
Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

SOUNDSERVER: DATA SONIFICATION ON-DEMAND FOR COMPUTATIONAL
INSTANCES

Jorge Cardoso, Jośe Carvalho, Lúıs Teixeira,Álvaro Barbosa

Catholic Portuguese University
Sound and Image Department

Rua Diogo Botelho 1327, 4169 - 005 Porto, Portugal
{jccardoso, jvcarvalho, lmt, abarbosa }@porto.ucp.pt

ABSTRACT

The rapid accumulation of large collections of data has created the
need for efficient and intelligent schemes for knowledge extraction
and results analysis. The resulting information is typically visual-
ized, but it may also be presented through audio techniques such as
sonification. Sonification techniques become especially interest-
ing when the client application runs on graphically limited devices
such as mobile phones or PDAs (Personal Digital Assistants). In
this paper we present an architecture for a sonification server that
will be used in theSound Data Miningproject. In this project
sound will be used to increase perception and present information
extracted by spatial data mining techniques. The server is based
on an audio synthesis engine and will relieve clients with little au-
dio synthesis capabilities from the burden of sound processing. By
providing sonification modules, this server can potentially be used
on a variety of applications where sonification techniques are re-
quired.

1. INTRODUCTION

The work described in this paper is part of a project that consists in
the application of spatial data mining techniques to various fields:
from real estate to hydrodynamic and water quality data in rivers.
Sound will be used as one of the means for information presenta-
tion and data exploration. The project is calledSound Data Min-
ing.

Spatial databases hold information on geo-referenced data, i.e.,
data regarding the location and shape of geographic features. Spa-
tial data includes both topological and geometric data. As with
other types of large databases, one of the most important, and dif-
ficult, aspects of spatial databases is the extraction of knowledge.
Spatial databases typically have huge amounts of spatial data that
render the human ability to analyze, useless, making it necessary
for automatic methods of analysis and knowledge discovery, or ex-
traction. As defined in [1],spatial data miningis theextraction of
implicit knowledge, spatial relations, or other patterns not explic-
itly stored in spatial databases.

Spatial data mining techniques enable us to obtain information
that would be difficult to get otherwise. A a simple example of the
kind of information that could be obtained from a spatial data min-
ing process is the correlation of a cholera outbreak in London in
the 19th century, to a contaminated water pump located on Broad
Street. Although this correlation was done “manually” in 1854 by
Dr. John Snow [2], we might imagine an extrapolation to nation
or world-wide disease analysis that would demand for automatic
processing.

Sonification isthe use of non-speech audio to convey informa-
tion [3]. It is of special interest when there is a high data volume
and number of variables; in these cases it may be useful to present
part of the information visually and part through audio. Audio
can be used to increase perception of the information that is be-
ing graphically displayed, or it may be used to present information
that is not displayed visually. The output of a spatial data mining
process can take many forms, e.g., clustering, classification, pre-
diction, etc. As an example of the use of sonification in the case of
a clustering technique, consider the case where we want to overlay
clustering information on a standard map. Sound could be used
to present clustering information without cluttering the visual in-
terface with graphical cues. As the user moves the pointer around
the map, a sound could inform him of to what cluster that point
belongs. The use of acoustic information becomes more important
as the graphical capacity of the user interface diminishes. This is
especially true in the case of mobile devices where the graphical
display is very limited, not only in terms of size, but also in colour
depth and resolution.

In this paper we present an architecture for a sonification server
based on an audio synthesis engine. This server will relieve clients
with little audio synthesis capabilities from the burden of synthe-
sizing the sounds.

The rest of this paper is structured as follows: in section 2 we
argue for the need of a sonification server and present its design;
in section 3 we show what we have done so far in implementing
the server; finally, in section 4, we present our final remarks about
this project and what we expect to do next.

2. DESIGNING THE SOUND SERVER

2.1. Why a Sound Server?

We have chosen to implement a sound server for the sonification
process for several reasons. One of the main reasons for the use
of a sound server is the fact that some devices have many limi-
tations. Mobile phones, for instance, have very little audio syn-
thesis capabilities but relatively good audio rendering capabilities.
This means that implementing the acoustic interface in these de-
vices would have to use very basic sound manipulation techniques
if they were to be done at runtime. On the other hand, generat-
ing sound files at design time and playing them at runtime would
reduce the flexibility of the sonification.

Another justification for a sound server is that we want to de-
velop several applications, in different domains and for different
platforms, from desktop computers to mobile devices. Program-

ICAD01-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade Católica Portuguesa

https://core.ac.uk/display/70667184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

ming for these different platforms requires the use of different li-
braries. This means that without a server we would have to imple-
ment the sonification process for each application/platform. What
we need is a platform independent and reusable solution.

The flexibility of the final system was also taken into consid-
eration. Most applications will share some sonification processes
and the use of a server enables us to easily change the implemen-
tation of that sonification without having to re-implement all the
client applications.

One other advantage of using a sound server is that it can be
used by developers of user interfaces that don’t really care about
the specific implementation of the sonification. In a sense, using a
server provides encapsulation of the sonification techniques. This
means that the programmer using a sonification available at the
server need not know how that sonification is accomplished. He
needs only to know what a certain sonification represents.

The idea of using a sound server is obviously not new. InPub-
lic Sound Objects[4] a processing engine is used as acollaborative
music creationserver forgeographically displaced communities.
This server synthesizes sound according to client parameters. In
Y-Windows[5], Kaltenbrunner proposes a server that follows the
philosophy of the X Window System [6], applied to an Auditory
User Interface (AUI) environment where developers are relieved
of the task of implementing basic auditory widgets.

2.2. Philosophy

The Sound Server design follows three premisses:

1. The server must accept requests from clients in different
platforms.

2. Clients have different audio rendering and synthesis capa-
bilities.

3. The server should provide a set of high levelsonification
modules.

The Sound Server design is based on the idea ofsonification
modules. A sonification module is an entity within the server that
represents a particular sonification. The server can be configured
with a multitude of sonification modules: a module that sonifies
anabsolute value, a module that implements aparameter mapping
sonification, a module for the sonification ofdensity, etc. A client
may ask for the result of several modules in one request. In these
cases the sonifications have to be combined together in one sound
file. There are several ways in which this can be done. Figure 1
shows some possible combinations of modules. The sound stream
from module C is put on both channels, module A only on the left
channel at the beginning of the file, module B on the left channel
at the end of the file and module D only on the right channel at the
beginning. It is up to the client to specify how the modules should
be combined together.

The sonification modules should beself-describing, i.e., there
should be a way for the client to ask the module what tasks it per-
forms and what parameters can be controlled. In its simpler form
this description might simply be a text message informing the user
of how the sound should be interpreted. The server should also
provide a listing of the available modules.

The main output of the server will be a sound file with the
sonification that the client requested. The client may ask for the
sonification of several modules at the same time, and instruct how
the several modules should be grouped together in the resulting
sound file. If the client asks for module A and B, he may want the

Figure 1:Combining Sonification Modules

respective sounds in the same channel, or in different channels,
synchronized, or displaced in time. The client may also specify
other parameters of the output, such as the sound quality (bitrate
and samples per second), the output format (mp3, wave, aiff), etc.

The server will be accessed through HTTP enabling the clients
to access it like a regular Web Server. This will facilitate the access
by a wide variety of devices since the HTTP protocol is widely
implemented.

Clients with greater synthesis capabilities should be able to
process the sonification locally, needing to communicate with the
server only to obtain the sonification module.

2.3. Architecture

Figure 2 shows the logical architecture of the Sound Server. The
server is composed by two main units:Web Server UnitandSyn-
thesis Unit.

The Web Server Unit is responsible for the communication
management. This unit functions as a proxy to the Synthesis Unit
adapting the requests from the clients to the correct syntax required
by the Synthesis Unit and vice-versa. It will offer the client ap-
plications three interfacing modes: URL-encoded parameter-value
pairs through the HTTP GET method; XML document encoded
requests sent through the HTTP POST method; and SOAP-RPC
requests through HTTP. Providing these different interface modes
will allow for a wider range of supported client platforms and ap-
plications. It also allows for diferent levels of complexity in the
messages exchanged between clients and the server, since mes-
sages structured in XML documents can be more complex than
messages encoded in the URL, for example. For increased perfor-
mance, this unit will cache the requests so that the same request is
processed only once.

The Web Server Unit can itself be broken down into four sub-
units:

URLInterface Accepts requests in URL-encoded parameter-value
pairs. This is the simplest interface to the server.

XMLInterface Accepts requests encoded in XML documents. This
interface will allow for more complex messages to be ex-
changed between client and server.

SOAPInterface Will provide a SOAP-RPC interface to the server.
This interface will allow clients to access the server as a
Web Service [7].

ICAD01-2



Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

Figure 2:Sound Server Architecture

Cache Caches requests from all types of requests. The request is
routed to the Synthesis Unit only if it cannot be found in the
cache.

The Synthesis Unit constitutes the nucleus of the sound server
and is where the actual sonification takes place. It is composed
by the following subunits: Communication, Command Dispatcher,
Module Dispatcher, Sonification Modules, Mixer and Outputter.

The Communication subunit manages the communication be-
tween the Web Server Unit and the Synthesis Unit. It is able to
manage concurrent requests/responses.

The Command Dispatcher receives commands from the Com-
munication subunit and routes them to the appropriate subunit (Mod-
ule Dispatcher, Mixer or Outputter). This is needed because both
the Mixer and the Outputter can be configured by the client.

The Module Dispatcher subunit has a similar function to the
Command Dispatcher. It routes commands to the appropriate soni-
fication module, enabling the client to pass parameters to them.

The Sonification Module is where the actual sonification takes
place. These subunits are independent modules that can be added
or removed from the server. We can think of them as a kind of
plugin for the sonification server.

The Mixer is responsable for the final integration of the several
sound streams into one file, according to the client specification. It
gathers the audio signal from the sonification modules and com-
bines them in a single audio stream.

The Outputter subunit takes the output from the Mixer and

generates a sound file in the format, and according to the settings
set by the client. This subunit can be configured to generate sound
files in different formats and with different audio quality so that
each client can adjust the sound to its capabilities.

These two units: the Web Server Unit and the Synthesis Unit
can be loosely coupled, i.e., they could be run on different ma-
chines, allowing more complex topologies, if necessary.

3. IMPLEMENTING THE SOUND SERVER

The Web Server Unit prototype has been implemented in PHP [8]
running on an Apache [9] HTTP server. At this stage we have
only implemented the URLInterface subunit. The final version of
this unit will probably be implemented in Java because it provides
more structured code.

For the Synthesis Unit we have chosen Miller Puckette’s Pure
Data [10] since it is a free, open source platform for audio syn-
thesis and it also provides a high level (graphical) object oriented
programming environment.

At this stage, the server accepts only very simple commands.
As an example, consider the URL:http://serveraddress/
sonifica.php?module=abs&value=500

This request would return a sound file with the sonification of
an “absolute value” of 500 units.

3.1. Sonification Modules

A sonification module is just a Pure Data patch with a specific
interface (inputs and outputs). The architecture of the sonification
modules is still under development, and the aim is to have modules
that can be easily added to the server without too much effort.

Basically, each module will be able to define its own param-
eters that allow specific characteristics of the sonification to be
changed, e.g., the sonification of an absolute value will accept the
“value” parameter. The duration of the sound stream generated by
the module will also be defined by the module itself. The module
will signal to the server when the sonification is complete so that
further processing on the request can be made.

3.2. Testing the Server

In order to test the server we have implemented a Java applet1 (Fig-
ure 3) and two sonification modules used by the applet: one for the
sonification of absolute values and one for the sonification of den-
sity. These modules are used by the test applet for the sonification
of the area and population density, respectively, of the Portuguese
districts in the map.

The absolute value module was implemented following the di-
rections of [11] with some minor differences. Our implementation
uses sounds made by simple sine waves while theirs used sampled
grand piano sounds. In both cases the fundamental frequencies
were nearly the same. For the density module we used granu-
lar synthesis, variating the pitch and number of grains according
to density (higher pitch and number of grains represents a higher
density).

In this applet, the user can select what data to sonify (area or
population density) and, in the case of the area, whether the soni-
fication uses time or time and pitch. When the user clicks inside a

1This applet is available athttp://artes.ucp.pt/citar/
sdm/ .

ICAD01-3



Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

district, a request is made to the sound server for the correspond-
ing sonification. The requests to the sound server are regular HTTP
requests with URL-encoded parameters, so that from the applet’s
point of view we are simply accessing a sound file on a web server.

Figure 3:Test Applet

In our tests both the Web Server Unit and the Synthesis Unit
were running on a single machine: a Pentium IV at 2.5GHz. The
client application was running on a Compaq iPAQ Pocket PC con-
nected to the PC via a USB cable.

3.3. Results

The test applet seems to indicate that we have a valid server design
that can be further explored and implemented.

The two sonification modules used in the test were indepen-
dently implemented in Pure Data and easily adapted to the server.
This suggests that augmenting the server with other sonification
modules will not be difficult. Implementing the Java test applet
also shows that it is simple to use the sonifications available at the
server. To obtain a particular sonification, all one has to do is to
make an HTTP request to the web server.

In our tests, the delay time in receiving the sound file, is roughly
equal to the time that the sonification modules take to generate the
sound. The modules work in real-time therefore generating 3 sec-
onds of audio will take exactly 3 seconds to complete. This delay
time will depend only on the type of sonification being made and
may or may not be acceptable, depending on the application.

4. CONCLUSIONS AND FUTURE WORK

We have presented here a design for a sonification server that will
allow the use of sonification techniques in a wide range of appli-
cations and platforms.

Although the work described here is still in development, we
believe that we already have a well designed and structured soni-
fication system. In the following months, we will further develop
this work: not only by continuing to enhance the implementation
of the server but also by applying it to real case applications.

5. ACKNOWLEDGMENTS

This project is being supported by theAgencia de Inovacao(AdI)

6. REFERENCES

[1] Krzysztof Koperski and Jiawei Han, “Discovery of spatial
association rules in geographic information databases,” in
Proc. 4th Int. Symp. Advances in Spatial Databases, SSD,
M. J. Egenhofer and J. R. Herring, Eds. 6–9 1995, vol. 951,
pp. 47–66, Springer-Verlag.

[2] John Snow, On the Mode of Communication of Cholera,
John Churchill, New Burlington Street, London: England,
second edition, 1855.

[3] G. Kramer, Bruce Walker, Terri Bonebright, Perry Cook,
John Flowers, Nadine Miner, and John Neuhoff, “NSF Soni-
fication Report: Status of the field and research agenda,”
1999.

[4] A. Barbosa, M. Kaltenbrunner, and G. Geiger, “Interface de-
coupled applications for geographically displaced collabora-
tion in music,” inProceedings of the International Computer
Music Conference - ICMC 2003.

[5] Martin Kaltenbrunner, “Y-Windows: Proposal for a Stan-
dard AUI Environment,” inProceedings of the International
Conference on Auditory Display - ICAD 2002.

[6] Open Group Inc., “X Window System,”http://www.x.
org/X11.html .

[7] World Wide Web Consortium, “Web Services Activity,”
http://www.w3.org/2002/ws/ .

[8] PHP Group, “PHP: Hypertext Preprocessor,”http://
www.php.net/ .

[9] Apache Software Foundation, “Apache HTTP Server
Project,”http://httpd.apache.org/ .

[10] M. Puckette, “Pure data: another integrated computer music
environment,” inProc. the Second Intercollege Computer
Music Concerts, 1996, pp. 37–41.

[11] Anikó Śandor and David M. Lane, “Sonification of absolute
values with single and multiple dimensions,” inProceedings
of the International Conference on Auditory Display - ICAD
2003.

ICAD01-4


