  =  XH’ XH E =  XE’ XE

XH = UH RH Q’ XE’ = UE RE Q’

THEN      ccri
2 = ( DH/E(i,i) )2  / [ 1 + ( DH/E(i,i)  )2]

RH = DH/E RE

AN ALGORITHM BASED ON THE ORIGINAL DATA
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INITIALIZATION STEP

FIND XH AND XE DIRECTLY FROM X, A AND C

FROM THE SVD’s

C Vs s
2 V’s C’ = F D F ’

WE GET

XE =  Ũ’ X

XH =  D-1/2 F’ C VS S
-1US’ X

A = U V ’ =  VVΣUU ss
~~ ’

AN ALGORITHM BASED ON THE ORIGINAL DATA
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ITERATION STEP

XH = UH RH Q’

XE’ = UE RE Q’

RH = DH/E RE

AND

BUT

MIGHT NOT BE TRIANGULAR

MIGHT NOT BE PARALLEL
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AN ALGORITHM BASED ON THE ORIGINAL DATA
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AN ALGORITHM BASED ON THE ORIGINAL DATA

ITERATION STEP

RESTORING TRIANGULAR STRUCTURE

- HOUSEHOLDER TRANSFORMATIONS ON

RESTORING PARALLELISM

- PAIGE’S (1986) ELEMENTARY 2*2 ROTATIONS

TIME COMPLEXITY OF EACH ITERATION:

1)k(.,XU'|R HHH AND 1)k(.,XU'|R EEE

O(s*k + r*k + k2)

TOTAL TIME COMPLEXITY: O(p2 2P)



Speed and Accuracy in Variable Selection

FINAL REMARKS

IN MOST PRATICAL PROBLEMS THE DATA DOES NOT EXHIBIT A PATTERN

OF MULTICORRELATION STRONG ENHOUGH TO MAKE THE STABILITY OF

ANY OF THE ALGORITHMS A RELEVANT CONCERN

WHEN SEVERE MULTICORRELATION IS PRESENT NONE OF THE

ALGORITHMS CAN GIVE RELIABLE RESULTS

OFTEN STATISTICAL REASONS RECOMMEND THAT MULTICOLINEAR

SUBSETS SHOULD BE AVOID, LONG BEFORE NUMERICAL ACCURACY

BECAMES AN ISSUE

NUMERICAL ACCURACY
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FINAL REMARKS

WHEN THE NUMBER OF ORIGINAL VARIABLES IS MODERATE  ALL

ALGORITHMS ARE FAST ENOUGH SO THAT COMPUTATIONAL

EFFORT IS NOT A RELEVANT CONCERN

COMPUTATIONAL EFFORT

WHEN THE NUMBER OF ORIGINAL VARIABLES IS LARGE NONE OF THE

ALGORITHMS CAN PROVE OPTIMAL RESULTS IN A REASONABLE TIME  

WHEN TRUE OPTIMALITY CANNOT BE PROVEN THERE ARE NEVERTHELESS

MANY HEURISTIC METHODS THAT ARE ABLE TO QUICKLY  IDENTIFY GOOD

(OFTEN THE BEST) VARIABLE SUBSETS EVEN IN PROBLEMS WITH A VERY

LARGE NUMBER OF ORIGINAL VARIABLES
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