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Herding and Feedback Trading: Evidence on their 
Relationship at the Macro Level

Abstract 

The behavioural expressions of herding and feedback trading maintain 

properties that render their coexistence a possibility. Although their joint presence has 

been largely confirmed by empirical work in the Finance literature at the micro level 

(i.e. using micro data), the pursuit of this issue at the macro level (i.e. the level of the 

aggregate market) has remained largely unexplored. To that end, we jointly test for 

herding and feedback trading at the market level using data from the Portuguese 

market for the 1993-2005 period. Our results indicate the combined significant 

presence of herding and positive feedback trading for that period, with this

significance exhibiting signs of clustering during the second half of the 1990s, which 

accommodated a series of boom-bust episodes for that market. 



1. Introduction

Herding and feedback trading have been at the forefront of extensive academic 

research, both analytical as well as empirical, following the advent of behavioural 

Finance in the 1980s. Conceptually, the term “herding” refers to the alignment of 

one’s behaviour to the behaviour of others, while “feedback trading” relates to trading 

on the basis of historical prices.

A careful consideration of the theoretical content of these two behavioural 

patterns reveals potential for common ground in their manifestation. If investors 

positive feedback trade (i.e. trade to the direction implied by past prices), then this 

raises the possibility of the development of a market-trend which may be amplified if 

other investors choose to imitate their peers and herd on that trend. Conversely, if the 

market is characterized by a widespread herding mentality, it is reasonable to assume 

that the latter will translate itself into a trend imprinted onto the market’s index. Thus,

those wishing to join the herd will have to reinforce it by reinforcing the market’s 

trend, i.e. positive feedback trade.

However, the relationship between the two patterns may appear to be less 

than perfectly straightforward. As Antoniou et al (2005b) argue, positive feedback 

trading can also be the outcome of rational speculative strategies (e.g. portfolio 

insurance; stop-loss orders) aiming at exploiting the market’s trend. Therefore, the 

above indicate that positive feedback trading may well exist in the absence of herding 

tendencies.

In the empirical realm, herding and feedback trading have been jointly studied 

at the micro level across various investor-types (individual-institutional, indigenous-

overseas). Evidence produced appears to be in most cases (Lakonishok et al, 1992; 

Grinblatt et al, 1996; Choe et al, 1999; Jones et al, 1999; Nofsinger and Sias, 1999; 



Wermers, 1999, Iihara et al, 2001; Kim and Wei, 2002a; 2002b; Voronkova and Bohl, 

2005) suggestive of jointly significant herding and positive feedback trading, while 

other findings (Bowe and Domuta, 2004; Sias, 2004; Do et al, 2006) seem to refute 

this. However, the above studies tend to restrict the joint examination of herding and 

feedback trading to separate investor groups without providing us with a picture of the

issue at the macro level. In other words, although we have extensive knowledge about 

the joint presence of herding and feedback trading in the ranks of specific trader-

groups internationally, the examination of this at the aggregate level of the market has 

been largely unexplored. 

To that end, we aim at addressing this issue by testing for herding and 

feedback trading using a set of empirical, aggregate-data-based measures in the 

context of the Portuguese market during the 1993-2005 period. During the latter,

Portugal underwent a multitude of abrupt market movements induced by a unique 

confluence of national and international events; consequently, we consider its choice

to furnish us with interesting ground for the study of such behavioural phenomena. 

We believe our research to constitute a substantial contribution to the Finance 

literature, as it involves the joint examination of herding and feedback trading at a 

level never considered before. 

The rest of the paper is structured as follows: Section 2 presents of the 

concepts of herding (2.1) and feedback trading (2.2), with section 2.3 exploring their

theoretical association and discussing relevant empirical findings on the latter. Section 

3 includes a brief overview of the Portuguese market’s evolution during the period 

under investigation (1993-2005). Section 4 discusses the data (4.1) used in this 

research, delineates the methodology utilized (4.2) and provides some descriptive 

statistics (4.3). Section 5 presents and discusses the results and Section 6 concludes.



2 Theoretical Background

2.1 Herding

Herding, as Hirshleifer and Teoh (2003) have noted, involves a “similarity in 

behaviour” stemming from the interactive observations of Actions and Payoffs of 

individuals. Hence people observe/hear/read about the stock selection of other people 

or, what is more they may also get to find out about the outcome of such selections 

(whether somebody made a profit or a loss). Deciphering the causes of imitation is not 

always possible, as it can be ascribed to a variety of motivations of both psychological 

as well as rational background.

Regarding psychology-driven factors, conformity, namely the condition under 

which people feel more convenient when doing what others do, seems to be playing a 

major role. This tendency towards conformity (Hirshleifer, 2001) may well be related 

to the interaction of people, as they communicate with one another, be it explicitly

(e.g. when people are conversing - see Shiller, 1995), or tacitly (when people observe 

others’ choices, e.g. in fashion – see Bikhchandani et al, 1992). 

Investors may find it “rational” to copy others (better informed, in their 

opinion) if this would allow them to benefit from the possible informational payoffs

(Devenow and Welch, 1996) accruing from such an imitation. This is the case when 

one: a) possesses no private information, b) has private information yet is uncertain 

about it perhaps because it is of low quality, c) considers his information-processing 

abilities to be inadequate or d) perceives others as better-informed. With investors 

suppressing their private information in such a fashion, this is bound to bear an 

adverse impact over the public information pool by slowing/temporarily blocking the 

aggregation of information in it, thus fomenting the rise of informational cascades

(Banerjee, 1992; Bikhchandani et al, 1992).



Professional considerations may also lead to herding. Investment 

professionals (be they fund managers or financial analysts) are subject to periodic 

evaluation (Scharfstein and Stein, 1990) which is normally of a relative nature, i.e. 

they are evaluated against one another. Under such circumstances, less able (“bad”)

investment professionals have an obvious incentive to copy the actions of their better 

able (“good”) peers, if this will help them appear as “better” professionals. “Good” 

investment professionals, on the other hand, may choose to follow the investment-

decisions of the majority of their peers, even if these are sub-optimal, if the risk from 

a potential failure is perceived as higher compared to the benefits accruing from a 

potential success by “going-it-alone”. 

Reputational considerations are relevant here, as they may also encourage 

investment professionals to herd. A professional who enjoys a strong reputation in his 

capacity has an incentive to imitate others in order to preserve his reputation (Graham, 

1999), if the damage to his reputation by a potential failure outweighs the expected 

benefits from a potential success. Assuming that the well-reputed professionals are 

also the better-able ones (as it is hard to imagine how one’s reputation would have 

grown in the absence of a distinctive ability), this may help explain the herding 

tendencies denoted previously with regards to ”good” investment professionals. Ill-

reputed professionals, however, may also resort to herding as a means of free-riding 

(Truman, 1994) on the reputation of better-reputed colleagues (reputational 

externality). 

We conclude our discussion on the herding concept by drawing a line 

between the above cases of “intentional” herding and what Bikhchandani and Sharma 

(2001) termed “spurious” herding; the latter refers to the case where the observed 

convergence of people’s actions is due to the similarity of responses to commonly 



observed signals and not to imitative intent. An example here relates to changes in 

fundamentals becoming public knowledge, since they have the potential of inducing 

people to behave in a parallel fashion, without the latter necessarily originating in 

irrational traits. If, for instance, a drop in deposit rates materializes, then this may well 

have the potential of inducing investors to turn to the stock market in search for 

higher returns.

2.2 Feedback trading

Feedback trading constitutes an umbrella-term used in Finance to describe the 

conduct of a specific type of trader whose investment decisions are a function of 

historical prices. If he trades in the same direction with past prices he is called 

“positive feedback trader”, while if he trades in the opposite direction, he is called 

“negative feedback (contrarian) trader”. The very foundations of feedback trading lie 

in the perception that prices maintain some sort of inertia in the market (Farmer, 

2002), in the sense that they tend to produce directional patterns (trends) for certain 

periods of time. 

Although feedback trading is price-based, there is little agreement as to its 

practice as people are not expected to use past prices in the same way. To that end, the 

profitability of feedback trading strategies has been examined in studies related to 

either momentum or contrarian (e.g. De Bondt and Thaler, 1985; Bowman and 

Iverson, 1998; Mun et al, 1999; Jegadeesh and Titman, 2001; Kang et al, 2002; 

Antoniou et al 2005a) trading. Technical analysis, as a special type of feedback 

trading, has also received notable attention, with a number of researchers (e.g. 

Bessembinder and Chan, 1995; Ito, 1999; Ratner and Leal, 1999; Wong et al, 2003; 



Ming et al, 2000; Strozzi and Zaldívar-Comenges, 2005) investigating the profitability 

of a variety of technical trading rules in several markets. 

A number of psychological biases can be associated with feedback trading. 

Positive feedback trading can, for example, be reinforced through the 

representativeness heuristic (overweighting recent data as representative of a trend-at-

works) and the conservatism-bias (underweighting recent data if the perception of an 

opposite trend-at-works prevails), (Barberis et al 1998). It can also be fuelled by the 

overconfidence-bias (aggressive trading following a “euphoric” period of recent gains 

(Odean, 1998; Glaeser and Weber, 2004a; Glaeser and Weber, 2004b). Negative 

feedback trading can also be addressed behaviourally through the disposition effect

(Shefrin and Statman, 1985) according to which people are less reluctant to sell stocks 

that have recently performed well and prefer to hold onto those, whose performance 

has been poor. 

Feedback trading is also motivated through data-availability, since historical 

data on prices are easier to find in the financial press (see Huddart et al, 2002), while 

more sophisticated data are harder to obtain. The simplified analysis of such data (as 

carried out mostly by technical analysts in the press) facilitates the communication of 

these “technical heuristics” to a wider audience, which is perhaps not typified by a 

sufficient educational background or investment experience. 

Feedback trading, however, is not restricted to “noise” traders who may be 

susceptible to behavioural biases, maintain less abilities/resources or use technical 

analysis. A series of papers (Koutmos, 1997; Farmer, 2002; Farmer and Joshi, 2002; 

Antoniou et al, 2005b) have argued that rational traders may employ price-based 

trading rules if they feel they have to shield themselves against (or take advantage of) 

abrupt market movements; portfolio insurance (Luskin, 1988) and stop-loss orders 



(Osler, 2002) are relevant here. Such strategic choices on behalf of rational traders are 

based upon the belief that noise traders might push prices away from their 

fundamental value, thus leading to a mispricing of indefinite duration and magnitude 

(Barberis and Thaler, 2002). Alternatively, rational traders may themselves launch a 

trend in order to attract noise traders with the intention of exploiting them at a later 

stage (Soros, 1987; De Long et al, 1990; Andergassen, 2003).

2.3 The relationship between herding and feedback trading

Having delineated the fundamental properties of herding and feedback trading, 

we shall now turn to the examination of the association between the two, as this 

constitutes the crux of our research here. We have shown previously that positive 

feedback trading is essentially trend-based, in other words it is founded upon the 

course of the market’s trend; if the market rises, positive feedback traders buy and if it 

falls, they sell. As a result, there need not exist an imitative component here, since 

positive feedback traders are focusing upon the trend, not those trading on it. A 

positive feedback trader may resort to relevant trading patterns, such as momentum 

trading or technical analysis in order to formulate a strategy aiming at exploiting the 

trend. Rational speculators may employ portfolio insurance (Luskin, 1988) or stop-

loss orders (Osler, 2002) in order to time their entry/exit from the market conditional 

upon the market’s trend. 

However, none of the above cases entails the notion of herding in its 

construction; although market-wide herding may be present in the considerations of 

those employing such tactics it is not herding itself that explicitly drives them towards 

those strategies. Having said that though, we cannot rule out the possibility that part 

of positive feedback trading may be due to herding as well if there are investors who 



follow the trend due to intentional imitation of their peers. What we wish to make 

clear here is that the presence of positive feedback trading does not necessarily 

suggest the presence of herding.

We now turn to the inverse relationship between these two concepts. If there 

exists growing herding in the market for some time, then it is reasonable to assume 

that this will facilitate the launch of a price-trend, more so, if there exists a large 

number of investors whose trades are converging to the same direction 

simultaneously. If other investors decide to follow the herd, then they will have to 

follow its direction, which is the trend generated by that herd; in other words, they 

have to positive feedback trade. Since herding is capable of leading prices to exhibit 

trends, it follows that positive feedback trading constitutes the required trading 

expression of those who join the herd. 

At the empirical dimension, there exists a rather impressive research output 

pertaining to the combined study of herding and feedback trading. Although the 

relationship between the two concepts appears not to have been the fundamental 

motivation underlying most of those studies, their results are, nevertheless, interesting 

as they involve the employment of data related to investors’ accounts for specific 

investor-groups (individual-institutional, indigenous-overseas), thus allowing us

unique insight into these two behavioural patterns at the micro level. 

Evidence from the US (Lakonishok et al, 1992; Jones et al, 1999; Wermers, 

1999) reveals a concentration of the statistical significance of both herding and 

positive feedback trading on behalf of institutional investors in small capitalization 

stocks, while Grinblatt et al (1996) and Nofsinger and Sias (1999) documented a 

positive correlation between funds’ herding and positive feedback trading. A series of 

studies conducted on those premises in South Korea have also revealed the presence 



of parallel lines between herding and positive feedback trading on behalf of various 

investor-types. Choe et al (1999) found that overseas investors engaged in significant 

herding and positive feedback trading shortly prior (2/12/1996 – 30/9/1997) to the 

transmission of the Asian crisis to the country; during the in-crisis period (1/10/1997 

– 27/12/1997), however, both herding and positive feedback trading exhibited a sharp 

drop. Kim and Wei (2002a; 2002b) produced results indicative of widespread herding 

and positive feedback trading on behalf of all1 investor-types (indigenous individual, 

indigenous institutional, overseas individual, overseas institutional) both prior to 

(January – October 1997) and during (November 1997 – June 1998) the crisis. 

Finally, evidence reflective of a similar coexistence between herding and positive 

feedback trading has been documented by Iihara et al (2001) and Voronkova and Bohl 

(2005) for Japan and Poland, respectively. 

On the other hand, Bowe and Domuta (2004) report results indicative of the 

presence of significant herding yet insignificant positive feedback trading on behalf of 

indigenous2 as well as overseas investors before (January – June 1997), during (July 

1997 – September 1998) and after the Asian crisis (October 1998 – December 1999) 

for the Indonesian market. Sias (2004) reveals the absence of any association between 

herding and positive feedback trading of institutional investors in the US, while Do et 

al (2006) find that the level of herding in the Finnish market tends to somehow 

decrease with positive feedback trading.

Consequently, our discussion here has thus far illustrated the theoretical 

association between herding and feedback trading and has provided an overview of 

the empirical evidence relative to the joint examination of the two at the micro level. 

However, it is interesting to note that this association has not been examined at the
                                                
1 With the exception of indigenous institutional traders for the pre-crisis period, who, according to Kim 
and Wei (2002b) are found to be significant negative feedback trading. 
2 Indigenous investors’ herding tends to drop in the post-crisis period.



macro level, i.e. at the level of the market. To address the latter issue, we test for 

herding and feedback trading using a set of price-based measures for the Portuguese 

market during the 1993-2005 period.  To that end, we believe our research to 

constitute an original contribution to the Finance literature, as it yields novel insight 

into the association of herding and feedback trading.

3. The Portuguese stock market (1993-2005)

We will now focus on the evolution of the Portuguese market during the 

period of our investigation, i.e. between 1993 and 2005. Our intention, in line with the 

motivation of our study, is to depict that this period accommodated a series of 

confluent events that resulted in the market exhibiting abrupt price movements 

capable of being associated with herding and positive feedback trading. 

Following an initial period of boom (culminating during the latter half of the 

1980s) and bust (early 1990s) after its official reopening in early 1977, the Portuguese 

Stock Exchange embarked onto a period of growth towards maturity during the mid-

1990s. The ratification of the Maastricht Treaty in late 1993 led to the relaxation of 

restrictions on overseas capital flows and was accompanied by a sharp rise in foreign 

investment in Portuguese securities. The optimism of that time temporarily came to a 

halt in 1994 with the outbreak of the Mexican crisis and the poor performance of 

corporations (Balbina and Martins, 2002). 

Following the sustained decrease witnessed in inflation and interest rates, the 

country entered into a booming cycle from 1996 onwards with foreign direct 

investment, exports and GDP documenting a sharp increase. This boom also bore an 

impact upon the stock exchange, which witnessed an unprecedented surge in the 

levels of market participation on behalf of investors, a fact that can be attributed to a 



series of factors. Privatizations, namely of “blue-chip” state-owned firms3 were very 

intense during this period with initial public offerings attracting large numbers of 

investors (Balbina and Martins, 2002)4, thus benefiting the market in terms of both 

depth and liquidity5 6. The latter was also boosted through the channeling of 

substantial domestic investors’ savings towards mutual funds, which further fuelled 

market activity7. What is more, June 1996 saw the official launch of the Derivatives’ 

Exchange in Porto, which provided the opportunity for increased market participation 

through derivative instruments. The accelerated growth of the market, especially 

during 1997, should also be viewed within the global context of the time, as the 

outbreak of the Asian Crisis in mid-1997 prompted a shift in international financial 

investments towards safer destinations, Europe being one of them. By December 1997 

the Portuguese stock exchange was upgraded by Morgan Stanley to “mature” and 19 

of its companies were listed in the Dow Jones indices. Finally, in early 1998, it was 

publicly announced that Portugal would be joining the third stage of the European 

Monetary Union. Overall, this sequence of favourable events led to a substantial 

increase in trading activity, reflected in the market index rising by approximately 

270% (January 1996 – April 1998).  

Year 1998 brought about the Russian Crisis, which, in the aftermath of the 

Asian Crisis, created a worldwide sense of financial instability. The impact of the 

latter upon Brazil affected Portugal as well, as Brazil constitutes a preferential 

destination for Portuguese foreign direct investment. The effect of that instability was 

                                                
3 Examples include “Brisa”, “Cimpor”, “EDP” and “Portugal Telecom”.
4 According to Balbina and Martins (2002), the demand for the shares of the privatized companies’ 
shares equaled about 42 times the number of shares offered (Balbina and Martins, 2002-p. 7)
5 Source: CMVM Annual Report 1997, Section 2.2.
6 On the positive effects of privatizations, see also Ferreira, J., 1999, “Cinco Anos de Capitalizaηγo 
Bolsista em Anαlise”, Suplemento 1000 Maiores, Expresso.
7 For more details on the evolution of the mutual fund industry in Portugal during that period, see the 
Annual Reports of the Portuguese Securities’ Exchange Commission (CMVM) between 1996 and 2002
inclusive. 



particularly felt in the Portuguese stock exchange between the last quarter of 1998 and 

the last quarter of 1999, with the market index exhibiting multiple fluctuations 

without any definitive directional movement.  

This uncertainty was followed by a surge in stock prices, around September 

1999, when Portugal experienced the impact from the Dot Com bubble (Balbina and 

Martins, 2002). During the last quarter of 1999 and early 2000, there was a rise in the 

initial public offerings of IT-companies8 accompanied by a rally in their prices 

(Sousa, 2002). This rally led the market index to a new peak, slightly higher than that 

of April 1998, and came to an abrupt halt in the beginning of March 2000, following 

the slump observed in the NASDAQ. The DotCom crash, coupled with the events in 

the US during September 2001 jointly contributed to the market’s free-fall, which 

lasted for over two years. By October 2002, the market index effectively reached the 

levels of year-end 1996 (around 5150 units). The consolidating wave in the market 

after 2000 (Leite and Cortez, 2006) that threatened the viability of the stock exchange 

(as it led to a decrease in the number of listed companies) prompted the authorities to 

incorporate the Portuguese stock exchange into the Euronext-platform during 2002. 

Even so, however, the market managed to exhibit signs of only moderate recovery 

until 2005 (the end of our sample period).

4. Data and Methodology

4.1 Data

Before discussing the data employed in this research, we would like to 

emphasize that we are testing for herding and feedback trading in the Portuguese 

market on the premises of the PSI20 index. The latter is a value-weighted index 

                                                
8 Examples include “PT Multimedia”, “PT Multimedia.Com”, “Novabase”, “Impresa” and 
“Sonae.Com”



including the twenty most liquid stocks and was officially launched on December 31st

1992. The choice of the PSI20 stems from the fact that there exist constituent lists that 

reflect its historical composition. This is important in methodological terms, since, as 

we shall see in the next section, the measure of herding we employ (Hwang and 

Salmon, 2004) requires the estimation of the cross-sectional standard deviation of the 

betas of the stocks of a given portfolio (in this case, an index). In the absence of exact 

knowledge as to which stocks are included in the portfolio of an index over time, the 

model may generate erroneous results. Our choice of the PSI20 is also motivated by 

the fact that Portugal does not maintain an all-shares’ index (hence, we cannot simply 

include all stocks for which data is available) and also because historical constituent 

lists for other Portuguese market indices (such as the PSI Geral) were not available9. 

Our data includes daily prices both for the PSI20 as well as its constituent 

stocks and covers the period from its inception (1/1/1993) until 31/12/2005. The 

historical constituent lists for the PSI20 were obtained from the website of the 

Portuguese stock exchange (January 1993 - December 2001) as well as the Exchange 

itself (January 2002 – December 2005).

4.2 Methodology 

4.2.1 Herding

To test for herding, we employ the model developed by Hwang and Salmon 

(2004) in their study of the US and South Korean markets. This model is price-based 

and measures herding on the basis of the cross-sectional dispersion of the factor-

sensitivity of assets. More specifically, Hwang and Salmon (2004) argued that when 

                                                
9 The PSI Geral is an index accommodating all stocks that meet the criteria of inclusion in the Main 
Market of the Portuguese stock exchange. As such, it is a selective index, not an all-shares’ one. We 
did not manage to obtain historical constituent lists for that index, since, according to the Euronext 
Lisbon, such lists were not available.



investors are behaviourally biased, their perceptions of the risk-return relationship of 

assets may be distorted. If they do indeed herd towards the market consensus, then it 

is possible that as individual asset returns follow the direction of the market, their 

CAPM-betas will deviate from their equilibrium values. Thus, the beta of a stock does 

not remain constant (as the conventional CAPM would posit), but changes with the 

fluctuations of investors’ sentiment. As a result, the cross-sectional dispersion of the 

stocks’ betas would be expected to be smaller, i.e. asset betas would tend towards the 

value of the market beta, namely unity. It is on these very premises that their herding 

measure is based. 

More specifically, they assume the equilibrium beta (let  imt ) and its 

behaviourally biased equivalent (  b
imt ), whose relationship is assumed to be the 

following:

( )(rE it
b
t  /  )(rE mtt ) =  b

imt  =  imt - hmt  (  imt - 1)                                                     (1)

where )(rE it
b
t  is the behaviourally biased conditional expectation of excess 

returns of asset i at time t, )(rE mtt  is the conditional expectation of excess returns of 

the market at time t and hmt ≤ 1 is a time-variant herding parameter. To measure hmt

(and for this reason, herding on a market-wide basis), the authors calculate the cross-

sectional dispersion of  b
imt , as:

)( b
imtcStd  = )( imtcStd  (1- hmt )                                                                                 (2)

Equation (2) is rewritten as follows:

log[ )( b
imtcStd ] = log [ )( imtcStd ] + log (1- hmt )                                                     (3)

in order to extract hmt .

Finally, (3) is written as follows:



log[ )( b
imtcStd ] = m + H mt + mt                                                                             (4)

where 

log[ )( imtcStd ] = m + mt                                                                                        (5)

with m  = E [log[ )( imtcStd ]] and mt  ~ iid (0,  
2

,m )

and H mt = log (1- hmt )                                                                                                (6)

Hwang and Salmon (2004) assume that the herding parameter follows an AR(1) 

process and their model becomes:

log[ )( b
imtcStd ] = m + H mt + mt                                                                             (7)

H mt  = m H tm 1,  + mt                                                                                                (8)

where mt  ~ iid (0,  
2

,m )

The above system of equations (7) and (8) accommodates herding as an 

unobserved component. To extract the latter, Hwang and Salmon (2004) employ the 

Kalman filter. 

Thus, in the above setting, the log[ )( b
imtcStd ] is expected to vary with 

herding levels, the change of which is reflected through H mt , which bears the 

interesting property of being able to be depicted graphically, as Hwang and Salmon 

(2004) showed. Thus, the Hwang and Salmon (2004) measure allows us to obtain a 

picture of the herding-evolution over time, which we consider particularly helpful, 

especially in the context of our study, as we wish to study the association of herding 

with feedback trading over time. Special attention is drawn here to the pattern of H mt .

If  
2

,m  = 0, then H mt = 0 and there is no herding. Conversely, a significant value of 

 
2

,m would imply the existence of herding and (as the authors state) this would further 



be reinforced by a significant m . The absolute value of the latter is taken to be 

smaller than or equal to one, as herding is not expected to be an explosive process. 

To estimate the above system of equations (7) and (8), we first estimate the 

OLS-estimates of the betas using daily excess return data within monthly windows in 

the standard market model:

ritd  =  b
it  +  b

imt rmtd  +  itd                                                                                          (9)

where the subscript “td” indicates daily data for month t. 

In line with Hwang and Salmon (2004), the rmtd  in (9) refer to excess returns. 

To calculate the latter, we first derive the percentage log-differenced returns from the 

closing prices of the index (PSI20) and its constituents and then adjust them by using 

the appropriate risk-free rate10. Having estimated these monthly betas for the stocks in 

month t, we then estimate their cross-sectional standard deviation for that month, thus 

constructing a monthly time-series. As Hwang and Salmon (2004) argue, the choice 

of monthly windows is driven by both estimation considerations (to reduce the 

estimation error of the betas) as well as practical ones (to maintain a number of 

observations sufficient enough to detect herding). The cross-sectional standard 

deviation derived is then used (in its logarithmic form-see equation (7)) as the input 

for the estimation of the herding measure. 

4.2.2 Feedback Trading

To empirically test for feedback trading, we employ the model formally 

introduced by Sentana and Wadhwani (1992) that has literally dominated the 

literature related to feedback trading, since it has been applied for a variety of 

                                                
10 We proxy for the risk-free rate here through the 3-month deposit-rate up to 31/12/1998 and the 3-
month Euribor after 1/1/1999.



markets, both developed (Koutmos, 1997; Watanabe, 2002; Bohl and Reitz, 2004; 

Bohl and Reitz, 2006; Antoniou et al, 2005b) as well as developing (Koutmos & 

Saidi, 2001; Nikulyak, 2002; Malyar, 2005). The model assumes two types of traders, 

namely “rational” ones, who maximize their expected utility and “feedback” ones 

who trade on the basis of lagged past returns (one period back). The demand function 

for the former is as follows:

 
2

1

t

tt
t

rE
Q




                                                                                                    (10)

                                                                
where tQ  represents the fraction of the shares outstanding of the single stock (or, 

alternatively, the fraction of the market portfolio) held by those traders,  tt rE 1   is 

the expected return of period t given the information of period t-1,  is the risk-free 

rate (or else, the expected return such that tQ = 0),  is a coefficient measuring the 

degree of risk-aversion  and 2
t  is the conditional variance (risk) at time t.

The demand function of their feedback peers can be portrayed as:

tY = 1tr                                                                                                                                                                         (11)

where  is the feedback coefficient and 1tr is the return of the previous period (t-1) 

expressed as the difference of the natural logarithms of prices at periods t-1 and t-2

respectively. A positive value of   ( >0) implies the presence of positive feedback 

trading, while a negative value ( <0) would imply the presence of negative feedback 

(“contrarian”) trading.

In equilibrium all shares must be held; hence:

tQ + tY = 1                                                                         (12)

If so, then:



 
2

1

t

tt rE


  +  1tr = 1

Thus:               

 tt rE 1 –   + 1tr  2
t =  2

t ⇔

⇔  tt rE 1  =  - 1tr  2
t +  2

t                                                                            (13)

which provides us with a modified version of the CAPM in the presence of feedback 

traders.

Assuming tr   =  tt rE 1   + t , we have:

tr    =  –  1tr  2
t  +  2

t + t                                                                                                               (14)

where tr  represents the actual return at period t and t  is the error term. To allow for 

autocorrelation due to non-synchronous trading, Sentana and Wadhwani (1992) 

modify (14) as follows:

 2
10 ttr   tttr  

2
1                                   (15)

where 0 is designed to capture possible non-synchronous trading effects and 1 = -

  .

The addition of feedback traders in an otherwise CAPM-setting bears some 

interesting implications. As equation (14) shows, the inclusion of the term  1tr  2
t

leads to return-autocorrelation, the magnitude of which is a function of the risk in the 

market (as denoted by 2
t ). Hence, the higher the volatility grows, the higher the 

autocorrelation. Also the sign of the autocorrelation will be determined by the sign of 

the feedback trading prevalent among feedback traders; if positive feedback traders 



prevail, then the autocorrelation will be negative, whilst it will be positive in the 

presence of more negative feedback traders.

However, the feedback coefficient ( 1 ) is not independent of volatility in this 

model. Positive feedback trading may well lead to the launch of a trend, thus forcing 

prices to fluctuate more wildly, hence becoming more volatile; the relationship can 

also assume a different form, as highly volatile markets may lead many investors to 

resort to strategies of positive feedback style, e.g. by employing portfolio insurance 

and stop-loss orders, which might cause a general price decline (in the event of a 

rising trend) or further exacerbate the price slump in case of a price fall. 

The implications for rational traders from a rise in volatility are also obvious. 

As volatility rises, so does risk and, as a result, the risk-premium required on their 

behalf in order to hold more shares; assuming constant risk-aversion (the  -

coefficient), their ability to profit from a hypothetical trend may not be taken for 

granted, as the market will have grown riskier and they may well decide to liquidate 

their positions early on rather than follow the trend (see Kyle and Wang, 1997). Of 

course, they may well choose to stay on, in an attempt to profit from this trend, in the 

spirit of De Long et al (1990).

In order to test for feedback trading on these premises, we have to specify the 

measurement equation for the conditional variance, as indicated by equation (15). For 

robustness reasons, the conditional variance 2
t is modeled here using three different 

specifications;

- a GARCH (1,1) process (Bollerslev et al, 1994):

2
1

2
1

2
  ttt                                                                                                (16)

where, t
2 is the conditional variance of the returns at time t, t is the innovation at 

time t and ω, β and γ are nonnegative fixed parameters.



-      an EGARCH process (Nelson, 1991, Brooks, 2002):                                                                    

ln 2
t  =  + ln 2

1t + ( 1tu /  2
1t ) +  [(| 1tu |/  2

1t ) - /2 ]                      (17)              

EGARCH allows for asymmetric responses of volatility to positive and negative 

shocks, since if the volatility-returns relationship is negative,   will be negative as 

well. As standardized residuals from GARCH models tend to exhibit signs of 

leptokurtosis, we estimate the EGARCH model by assuming a Generalized Error 

Distribution (GED). 

- A conditional variance specification relevant to the EGARCH is the Asymmetric 

GARCH (1,1) developed by Glosten et al (1993):

2
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2
1

2
1

2
  ttttt S                                                                               (18)

Here δ captures the asymmetric responses of volatility during positive versus negative 

innovations.  St is a binary variable equalling one if the innovation at time t is 

negative and zero otherwise.  If δ is positive and statistically significant then negative 

innovations increase volatility more that positive innovations.

4.3 Descriptive statistics

4.3.1 Herding

 Table 1 presents some statistics related to the estimated cross-sectional 

standard deviation as well as the logarithmic cross-sectional standard deviation of the 

betas of the PSI-20 portfolio. As indicated by the table, the cross-sectional standard 

deviation of the betas is significantly different from zero and exhibits significant 

positive skewness and kurtosis, while the Jarque-Bera statistic indicates departures 

from normality (non-Gaussianity). When observing the statistics of the logarithmic 

cross-sectional standard deviation of the betas, the above phenomena disappear. 



Therefore, the state-space model of Hwang and Salmon (2004) described previously 

can be legitimately estimated using the Kalman filter.

Table 1: Sample herding statistics (January 1993 – December 2005)
     

(*=significance at the 1 % level; **=significance at the 5 % level; ***=significance at the 1 % level).

4.3.2 Feedback Trading

 Descriptive statistics for the PSI20 daily returns are provided in Table 2. The 

statistics reported are the mean (μ), the standard deviation (σ), measures for skewness 

(S) and kurtosis (K) and the Ljung–Box (LB) test statistic for ten lags. The skewness 

and kurtosis measures indicate departures from normality (returns-series appear 

significantly negatively skewed and highly leptokurtic).

Rejection of normality can be partially attributed to temporal dependencies in 

the moments of the series. It is common to test for such dependencies using the 

Ljung–Box portmanteau test (LB) (Bollerslev et al., 1994). The LB-statistic is 

significant for the returns-series of the PSI20. This provides evidence of temporal 

dependencies in the first moment of the distribution of returns, due to, perhaps 

nonsynchronous trading or market inefficiencies. However, the LB-statistic is 

Cross-Sectional standard 
deviation of OLS betas

Logarithmic cross-sectional standard 
deviation of OLS betas

Mean 0.71873*** -0.17004***

Standard Deviation 0.26552 0.15166

Skewness 1.44690*** 0.05776

Kurtosis 3.79204*** 0.50618

Jarque-Bera 147.89895*** 1.75213



incapable of detecting any sign reversals in the autocorrelations due to 

positive/negative feedback trading. It simply provides an indication that first-moment 

dependencies are present. Evidence on higher order temporal dependencies is 

provided by the LB-statistic when applied to squared returns. The latter is significant 

and higher than the LB-statistic calculated for the returns, suggesting that higher 

moment temporal dependencies are pronounced. 

Table 2: Sample statistics: PSI20 daily returns (1/1/1993-31/12/2005)

μ 0.03252

σ 1.01773

S -0.63459***

K 7.68707***

LB(10) 117.9430919***

LB²(10) 766.0910101***

(* = 10% sign. Level, ** = 5% sign. Level, *** = 1% sign. Level).μ = mean, σ = standard deviation, S = 
skewness, K = excess kurtosis, LB (10) and LB² (10) are the Ljung-Box statistics for returns and squared returns 
respectively distributed as chi-square with 10 degrees of freedom.

5. Results-Discussion

5.1 Herding

Table 3 presents the results related to herding on the premises of the Hwang 

and Salmon (2004) measure. Our interest here is concentrated on the estimates for the 

parameters of the state-equation, namely m  and  ,m , since significant values for 

those two would indicate the presence of significant herding. As Table 3 illustrates, 

the persistence parameter (m ) is stastistically significant (1% level), while the 

standard deviation ( ,m ) of the state-equation error (mt ) is significant at the 5% 

level. These results thus indicate that there existed significant herding towards the 



PSI20 index during the 1993-2005 period. The value of m (reflective of the mean 

level of the logarithmic cross-sectional standard deviation of the index-portfolio betas 

as adjusted through herding-expressed here through H mt ) is found to be statistically 

significant at the 10% level, while a similar observation can be made for the 

logarithmic cross-sectional standard deviation of the index-portfolio betas, as the 

estimate of the  ,m indicates. The bottom row of Table 3 provides us with the signal-

proportion value, which according to Hwang and Salmon (2004) indicates what 

proportion of the variability of the logarithmic cross-sectional standard deviation of 

the betas is explained by herding11. As Hwang and Salmon (2004) showed empirically 

in their paper, the bigger the value of the signal-to-noise ratio, the less smoothly over 

time herding evolves. The signal-proportion assumes a value of approximately 17%,

which is indicative of a smooth evolution of herding over our sample-period. 

Table 3: Herding results 

log [ )( b
imtcStd ] = m + H mt + mt ,  mt  ~ iid (0,  

2
,m )

H mt  = m H tm 1,  + mt , mt  ~ iid (0,  
2

,m )

m

-0.082584526  
(0.049695057)*

m

0.981432875  
(0.015962296)***     

 ,m

0.11566758
(0.001642507)***

 ,m

0.025511252
(0.000276008)**

 ,m / S.D. (log-CXB) 0.168209125

(*=significance at the 1 % level; **=significance at the 5 % level; ***=significance at the 1 % level). Parentheses 
include the standard errors of the estimates; sample period: January 1993 – December 2005.

                                                
11 The signal-proportion is estimated by dividing the  ,m by the time series standard deviation of the 

logarithmic cross-sectional standard deviation of the betas, in line with Hwang and Salmon (2004).



The course of herding (represented by a thin line in Figure 1) compared to the 

PSI20 index (represented by a thick line in Figure 1) provides us with interesting 

insights. Herding exhibited a fall during 1993 (January-December), a year that 

coincided with the increase of foreign investment in Portuguese securities following 

the liberalization of overseas capital flows. During the first half of 1994 it entered an 

ascending course, reaching a peak during the summer 1994, a point corresponding to 

the outbreak of the Mexican crisis. The latter combined with the poor corporate 

performance witnessed during that period (Balbina and Martins, 2002), could well 

have convinced the Portuguese investors of the negative prospects for the market, thus 

prompting them to herd more. After June 1994, herding adhered to a descending 

course, which lasted well into 1995. 

Enter 1996 herding begins to rally with the PSI20 and continues its rally 

throughout the market’s boom until April 1998, when the PSI20 reached its peak. 

Although the PSI20 then exhibits descending tendencies due to the impact of the 

Asian/Russian crises that lead it to hit a bottom on September 1998, herding maintains 

its ascending course during that period and records its peak on November 1998. This 

implies that herding during this (roughly) three-year period kept growing as the 

market index skyrocketed and kept rising12 roughly until it bottomed. This indicates 

that herding tended to increase during a period when the market produced “definitive” 

directional movements, a fact in line with the findings of Hwang and Salmon (2004).

When the market was booming, investors were convinced of the rising trend and led 

herding levels to a unique (for the period under investigation) growth. In the advent of 

the global instability during 1998 (Asian/Russian crises), herding levels rose even 

more as investors may have been led to believe that a market-reversal was imminent, 

                                                
12 November1998 was the month in which herding assumed its highest value of the entire sample 
period (0.26643)-see Figure 1.



thus leading the PSI20 to its first bottom in September 1998. An alternative 

explanation for the slump after April 1998 may have been that the market reached 

levels that could not be sustained; a euphoric investors’ sentiment following the 

market’s upgrade in December 1997 could well be the reason underlying the price-

overshooting during the first quarter of 1998.

Following year-end 1998, herding entered a descending course, which asserted 

itself more boldly after September 1999 and lasted until the beginning of year 2001. 

As mentioned previously, this period was characterized by a rather pronounced 

uncertainty (enhanced by the international knock-on effects of the Asian/Russian 

crises and imprinted into a multiplicity of swings of the PSI20) that was followed by 

the rise of the index after September 1999 (the DotCom bubble-effect) and its 

subsequent crash (following the Dotcom bubble crash in the US). 

After a series of fluctuations during most of 2001, herding shows some signs 

of ascension which culminates in increasing herding levels, especially between 

November 2001 and September 2002, only to drop abruptly again afterwards. This 

short rise in herding is associated with the bottom hit by the index following the peak 

of March 2000 and is found to commence shortly after the terrorist attack in New

York on September, 11th 2001.  Interestingly enough, Hwang and Salmon (2004) 

reported an increase in herding levels in the US-market following this event, which 

they associated with the advent of a “bearish” sentiment among US-investors. 

According to the above authors, this event may have functioned as a confirmation of a 

“bearish” market that was already underway following the NASDAQ’s slump in year 

2000. The above may have impacted upon Portuguese investors as well, thus

confirming the market drop that was underway in Portugal since March 2000.



Figure 1: Herding towards the PSI20 (January 1993 – December 2005)
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After the third quarter of 2002 herding started falling again reaching a bottom in 

December 2003. Following that point, it began to rise again during years 2004 and 

2005 when the  market was already reaffirming its ascending trend, although this rise 

was characterized by a multiplicity of swings of either direction. 

5.2 Feedback Trading

Table 4 presents the results from the Sentana and Wadhwani (1992) model-

tests using the three variance-specifications mentioned above. The coefficients 

describing the conditional variance process,  ,  ,   and  , are all statistically 

significant (10% level) in all cases. Note also, that   in the EGARCH-specification is 

negative and statistically significant (5%) implying that negative innovations tend to 

increase volatility more than positive ones. This is further confirmed by the δ-

coefficient of the Asymmetric GARCH (1,1) which is positive (albeit insignificant). 

The feedback coefficient is indicative of statistically significant (5%) positive 

feedback trading for all three variance-specifications.

Table 4: Positive feedback trading tests (Sentana and Wadhwani, 1992)

Parameters GARCH (1,1) EGARCH (1,1) GJR

 0.024769364
(0.014053513)*

0.009563211
(0.017897544)

0.023874975
(0.014215710)*

 0.030028666
(0.015821378)*

0.030202721
(0.019298573)

0.016764791
(0.017217452)


0

0.193831095
(0.020446627)***

0.207034743
(0.022513790)***

0.198475969
(0.022484012)***


1

-0.015556872
(0.005861641)**

-0.024497583
(0.008969658)**

-0.015405740
(0.005702052)**

 0.013058591
(0.006530899)***

0.000596263
(0.006272384)*

0.014177318
(0.007342656)*

 0.852927147
(0.039922082)***

0.967446179
(0.012112446)***

0.854552062
(0.038463671)***

 0.144475625
(0.040734626)***

-0.038718435
(0.016215273)**

0.115537084
(0.031122140)***

 0.279324016
(0.050434866)***

0.048052068
(0.031302742)

(* = 10% sign. Level, ** = 5% sign. Level, *** = 1% sign. Level). Parentheses include the standard errors of the 
estimates; sample period: 1/1/1993-31/12/2005.



To test for the robustness of our results over time, we run the Sentana and 

Wadhwani (1992) model using rolling windows of one, two and three years’ length

rolled every 30 days. For illustration purposes, we present the significance areas of 

positive feedback trading from the 2-year rolling windows’ tests in Figures 2a, 2b and 

2c, each of which corresponds to one of the three conditional variance processes 

(GARCH (1,1), Exponential GARCH, Asymmetric GARCH). Figures 2a-c indicate 

the clustering of the statistical significance13 (5 percent level) of feedback trading 

between 1996 and 1999 inclusive; more specifically, the sign of the feedback 

coefficient for all tests corresponding to that window is negative, thus indicating that 

the 1996-1999 period was characterized by the presence of significant positive 

feedback trading. We also ran the Sentana and Wadhwani model using 1- and 3-year 

rolling windows and the estimates obtained were qualitatively similar to those 

generated by the 2-year windows. 

5.3 Discussion

We mentioned in the beginning that the aim of our study related to the joint 

examination of herding and feedback trading at the market-level in order to see 

whether these two behavioural patterns exhibited any similarities in their evolution 

over time. To that end, we will now try to produce a synthesis of our results in the 

context of the Portuguese market in order to establish whether this is indeed the case. 

When looking at the full-sample results, the estimates of our empirical tests for 

herding (Table 3) and feedback trading (Table 4) indicate that they were both found to

                                                
13 Indicated by the shaded area.



Figures 2a-c: Areas of statistical significance of positive feedback trading towards the PSI20

Figure 2a: GARCH (1,1) conditional variance process
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Figure 2b: EGARCH conditional variance process                    
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Figure 2c: AGARCH conditional variance process
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be statistically significant for the 1993-2005 period. More specifically, our findings 

denote the coexistence of directionally discernible herding and significant positive 

feedback trading at the level of the PSI20. These results are in line with our discussion 

in Section 2.3 referring to the conceptual association between herding and positive 

feedback trading as they illustrate the jointly significant presence of the two in 

Portugal during the period under investigation. 

The intertemporal examination of herding and feedback trading provides us 

with an interesting visualization of their evolution. Herding experiences a unique 

surge between early 1996 and late 1998, while it begins to decline to lower levels 

afterwards (Figure 1). Feedback trading on the other hand appears to exhibit a 

clustering of its statistical significance between 1996 and 1999 inclusive (Figures 2a-

c); the sign of the feedback direction here is always indicative of positive feedback 

trading. Consequently, our findings are reflective of the simultaneous presence of 

rising herding levels and significant positive feedback trading during the second half 

of the 1990s. As we discussed in Section 3, this period corresponds to a confluence of 

events of both local as well as global dimension that led the Portuguese stock 

exchange to undergo a series of successive booms and busts. 

We consider these results to constitute interesting evidence, more so in view of 

the fact that herding and feedback trading have never been jointly investigated at the 

macro level before. More specifically, our findings demonstrate that herding and 

(positive) feedback trading both present themselves significantly, with their 

significance appearing to simultaneously exhibit a certain clustering during a 

distinctive time period. Interestingly enough, that period coincided with a sequence of 

events that led to a growth of investors’ optimism and participation and culminated

into a unique rise of the market (over 270% between January 1996 and April 1998). 



Although it is not possible to claim that our results bear a universal applicability 

(given that we are only investigating the issue in a single market), we contend that the 

comparative study of the topic across a variety of markets would allow us greater 

insight into the relationship between herding and feedback trading at the macro level 

and whether the joint significance of these two behavioural patterns is prone to 

manifesting itself more boldly during such euphoric periods.

6. Conclusion

Herding and feedback trading constitute two patterns of behavioural trading

whose study by researchers has increased notably following the advent of Behavioural 

Finance. Although much empirical work has been devoted to their combined study at 

the micro level, they have never been jointly examined at the macro level (i.e. the 

level of the market). Using data from the Portuguese market for the 1993-2005 period

we tested for the first time for the relationship between herding and feedback trading

in this context. Our results indicate the joint significance of these two patterns both 

globally (i.e. for our full-sample period) as well as intertemporally (their significance 

jointly exhibits an identifiable dramatic rise during the second half of the 1990s, a 

period of euphoric investor sentiment for Portugal). 

We consider our work to constitute an original contribution to the Finance 

literature given that it produces evidence on the underlying relationship between 

herding and feedback trading at the macro level for the first time in the Finance 

research. Perhaps more importantly, our findings are in line with the discussion we 

conducted in the beginning regarding the conceptual association between herding and 

positive feedback trading, since the issue of this association has never been pursued 



theoretically or empirically in the relevant Finance literature. As our present empirical

design involved the Portuguese market only, we believe that our study provides the 

stimulus for further research in order to control for the robustness of our results by 

jointly testing for herding and feedback trading at the macro level across more 

markets internationally. Such a cross-market approach would also yield extra insight 

into whether the significant coexistence of herding and positive feedback trading we 

traced for the case of Portugal can be attributed to the unique elements of investors’ 

psychology of the late 1990s in that market alone or constitutes a pattern that can be 

identified in other markets during periods with similar characteristics.
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