
Developing a decomposable measure of profit
efficiency using DEA

MCAS Portela1,2 and E Thanassoulis2*
1Centro Regional do Porto, Universidade Católica Portuguesa, Porto, Portugal; and

2Aston Business School, Aston Triangle, Birmingham, UK

In for-profit organizations efficiency measurement with reference to the potential for profit augmentation is particularly
important as is its decomposition into technical, and allocative components. Different profit efficiency approaches can
be found in the literature to measure and decompose overall profit efficiency. In this paper, we highlight some problems
within existing approaches and propose a new measure of profit efficiency based on a geometric mean of input/output
adjustments needed for maximizing profits. Overall profit efficiency is calculated through this efficiency measure and is
decomposed into its technical and allocative components. Technical efficiency is calculated based on a non-oriented
geometric distance function (GDF) that is able to incorporate all the sources of inefficiency, while allocative efficiency is
retrieved residually. We also define a measure of profitability efficiency which complements profit efficiency in that it
makes it possible to retrieve the scale efficiency of a unit as a component of its profitability efficiency. In addition, the
measure of profitability efficiency allows for a dual profitability interpretation of the GDF measure of technical
efficiency. The concepts introduced in the paper are illustrated using a numerical example.
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Introduction

The data envelopment analysis (DEA) (Charnes et al, 1978)

literature has tended to focus on technical efficiency, which

can be computed without reference to input or output prices.

However, in for-profit organizations technical efficiency

alone is of limited interest, as firms will normally be reluctant

to change input and output quantities if these do not lead to

monetary gains. Obviously, the translation of input and

output changes into profit requires price information.

In order to measure profit efficiency and lead operating

units to improved profitability, a non-oriented approach is

needed which will allow both for increases and decreases in

inputs and in outputs so as to exploit prevailing prices.

Typically in for-profit situations a mix of inputs and outputs

is endogenous and management can seek to change their

values (eg Kumbhakar, 2001). Moreover, it is useful to know

the component of the scope of profit improvement that can

be achieved through improving technical efficiency and the

component that can be achieved through adjusting the input–

output mix to take advantage of prevailing input–output

prices. Such information can be obtained through decom-

posing the measure of overall profit efficiency into technical

efficiency (reflecting how much a production unit can

increase outputs and decrease inputs) and allocative efficiency

(reflecting additional profit attainable beyond that through a

unit becoming technically efficient, the additional profit being

attainable through changes in the input–output mix).

In this paper, we address two related issues: Measurement

of technical efficiency through non-oriented measures, and

measurement of profit efficiency and its decomposition. To

measure technical efficiency in a profit setting we use the

geometric distance function (GDF) introduced by Portela

and Thanassoulis (2005) and explore its properties. The

GDF is also used to measure and decompose overall profit

efficiency. An alternative measure to profit efficiency is also

presented that is intended to capture profitability rather than

profit as defined in accounting terms. This measure of

profitability allows a dual profitability interpretation of the

GDF measure of technical efficiency.

In the next section, we detail the GDF measure of technical

efficiency and its properties. In the succeeding section, existing

approaches for calculating and decomposing profit efficiency

are outlined. In the section, that follows we present a new

measure of profit efficiency based on the GDF and illustrate

its calculation and decomposition through an example. Finally

in the last section, the concept of profitability efficiency is

defined and its decompositions and use are discussed.

A geometric distance function (GDF)

Consider a technology represented by T¼ {(x, y)ARmþ s
þ | x

can produce y}, where x is an input vector (i¼ 1,y,m), and
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y is an output vector (r¼ 1,y, s). We will assume

throughout that T is represented by the following produc-

tion possibility set:

T ¼ ðx; yÞ 2 Rmþ s
þ

�����
Xn

j¼1
ljyjXy;

Xn

j¼1
ljxjpx;

(

Xn

j¼1
lj ¼ 1; ljX0; j ¼ 1; . . . n

) ð1Þ

That is, T is a monotonic (or strongly free disposable)

convex set satisfying variable returns to scale (VRS) (for

details see eg Färe et al, 1994).

To summarize the GDF measure first introduced in

Portela and Thanassoulis (2005) let us, in a two-dimensional

space, define an observed point (x, y) and a target point

(x*, y*) on the frontier of T. The radial output technical

efficiency measure is y/y*, while the radial input technical

efficiency measure is x/x*. Both measures are in fact equal to

a ratio between the productivity (ratio of output to input) at

the observed and at the target point (y/x)/(y*/x*). The

output efficiency measure is derived if we set in the foregoing

ratio (x*¼x) and the input efficiency if we set (y*¼ y). Note

now that (y/x)/(y*/x*) can also be expressed as a ratio of

target to observed input and output levels: (x*/x)/(y*/y).

We generalize this latter ratio to a multi-input multi-output

context as follows.

Consider in the multiple input/output space an observed

vector (x, y) and a target vector (x*, y*) on the frontier of T.

The traditional radial approach for measuring technical

efficiency takes the maximum of x*/x¼x1*/x1, x2*/x2,y,

xm*/xm (which equals max (x*/x)/(y*/y) when y*¼ y) as the

input radial efficiency measure. Similarly, the maximum of

y/y* or the minimum of y*/y (which equals max (x*/x)/

(y*/y) when x*¼x) is the output radial efficiency measure.

This means that the analogous situation in the non-

oriented case would be to take the maximum of (x*/x)/(y*/y)

as the efficiency measure, where no inputs or outputs are

considered fixed. If we now assume that between (x, y) and

(x*, y*) all inputs change by the same proportion

(say x*¼ yx), and all outputs change by the same proportion
(say y*¼by), then (x*/x)/(y*/y)¼ (yx/x)/(by/y)¼ y/b corre-

sponds to the non-oriented efficiency measure, defined as a

ratio of target to observed input level divided by the ratio of

target to observed output level. If finally we consider the

more general case, where inputs and outputs are allowed to

change by different proportions (so that xi*¼ yixi and

yr*¼bryr), then the measure in (2) parallels the foregoing

ratio of target to observed input–output levels.

Geometric distance function ðGDFÞ ¼ ð
Q

i yiÞ1=m

ð
Q

r brÞ1=s
ð2Þ

The geometric distance function defined in (2) incorpo-

rates as special cases the usual input- and output-oriented

measures of technical efficiency in DEA. Consider a GDF

technical efficiency measure of (xo, yo) as the solution of

model (3).

GDFðxo; yoÞ ¼min
ð
Q

i yioÞ1=m

ð
Q

r broÞ1=s

�����
( Xn

j¼1
ljyrj ¼ broyro;

Xn

j¼1
ljxij ¼ yioxio;

Xn

j¼1
lj ¼ 1; ljX0;

0pyiop1; broX1

)
ð3Þ

Model (3) is highly nonlinear, but it becomes linear for the

special cases corresponding to traditional oriented DEA

models. For example, in input-oriented DEA models one

assumes that bro¼b¼ 1 8 r, and also that yio¼ y 8 i, and

thus the final efficiency score in (3) reduces to y, which
corresponds to the Farrell input efficiency measure. For

output-oriented efficiency measures similar reasoning

applies. If bro¼ b 8 r, yio¼ y 8 i and b¼ 1/y, then (3)

reduces to the hyperbolic model of Färe et al (1985), with the

only difference being that the resulting measure of efficiency

is y2 and not y.
The advantage of allowing for different contraction

factors associated with inputs (yi) and different expansion

factors associated with outputs (br) is that all sources of

technical inefficiency can be captured by the resulting

efficiency measure. This is not a new concern. For example,

Färe et al (1985) introduced an additive ‘Russell graph

measure of technical efficiency’ that allows for different

changes within inputs and outputs. However, the authors de-

fine the arithmetic average of the various factors associated

with inputs and outputs, ð
Pm

i¼1 yio þ
Ps

r¼1 1=broÞ=m þ s,

as the final efficiency measure (see also Pastor et al, 1999,

who propose an ‘enhanced Russell graph efficiency’

measure). However, as has been shown above, in order to

retain the meaning of traditional efficiency measurement the

geometric average between these factors should be used

instead. In fact Färe et al (2002), also introduced a

Multiplicative Russell Measure that is equivalent to the

input-oriented GDF measure, where bro¼ 1, 8 r.

Properties of GDF-based measures of profit efficiency

We use model (3) to highlight some general properties of the

GDF technical efficiency measure. We follow the Färe and

Lovell (1978) axioms of indication, monotonicity and

homogeneity to explore the properties of the GDF technical

efficiency measure.

Intuitive homogeneity

The GDF technical efficiency measure in (3) is sub-

homogeneous of degree �2 (ie, when inputs are halved

and outputs are doubled, the measure of efficiency increases



by a factor of at least four times) (see Appendix for proof).

To the authors’ knowledge there is no non-oriented

efficiency measure in the literature that satisfies homogeneity

of degree �2. When we look just at one side (inputs or

outputs) it seems intuitive to say that if all outputs double,

the measure of efficiency should double (homogeneity of

degree �1). When both inputs and outputs are being

changed, homogeneity of degree �1 is not intuitive as a

simultaneous change in both inputs and outputs should

bring about a larger change in efficiency than when only

inputs or outputs are changed. Nevertheless, most of the

existing non-oriented measures in the literature satisfy degree

of (sub)homogeneity �1, like for example the hyperbolic

measure or the Russell graph measure of technical efficiency

(Färe et al, 1985).

Monotonicity

The GDF technical efficiency measure in (3) is weakly

monotonous on inputs and on outputs. That is, when inputs

increase keeping outputs constant and/or outputs decrease

keeping inputs constant the measure cannot improve (see

Appendix for proof).

Indication

The GDF incorporates all the sources of inefficiency, since

the equality constraints in model (3) result, by definition, in

zero slacks. This means that the GDF-based measure of

technical efficiency is 1 (100%) if and only if the unit being

assessed is Pareto-efficient.

Lower and upper bounds

The GDF technical efficiency in (3) varies between 0 and 1

(see Appendix for proof).

Measuring profit efficiency

Within the DEA framework, the starting point of a profit

analysis is the calculation of maximum attainable profit.

This can be done using the model shown in (4) (eg Färe et al,

1994, p 213).

max
lj ;yr ;xi

Xs

r¼1
proyr �

Xm

i¼1
wioxi

�����
Xn

j¼1
ljyrj � yrX0

(
; r ¼ 1; . . . ; s;

Xn

j¼1
ljxij � xip0; i ¼ 1; . . . ;m;

Xn

j¼1
lj ¼ 1; ljX0; j ¼ 1; . . . ; n

)
ð4Þ

where pro and wio are, respectively, the price of output r and

input i unit o faces, and the rest of the notation is as

previously defined. Model (4) assures profit maximization in

the long run as no factors are considered fixed. Furthermore,

it considers no other constraints apart from technological

(though see Färe et al (1990), where expenditure constraints

were added to (4)). Model (4) assumes VRS since for a

technology exhibiting globally constant returns to scale

(CRS) either the maximum profit level is zero or the solution

of the maximum profit model is undefined (eg Varian, 1992;

Färe et al, 1994). The implications of assuming VRS in (4)

are: (i) We do not assume perfectly competitive markets

since under this assumption all firms have zero profits in the

long run, whereas in (4) maximum profit may be positive. (ii)

Scale efficiency cannot be calculated as a component of

overall profit efficiency. In order to make this possible the

maximum profit model (4) should be applied under CRS (eg

Färe et al, 1994). (iii) Maximum profit units do not need to

be most productive scale size (mpss) units in the sense of

Banker (1984). That is, maximum profit units do not need to

be scale efficient (see also Kuosmanen, 1999). The implica-

tions resulting from a VRS assumption will be further

addressed later in the paper.

Brief review of existing approaches

In this section, we briefly review existing approaches to

measure and decompose profit efficiency by means of the

technically and profit-inefficient unit A in Figure 1.

Unit A achieves maximum profit when it is projected on

the profit frontier (say at A*), where maximum profit equals

that of unit B, a maximum profit unit. If overall profit

efficiency were to be measured by means of a ratio between

profit at two points, then the overall profit efficiency of unit

A would be given by the ratio P/P* (see eg Banker and

Maindiratta, 1988; Cooper et al, 2000, who used this ratio-

based approach within the DEA framework). The technical

profit efficiency of this unit can also be calculated by a ratio

of profits, namely as P/P0, where P0 is the profit at the

technically efficient projection A0 of A. The allocative profit

efficiency of A (P0/P*) can now be calculated by decom-

position from (P/P*)¼ (P/P0)	 (P0/P*). This ratio-based
approach is analogous to what is usually done in cost or

Hyperbolic

Directional
Additive

Figure 1 Profit efficiency measurement.



revenue settings, where ratios of cost or revenue represent

efficiency. In such settings, however, there is no possibility of

negative costs or revenues. This is not the case with profits

that can be negative resulting in negative profit efficiency

measures that are hard to interpret. The problem of negative

profits was not recognized as such by some authors. For

example, Berger and Mester (2000, p 98) state that ‘profit

efficiency can be negative, since firms can throw away more

than 100% of their potential profits’. Others like Banker and

Maindiratta (1988) assumed that all production units

exhibited positive profit. Finally some authors have

acknowledged this problem and solved it either by using

revenue/cost ratios, which can never be negative (see eg

Cooper et al, 2000; Kuosmanen, 1999) or by using

differences between profits, rather than ratios, to avoid

negative efficiency measures (eg Berger et al, 1993; Coelli

et al, 2002). (Note that under the revenue/cost ratio

approach the profit efficiency of unit A (see Figure 1) would

be defined as a ratio of revenue-to-cost so that: (pAyA/

wAxA)/(pAyA**/wAxA**) where the double star is the optimal

solution of: maxfpAy=wAxjðx; yÞ 2 Tg (see for details

Cooper et al, 2000).)

Rather than using the above ratio-based approach some

authors defined overall profit efficiency as being a measure

reflecting the required adjustments on the input/output levels

of unit A that moves it to point A* on the profit frontier. For

example, the hyperbolic model of Färe et al (1985) defines

the technical efficiency of unit A as being yA defined in

fyAjðxAyA; yA=yAÞ 2 Tg. In accordance with this hyperbolic
path, the overall profit efficiency (fA

h ) of unit A, is derived by

solving P*¼ PA(yA/fA
h )–wAxAfA

h
, where [P*] is the max-

imum profit of A calculated through model (4). That is,

overall profit efficiency (fA
h ) represents the amount by which

inputs and outputs should be hyperbolically adjusted, so that

they are projected on the profit boundary. The overall profit

efficiency can then be decomposed as: fA
h ¼ yA	 gA

h , where

gA
h is the allocative efficiency.

The directional model of Chambers et al (1996, 1998)

follows a procedure that is similar to that of the hyperbolic

model, except that the overall profit efficiency (fA
d ), would

decompose as: fA
d ¼ bAþ gA

d , where bA represents technical

inefficiency, calculated through the directional model, and gA
d

represents allocative inefficiency (for details see Chambers

et al, 1998).

When the additive model of Charnes et al (1985) is used,

then a technically efficient target (Aa in Figure 1, whose

profit is Pa), and a maximum profit target (B in Figure 1,

whose profit is II*) are identified. Using these targets Cooper

et al (1999, 2000) decomposed the profit lost due to overall

profit inefficiency into the profit lost due to technical and

allocative inefficiency (ie (P*�P)¼ (Pa�P)þ (P*�Pa)).

This relationship is not, however, expressed in efficiency

terms but in absolute profit values (see Berger et al, 1993;

Coelli et al, 2002, who also used profit differences, though

not using the additive model).

The foregoing approaches have certain disadvantages in a

practical context which the profit efficiency measure we put

forward in this paper overcomes. The key drawbacks of the

foregoing measures are as follows.

Negative efficiency measures

It is possible for the ratio-based profit efficiency approaches

to result in a negative measure of efficiency when the profit

is negative (a loss). Such measures generally cannot be

interpreted in a practical way to reflect distance from

maximum profit and are therefore problematic. Efficiency

measures which take only positive values are to be preferred.

The measure of efficiency we put forward here can only take

positive values.

Reference to infeasible points

The hyperbolic and directional models may calculate overall

profit efficiency with reference to infeasible points such as A*

in Figure 1. This can also happen in ‘oriented’ cost or

revenue settings, but in these cases projections on infeasible

points can be interpreted in terms of ratios of inputs

(outputs) between the observed and the infeasible point

because such ratios match the ratio of minimum cost

(maximum revenue) to that at the observed point. That is,

there is a dual cost or revenue interpretation of efficiency

measures. This is no longer so in the non-oriented profit

setting. For example, if we assume a hyperbolic path is

followed from A to A* in Figure 1, then the required

adjustments in inputs and outputs are given by fA, as

xA
=xA ¼ yA=yA
 ¼ fA. The profit ratio, on the other

hand equals ðP=P
Þ ¼ ðpAyA � wAxAÞ=ðpAyA
 � wAxA
 Þ
¼ ðpAyA � wAxAÞ=ðpAyA=fA � wAxAfAÞ, which differs

from fA (Note that this statement is valid for all paths).

Accounting for slacks

The calculation of technical (in)efficiency through the

hyperbolic or directional models assumes the same factor

(y or b) associated simultaneously with inputs and outputs.

The resulting efficiency measures do not account, therefore,

for all the sources of inefficiency, namely those associated

with slacks. This is an important problem in a context where

overall efficiency is being measured because what is not

captured by technical efficiency will be incorporated into

allocative efficiency, which may therefore be incorrectly

estimated. The measure of efficiency we put forward in this

paper accounts for all sources of inefficiency.

The GDF for measuring and decomposing profit efficiency

Consider an observed point (x, y), a maximum profit point

(x*, y*), and a technically efficient point (x0, y0), then a profit



efficiency measure of unit o calculated through the GDF can

be decomposed as shown in (5).

Overall profit efficiency ¼
Q

i
x


io

xio

� �1=m
Q

r
y
ro
yro

� �1=s

¼
Q

i
x 0

io

xio

� �1=m
Q

r
y 0

ro

yro

� �1=s 	
Q

i
x


io

x 0
io

� �1=m
Q

r
y
ro
y 0

ro

� �1=s ð5Þ

That is, Overall profit eff.¼Technical profit eff.	Alloca-

tive profit eff. Note that this decomposition is valid whatever

the method used to calculate technical efficiency, and

whatever the maximum profit point is. This is an advantage

of the GDF measure of efficiency over other existing non-

oriented measures such as the Russell additive measure of

Färe et al (1985), the SBM (slacks-based measure) of Tone

(2001) or the RAM model of Cooper et al (1999), which

cannot be decomposed in the way shown above.

For calculating overall profit efficiency we shall first use

model (4) and then apply the geometric distance function in

(2) to measure the ‘distance’ between observed points and

maximum profit points as given by (4). The resulting GDF

measure is the overall profit efficiency.

The GDF overall profit efficiency can take any positive

value. The measure takes the value 1 when the two points (eg

maximum profit point and observed point) used are

coincident. However, the converse is not true and the

GDF overall profit efficiency can be 1 even when the two

points used in the measure are not coincident. For example,

if one input is halved and another is doubled the result in the

numerator of the GDF is 1, which does not mean that inputs

did not change but that on average they stayed the same.

Because of the averaging process within the computation

of the overall profit efficiency it is necessary to further

decompose it, so that one can understand and interpret its

value. In the next section, we will show how each component

of (5) is calculated and interpreted. We also show an

alternative measure of overall efficiency, satisfying duality

properties with the GDF technical efficiency measure that

does not suffer from this problem.

Decomposing the GDF overall profit efficiency

Recall that overall profit efficiency can be decomposed as

technical profit efficiency	 allocative profit efficiency. The

calculation of technical profit efficiency is done in this paper

using the geometric distance function in (3). Note, however,

that any non-oriented model could be used to identify

technical efficient targets and the GDF could be used a

posteriori to calculate the distance between observed points

and technical efficient targets (see for example Portela and

Thanassoulis (2005), where a closest target procedure was

used to calculate technical efficient points).

Given the above, we define technical profit efficiency as

the distance between the observed point and the technical

efficient point identified through model (3). In moving from

the observed to the technical efficient point a unit may

change the mix of inputs and/or outputs but these changes in

mix are to attain technical efficiency and not to respond to

factor prices, and so they do not relate to attaining allocative

efficiency.

In terms of interpretation, as the technical profit efficiency

component ranges from 0 to 1 (see the Appendix), a value of

1 means the observed point is Pareto-efficient, while a value

below 1 means the observed point is not Pareto-efficient.

Note that the way technical efficiency is measured has

obvious implications for the components of overall ineffi-

ciency that are attributed to technical and allocative

inefficiency, respectively. If we had chosen closest targets

as in Portela and Thanassoulis (2005) we would have been

‘minimizing’ the component attributable to technical in-

efficiency and ‘maximizing’ the component that is attribu-

table to allocative inefficiency. By choosing the targets given

by model (3) the component attributable to technical

inefficiency will be higher.

Having calculated the overall profit efficiency and the

technical profit efficiency, the allocative profit efficiency can

be calculated as the ratio of overall profit efficiency and

technical profit efficiency (see decomposition in (5)). The

allocative profit efficiency reflects movements from a

technically efficient point (x0, y0) to a maximum profit point

(x*, y*). Such movements imply changes in the mix of inputs

and/or outputs that are dictated by factors prices. However,

movements from a technical efficient point to a maximum

profit point (both on the frontier of T) may not only imply

changes in mix but also changes in scale size. As noted by

Lovell and Sickles (1983, p 54) for a profit setting, ‘in the

single output single input case all allocative inefficiency is

scale inefficiency’.

Depending on the combination of these effects allocative

profit efficiency, can be higher or lower than 1. In Portela

and Thanassoulis (2005), the authors propose a procedure

to disentangle scale and mix effects from the allocative

efficiency measure. We do not, however, present this

decomposition in this paper for the sake of brevity.

Illustration of the GDF profit efficiency measure

and its decomposition

To illustrate the calculation of overall profit efficiency and its

decomposition, we will use the data shown in Table 1. These

are the data used in Ali and Seiford (1993), except for the

hypothetical input/output prices, which we have added.

We used model (4) to find maximum profit targets, and

the GDF profit efficiency measure defined in (2) to calculate



the distance between observed points and maximum profit

targets. The results are presented in Table 2, where we also

show results for the numerator and denominator of the

GDF measure, called input change and output change,

respectively.

There are two units that are overall profit efficient (units 7

and 9). All the other units are overall profit inefficient since

they fail to maximise profits given their input and output

prices. (We comment on the ‘odd’ efficiency result of unit 4

later.)

Most units in Table 2 achieve profit efficiency by

increasing simultaneously inputs and outputs, the latter

increment being on average more than proportional to the

former (Unit 8 is an exception, as it shows no increase but

decrease in both inputs and outputs). Note that unit 4 is the

only one that should on average increase outputs less than

proportionally to inputs. Such a result is related with the

type of returns to scale that apply at this unit position as will

become clear later.

Decomposition of overall profit efficiency

Technical efficiency results, from model (3), are shown in

Table 3, where only technically inefficient units are

presented.

Allocative profit efficiency results for our illustrative

example are shown in Table 4, where we summarize all

results attained and also show the type of RTS that apply at

each technically efficient point (RTS were identified through

the procedure of Färe et al, 1985).

Knowing the RTS characteristics of each unit we can now

easily understand why unit 4 has an overall and allocative

profit efficiency greater than 100%. Unit 4 lies on a region of

CRS and must move, in order to be profit efficient, to unit 9,

a DRS unit. As it is well known CRS points are most

productive scale size (mpss) in the sense of Banker (1984).

This means that by comparing a mpss unit such as 4 with a

non-mpss unit such as 9 the productivity will decrease. For

the specific case of unit 4 we have partial productivity ratios

at its original position of: y/x1¼ 26/17 and y/x2¼ 26/15, and

at the maximum profit point (unit 9) partial productivity

ratios are: y/x1¼ 31/37 and y/x2¼ 31/14. The aggregation of

these productivity ratios through a geometric mean results

in an aggregate productivity of 1.628183 (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
26=17	26=15

p
)

at the original position of unit 4, and of 1.362062

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31=37	31=14

p
) at its maximum profit position. The

ratio between these two values (1.628183/1.362062) gives

119.54%, indicating that the aggregate productivity of unit

4 is higher than the aggregate productivity at its maximum

profit target point. Note that an allocative profit efficiency

measure greater than 1 will always indicate a productivity

change that is not beneficial in scale terms for the unit being

assessed, although it is so in profit terms, because of the

relative input/output prices.

Profitability efficiency—an alternative to profit efficiency

Profit is defined as revenue minus cost but an alternative

measure of a firm’s overall performance is profitability,

Table 1 Illustrative data for units producing one output using two inputs

Unit 1 2 3 4 5 6 7 8 9 10 11

Output y 12 14 25 26 8 9 27 30 31 26.5 12
Input 1 x1 5 16 16 17 18 23 25 27 37 42 5
Input 2 x2 13 12 26 15 14 6 10 22 14 25 17
Price of y p 20 22 24 25 23 19 18 21 23 22 25
Price of x1 w1 6 7 5 4 5.5 6.5 7.5 8 4 5.5 6
Price of x2 w2 9 8 7.5 6 8 5 9 10 10.5 9.5 8.5

Table 2 Overall profit efficiency measurement

Unit Actual profit Maximum profit Peer unit Input change Output change GDF profit efficiency (%)

1 93 300 7 1.96 2.25 87.16
2 100 339 7 1.14 1.93 59.17
3 325 454 9 1.12 1.24 89.99
4 492 543 9 1.43 1.19 119.54
5 �27 403.5 7 0.99 3.38 29.51
6 �8.5 308.5 4 1.36 2.89 47.05
7 208.5 208.5 7 1.00 1.00 100
8 194 267 7 0.65 0.90 72.08
9 418 418 9 1.00 1.00 100
10 114.5 361.5 7 0.49 1.02 47.89
11 125.5 440 7 1.72 2.25 76.22



defined as revenue divided by cost (see Balk, 2001, p 6). One

would be interested in the profitability ratio to take scale out

of measuring profit and simply reflect the ‘mark up’ on input

costs that is being secured by a unit. Profitability comple-

ments the more traditional measures of accounting profit

in absolute rather than relative terms. Traditionally, the

profitability measure for unit o is defined as
P

rproyro/P
iwioxio (see eg Kuosmanen, 1999; Cooper et al, 2000), but

we can use the GDF to calculate a profitability ratio of

unit o, which is given by (6).

ð
Q

r proyroÞ1=s

ð
Q

i wioxioÞ1=m
ð6Þ

Thus, the measure of profitability defined above uses

output revenues and input costs aggregated, respectively,

through a geometric mean. The maximum profitability that

a unit o could attain is yielded by the optimal value of the

objective function in (4).

max
lj ;yr ;xi

ð
Q

r proyrÞ1=s

ð
Q

i wioxiÞ1=m

�����
( Xn

j¼1
ljyrj � yrX0; r ¼ 1; . . . ; s;

Xn

j¼1
ljxij � xip0; i ¼ 1; . . . ;m;

ljX0; j ¼ 1; . . . ; n

)
ð7Þ

Notation in (7) is as previously defined. In model (7) the

convexity constraint is omitted since the maximum profit-

ability ‘unit’ (observed or reflected) will always be a CRS

efficient unit and therefore model (7) will always have at

least one optimal solution in which the sum of the intensity

variables ls will be 1 (see Appendix for proof). One

implication of this is that model (7) identifies input–output

levels that render unit o scale efficient with maximum

profitability. This is in contrast to model (4), which did not

necessarily yield scale-efficient input–output target levels for

the unit being assessed. (This was why as we saw some units

such as 4 in the above example could have overall profit

efficiency higher than 100%.)

One very interesting property of the profitability efficiency

measure defined above is that it is given by the ratio of

observed profitability to maximum profitability, mirroring

the usual definition of radial economic efficiency in DEA (eg

cost efficiency is the ratio of minimum cost to observed cost).

To see this let us denote maximum profitability as G* and

observed profitability as Go then

G

X

ð
Q

r proðyrob0
roÞ�

1=s

ð
Q

i wioðxioy0ioÞ�
1=m

ð8Þ

where the input and output levels in the RHS of (8) represent

a technically efficient reflection of vector (xo, yo) on a CRS

technology using the factors y0io and b0
ro that can be

determined through the model in (3) when the convexity

constraint is dropped. This means that

G

X

ð
Q

r proyroÞ1=s	ð
Q

r b
0
roÞ

1=s

ð
Q

io wioxioÞ1=m	ð
Q

i y
0
ioÞ

1=m
ð9Þ

or

G

XGo	 1

GDFc
, Go

G
 pGDFc ð10Þ

meaning that

Go

G
 ¼ GDFc	AE ð11Þ

where GDFc is the GDF technical efficiency of (xo, yo) when

a CRS technology is used. Clearly AE will then be a measure

of the allocative efficiency of (xo, yo). Note that AE lies

between 0 and 1, unlike the case where allocative efficiency is

measured with reference to profit rather than profitability

efficiency. Profitability efficiency can never be above 1

since observed profitability is never higher than maximum

profitability. This did not happen for profit efficiency that

could be above 1 as explained in the previous sections.

Table 3 Technical efficiency measurement results

Unit 2 5 10 11

Observed (y, x1, x2) (14,16,12) (8,18,14) (26.5,42,25) (12,5,17)
Model (3) targets (21.11, 16, 12) (25.63, 18, 14) (27, 25, 10) (12, 5, 13)
GDF 66.34% 31.21% 47.89% 87.45%
Peer units l1¼ 0.38, l4¼ 0.17, l7¼ 0.45 l1¼ 0.04, l4¼ 0.78, l7¼ 0.18 l7¼ 1 l1¼ 1

Table 4 General efficiency measurement results

Unit
Overall profit
GDF (%)

Technical
GDF (%)

Allocative
GDF (%) RTS

1 87.16 100.00 87.16 CRS
2 59.17 66.33 89.20 IRS
3 89.99 100.00 89.99 DRS
4 119.54 100.00 119.54 CRS
5 29.51 31.21 94.55 IRS
6 47.05 100.00 47.05 IRS
7 100.00 100.00 100.00 CRS
8 72.08 100.00 72.08 DRS
9 100.00 100.00 100.00 DRS
10 47.89 47.89 100.00 DRS
11 76.22 87.50 87.16 CRS



The expression in (11) is equivalent to

Overall profitability efficiency ¼
Q

i
x


io

xio

� �1=m
Q

r
y
ro
yro

� �1=s

¼
Q

i
x 0

io

xio

� �1=m
Q

r
y 0

ro

yro

� �1=s 	
Q

i
x


io

x 0
io

� �1=m
Q

r
y
ro
y 0

ro

� �1=s ð12Þ

which is in fact the first decomposition we put forward in (5),

the differences being that (x*, y*) is the optimal vector

resulting from model (7) and not from model (4), and the

technical efficient target (x0, y0) is calculated in relation to a

CRS technology rather than in relation to a VRS technology

as in (3). If we introduce in (12) factor prices we can simplify

the expression as

Go

G
 ¼
Go

G0 	
G0

G
 ð13Þ

where G0 is profitability at the technical efficient point

(x0, y0). This means that both the GDF technical efficiency

and allocative efficiency measures have a dual profitability

interpretation. For example, a GDF technical efficiency of

50%means that observed profitability is 50% of profitability

at the technically efficient target, and therefore the unit can

improve its profitability by moving to this target.

The above decomposition in (11) can be extended to

retrieve the scale efficiency component of unit o. Thus if we

calculate the GDF technical efficiency both in relation to a

CRS frontier (GDFc, calculated using (3) without the

convexity constraint) and in relation to the VRS frontier

(GDFv, calculated using (3)), we can expand the decomposi-

tion in (11) to

Go

G
 ¼ GDFv	AE	SE ð14Þ

where SE stands for scale efficiency and equals GDFc/GDFv.

This scale efficiency component is interpreted in the usual

way, reflecting the distance between the VRS and the CRS

frontiers.

Application of the profitability efficiency model to our

illustrative example

Applying the profitability efficiency model to our illustrative

example gives the results in Table 5.

In the illustrative example, a single unit is identified as the

profitability maximizing unit—unit 7, whose profitability

efficiency is 100%. All remaining units have profitability

efficiency lower than 100%. Profitability efficiency is equal

to profit efficiency for those units whose maximum profit

peer unit was unit 7. This was not the case for units 3, 4, 6,

and 9, which therefore have a profitability efficiency that is

different from profit efficiency. This means that maximizing

profitability for these units is not equivalent to maximizing

accounting profits. Units with 100% profitability efficiency

generally, but not always, have scope to increase accounting

profits further. Profits may also reduce in movements

from the observed to the maximum profitability point. This

happens for unit 9 whose observed profit is 418, and profit at

the maximum profitability point is 416. This means that if

this unit adjusted to the proper scale size this would mean a

loss in accounting profit. (The cause of this is further

discussed below.)

The technical efficiency of the units is exactly the same as

before, and therefore profitability efficiency decomposes

now as shown in Table 6.

From Table 6 it is clear that the main source of

profitability inefficiency is scale inefficiency, since allocative

efficiency values are in general high. As we saw before, for all

units except unit 9, movements towards the maximum

profitability point imply an increase in accounting profit.

The fact that this does not happen for unit 9 is due to its

scale inefficiency. On the other hand, the profitability

inefficiency of units 1 and 4 is completely attributable to

allocative inefficiency. That is, these units employ a wrong

mix of inputs and outputs given the prices they face, and

therefore a change in this mix would improve their profit-

ability. In contrast, the profitability inefficiency of unit 10 is

completely attributable to its technical inefficiency. For the

remaining units, profitability inefficiency is attributable to a

mix of technical, allocative and scale inefficiency.

Table 5 Overall profitability efficiency measurement

Unit Actual profit Actual profitability Maximum profitability Profitability efficiency (%) Peer Profit at peer

1 93 4.051 4.648 87.16 7 300
2 100 2.970 5.020 59.17 7 339
3 325 4.804 6.693 71.78 7 448
4 492 8.309 8.714 95.35 7 515
5 �27 1.747 5.921 29.51 7 403.5
6 �8.5 2.553 5.691 44.87 7 300.5
7 208.5 3.741 3.741 100.00 7 208.5
8 194 2.890 4.009 72.09 7 267
9 418 4.834 6.060 79.76 7 416
10 114.5 2.489 5.197 47.89 7 361.5
11 125.5 4.556 5.978 76.22 7 440



Conclusion

This paper proposes a novel way of calculating profit

efficiency through a geometric distance function (GDF). The

advantage of the GDF efficiency measure is that it is easily

decomposed, and therefore we can identify whether the

sources of profit inefficiency are due to technical inefficiency

or allocative inefficiency. However, when one uses the

accounting concept of profit it may happen that profit

efficiency is higher than 100% since maximum profit units

do not need to be scale efficient. In addition, there is no

dual profit interpretation of technical efficiency when the

accounting concept of profit is used. For this reason, we

introduce a measure of profitability efficiency, also based on

the GDF, which has maximum value of 100%, and allows

for a dual profitability interpretation of the GDF measure of

technical efficiency. In addition, the profitability efficiency

measure makes it possible to retrieve scale efficiency

enhancing thus the information obtained on the perfor-

mance of a for-profit unit.
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Appendix

Properties of the geometric distance function
defined in model (3)

G1. 0pG(x, y)p1

G2. G(ax,a�1y)p(1/a2)G(x,y), aX1 and G(ax,a�1y)X(1/a2)
G(x, y), ap1

G3. G(ax, y)p(1/a)G(x, y)pG(x, y), aX1

G4. G(x, ay)paG(x, y)pG(x, y), 0pap1

G1 Proof The GDF cannot be greater than 1. In order

for this to happen the numerator in (3) should be greater

than the denominator. However, as every yi in the

numerator is p1, and every br in the denominator is X1,

GDF41 results in an impossibility. This means that the

maximum value of G(x, y) is 1, happening when the

numerator equals the denominator. As every yi in

the numerator is p1, and every br in the denominator is

X1, the equality between the numerator and denominator

can only happen when all yi and all br are 1.

The GDF may be zero when some inputs (but not all, as

we assume that it is not possible to produce outputs with

zero inputs) are zero. For zero outputs the model cannot find

a feasible solution as it would be possible to find an infinitely

large bro associated with the zero output.

G2 Proof This property states that G(x, y), satisfies sub-

homogeneity (eg Russell, 1985) of �2 degree. Indeed,

Gðax; a�1yÞ ¼min
að
Q

i yiÞ1=m

a2a�1ð
Q

r brÞ1=s

�����ðyiðaxioÞ; brða�1yroÞÞ 2 T

(

0pyip1;brX1

)
, min

ð
Q

i ðayiÞÞ1=m

a2ð
Q

r ða�1brÞÞ1=s

�����
(

ððyiaÞxio; ðbra
�1ÞyroÞ 2 T ; 0pyip1; brX1

)

) Gðax; a�1yÞp 1

a2
Gðx; yÞ for aX1;

and Gðax; a�1yÞX 1

a2
Gðx; yÞ for ap1

G3 and G4 Proof These properties relate with the weak

monotonicity properties of the geometric distance function.

The input monotonicity implies that

Gðax; yÞ ¼min
a 1
a ð
Q

i yiÞ1=m

ð
Q

r brÞ1=s

�����ðyiðaxioÞ; bryroÞ 2 T ;

(

0pyip1; brX1

)
, min

1

a
ð
Q

i ðayiÞÞ1=m

ð
Q

r ðbrÞÞ1=s

�����
(

ððyiaÞxio; bryroÞ 2 T ; 0pyip1; brX1

)

) Gðax; yÞp 1

a
Gðx; yÞ for aX1;

) Gðax; yÞpðx; yÞ

The output monotonicity implies that

Gðx; ayÞ ¼min
ð
Q

i yiÞ1=m

a 1
a ð
Q

r brÞ1=s

�����ðyixio; brðayroÞÞ 2 T ;

(

0pyip1; brX1

)
, min a

ð
Q

i ðyiÞÞ1=m

ð
Q

r ðabrÞÞ1=s

�����
(

ðyixio; brðayroÞÞ 2 T ; 0pyip1; brX1

)

) Gðx; ayÞpaGðx; yÞ for ap1;

) Gðx; ayÞpGðx; yÞ

A unit of maximum profitability is always scale efficient

Consider for the single input output case a unit A (xA, yA)

for which yA/xA is maximum (being therefore a CRS efficient

unit). If this unit is assessed at prices (pA, wA) then clearly for

this unit’s prices pAyA/wAxA4pAyj/wAxj, for every jaA.

Assessing unit B (xB, yB), for which yB/xB is not maximum,

at prices (pB, wB) we cannot find for this unit’s prices pByB/

wBxB4pByA/wBxA, since yA/xA is maximum. Therefore, the

above model (7) renders maximum profitability units that

are also scale efficient. This reasoning can be extended to the

multiple input/output case since the way we aggregate

output revenues and input costs is through the geometric

mean. Therefore replacing above pjyj/wjxj by (Prprjyrj)
1/s/

(Piwijxij)
1/m maintains the reasoning valid.


