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Abstract

Frozen green beans (Phaseolus vulgaris, L.) thermal conductivity (k) and heat capacity (Cp) were determined experimentally by a

one dimensional finite difference (transient method) and differential scanning calorimetry, respectively. Thermal properties were also

estimated by the inverse problem methodology (IPM). Heat capacity and thermal conductivity behaviour with temperature were

modelled by the Schwartzberg equations and linear relationship, respectively below and above the melting point. These equations

were used inside a finite element model (FEM) to simulate green beans phase transition under thawing conditions. The sequential

simplex method was used to minimise the error vector of the FEM inverse problem, to estimate thermal capacity and thermal

conductivity. The accuracy of thermal-physical properties estimated by the two methodologies was compared with data from lit-

erature. The thermo-physical properties estimated by the IPM converged for physically meaningful values. Important conclusions

were obtained about errors in model predictions. Furthermore, the IPM thermal properties increased the accuracy of simulations,

especially during phase transition.
One of the most difficult part of frozen foods phase

change modelling problems is the characterisation of

non-linear thermal properties in time and space, such as,

thermal conductivity (k) and thermal capacitance (Cp).

Frozen foods do not exhibit a sharp liquid/solid inter-

face that characterises Stefan problems. Foods are

multi-component materials that present a phase transi-
tion region, where thermal-physical properties can be

described by smooth non-linear curves, near the melting

point (Voller, 1997).

Heat conductivity (k) and capacitance (Cp) inside the

phase transition region depends upon ice crystallisation

or melting during freezing and thawing, respectively.

Inside this region, thermal-properties can be modelled as

functions of temperature.
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Linear models have been widely used to describe both
heat conductivity and capacitance above the melting

point temperature (um):

Cp ¼ Cpm þ oCp

ou
ðu� umÞ ð1Þ

k ¼ km þ ok
ou

ðu� umÞ ð2Þ

where Cpm and km are the heat capacitance and con-

ductivity at the melting point temperature (um), respec-
tively.

Heat capacity and conductivity determinations are

well established at temperatures above the melting
point, where no phase change occurs. Heat capacitance

is generally determined by adiabatic calorimetry or dif-

ferential scanning calorimetry (DSC). Thermal conduc-

tivity is possible to be determined either by a stationary

state method, such as the guarded hot plate, that makes

use of the first Fourier law and a heat source in the

determination, or by transient methods. Transient

methods make use of the second Fourier law for well
defined shapes (e.g. infinite slabs, infinite cylinders and

spheres) to determine thermal diffusivity (Delgado,

Gallo, De Piante, & Rubiolo, 1997).
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Nomenclature

a modified Schwartzberg equation constant,

J kg�1 �C�1

b modified Schwartzberg equation constant,

J kg�1 �C�2

Bi Biot number
C capacitance matrix, JK�1

c modified Schwartzberg equation constant,

J kg�1 �C
Cp heat capacity, J kg�1 K�1

d modified Schwartzberg equation constant, �C
e fluctuating error vector

f force vector, W

H enthalpy, J kg�1

h surface heat transfer coefficient, Wm�2 K�1

IPM inverse problem methodology

K stiffness matrix, WK�1

k thermal conductivity, Jm�1 K�1

n normal to the surface boundary

q� heat flux per unit area, Wm�2

t time, s

u temperature, �C

Subscripts

1 refers to environmental condition

0 refers to an initial condition at time zero

app refers to apparent

f refers to frozen

m refers to the melting point
s refers to the surface

Greek letters

r nabla

X physical domain

q density, kgm�3
Ice melting or crystallisation occurs at discrete loca-

tions on the phase transition region. Although phase

transition has a discontinuous nature, during thawing or

at slow freezing rates, it is macroscopically perceived as

a continuous phenomena. Thus, Cp and k have been

described by mathematical equations, either empirical or

derived using thermodynamic relationships. Lind (1991)

presents a vast literature review on the measurement and
prediction of frozen foods thermal properties based on

thermodynamics.

It is possible to determine the heat capacitance by

DSC, as the first derivative of enthalpy in order to

temperature: Cp ¼ oH=ou. A theoretical relationship for

Cp, as function of composition and temperature, was

derived by Schwartzberg (1976). Although the derived

relationship gives a good theoretical basis for predicting
thermal capacity, Ramaswamy and Tung (1981) found

that experimental Cpapp values increase slightly with

temperature when compared with the Schwartzberg

equation. Therefore, they included an additional term to

the original equation:

Cp ¼ aþ buþ c

ðd � uÞ2
ð3Þ

where a, b, c and d coefficients are obtained by non-

linear regression analysis to the DSC data. This equa-

tion generally produces accurate fittings and is suitable

for modelling heat capacity inside the phase transition

region during freezing at slow freezing rates or thawing.

Thermal conductivity has drastic differentials inside

the phase transition region, where k of pure ice is three
times greater than liquid water. Many authors devel-

oped empirical expressions of thermal conductivity as

function of food composition, such as water, ice, protein
and fat content (Hermans, 1979; Sweat, 1974). Never-

theless, these expressions do not cope with specific

properties of certain foods, such as their shape, fiber and

tissue orientations, as well as the direction and position

of ice crystals.

Schwartzberg (1981) developed a simple empirical

expression to describe thermal conductivity, as function

of temperature, below the melting point:

k ¼ kf þ ðkm � kfÞ �
ðu0 � umÞ
ðuw � umÞ2

ð4Þ

where kf and km are the thermal conductivities of the

frozen and at the melting point, and um and u0 are re-

spectively the temperature of the melting point of green

beans and water.
The assumption of continuous thermal-physical

properties across the physical domain X, enables heat

transfer during phase change to be described by a dif-

fusional relationship of temperature, time and space.

This partial differential equation is known as the second

Fourier law (Ozisik, 1994; Shashkov, 1996):

qCp
ou
ot

¼ rðkruÞ ð5Þ

The solution for this equation depends on the initial

an boundary conditions. Typical conditions are for the

initial condition:

uðXÞ ¼ u0 and t ¼ t0 ð6Þ

where, u0 is the initial temperature at t0, the instant zero.
And at the surface boundaries of X:

k
ou ¼ h � ðu1 � usÞ ð7Þ



where, n is the normal to the surface boundary, h the
surface heat transfer coefficient, u1 the environmental

temperature and us the surface temperature.

The finite element method (FEM) approximates the

physical domain to a mesh of finite elements, connect-

ing points in space called nodes (Henwood & Bonet,

1996). For each triangular element, a linear relation-

ship between nodes temperatures is used in the solu-

tion to the heat transfer problem (Braess, 1997). The
final solution to the second Fourier law is reduced to

the following linear differential equation (Segerlind,

1984):
C
ou
ot

þ Ku ¼ f ð8Þ
where C is the capacitance matrix, expressing the volu-

metric heat capacitance, K the stiffness matrix, which

includes heat conduction and convection effects on

nodes temperatures, and f the force vector, that ex-

presses the influence of ambient temperature on nodal

temperatures. Nodal temperature evolution can be cal-
culated using a finite difference scheme, such as the

Crank–Nicholson.

Generally, frozen foods heat transfer models are as-

sembled using the thermal-physical properties obtained

by independent experimental methodologies, such as the

ones above referred. Model predictions are thereafter

validated against simple shapes, such as infinite slabs

and cylinders with well defined analytical solutions of
the second Fourier law. Furthermore, prediction are

confirmed against freezing or thawing curves, to check

model applicability.

This strategy has disadvantages for modelling phase

transition, because independent experiments potentially

increase the risk of experimental errors propagation to

the assembled model, where during phase transition, Cp

and k are not independent variables. Thermal-physical
properties are much dependent upon the material com-

position and the process involved (in this case, phase

change).

The inverse problem methodology (IPM) tries to

overcome the problem of determining dependent phys-

ical properties. Instead of using directly the thermal-

physical properties obtained experimentally, these are

used only as first estimates of an optimisation process.
Thus, a mathematical model is optimised against ex-

perimental data to obtain its parameters, overcoming

the problem of independent measurements of thermo-

physical properties and their co-variation. This strat-

egy allows to compare model and experimental data

for both systematic and random errors, aiding on the

identification of unconsidered mechanisms.

This modelling perspective is known as IPM. There-
fore, the main objectives of this research were
I. Obtain frozen green beans thermal-physical proper-
ties estimates (Cp and k) by conventional experi-

mental methods.

II. Use thermal-physical properties obtained experi-

mentally as first estimates of the IPM optimisation.

III. Investigate the nature of error sources and uncon-

sidered effects on model predictions.

IV. Investigate the applicability of the IPM as a FEM

tuning and validation technique.
Green beans (Phaseolus vulgaris, L.) were obtained

from Porto local city market––Portugal, one day after

harvesting. They were firstly sorted, washed and blan-

ched in water (2 min at 100 �C). After blanching, green
beans were left to cool and dry, and were then frozen in

a blast freezer, Armfield FT 36. Samples were frozen at

an average air temperature of )40 �C, until the tem-

perature of )35 �C was recorded with a thermocouple

placed in the center of a green bean test sample. Ap-

proximately 500 g of frozen green beans were immedi-

ately put into polyethylene bags (35 cm · 22 cm) and

heat-sealed.
Moisture content was determined according to Ehart

and Odland (1973), by drying overnight five samples of

approximately 5 g of vegetable inside a drying oven

(WTB Winder, Germany). The density of the unfrozen

sample was measured by Lozano et al. (1980) (cited by

Shafiur-Rahman & Driscoll, 1993) technique, using five

replications. Green beans density was considered con-

stant in all simulations.

 
Materials and methods

Sample preparation
The DSC––heat compensation technique, was used
to measure the apparent heat capacity. About 35 mg

of green beans were weighted with a microscale (Sar-

torius micro, Germany) and put into 30 ml aluminium

cells (Shimadzu, Japan). The low temperature con-

tainer LTC 50 (Shimadzu, Japan) was used to de-

crease temperature until )45 �C, with liquid nitrogen.

Thereafter, measurements were carried out in the

Shimadzu DSC 50 (Shimadzu, Japan) at a scanning
rate of 1 �C/min, in the temperature range of )40 to

30 �C. Five replications were made and an empty cell

was used as reference. The obtained thermograms

were analysed using the Shimadzu analysis software,

with respect to the baseline made with two empty

a-alumina cells (S�a, Figueiredo, Correa, & Sereno,

1994).

Heat capacity determination



A simple program was developed in MATLAB 4.0

(P€art-Enander, Sj€oberg, Melin, & Isacksson, 1998) to

estimate thermal conductivity (k) and surface heat con-

vection coefficient (h).
The thermal conductivity was determined by the

transient method using the one dimensional finite dif-

ference scheme of the Fourier heat transfer law between
the nodal positions 2 and 3, presented in Fig. 1.

Thermocouples were placed at the nodes, and the

time–temperature spectrum was recorded. The distance

between nodes was measured with a calliper after the

thermocouples removal. The thermal capacity (Cp),

previously obtained by the DSC method, was used as a

known variable to enable the estimation of the thermal

conductivity. A thermocouple was placed in the air
(thermocouple no. 3, Fig. 1), near the surface, to try to

estimate the surface heat transfer coefficient (h). Two
replications of a thawing curve were performed using the

same green bean specimen, as described in Section 2.1.

The structure in Fig. 1 was built to control the

thawing experiment. A green bean sample is placed in-

side an expanded polyethylene, to increase thermal in-

sulation and expose only one surface to the air. This sets
the heat flow to minimal during thawing, making up a

controllable experiment, that allows thawing curves

replicates to be obtained with low variations in the time–

temperature spectrum. Furthermore, a small headspace

is left to maintain a stagnated air layer (see Fig. 1), so

that the convection coefficient h is controllable to some

extent. The stagnated air maintains low Biot numbers

(0.05–0.11) (see Fig. 1).
Under low Biot numbers, values of 10–14 Wm�2 K�1

for the heat convection coefficient are generally ob-

tained. These values were confirmed during the experi-

Thermal condu ctivity estimation
Fig. 1. Mesh used in the inverse problem methodology: (1) air temperature
ment for thermal conductivity estimation. Thus, the
average surface convection coefficient value of 12

Wm�2 K�1 was considered as a fixed value during the

following analysis.

Regression analysis for model fitting was also per-

formed using all replicates data in Section 2.3, by

maximising the likelihood function to the thermal con-

ductivity and capacitance equations (2)–(4) and (3)–(1),

to estimate their coefficients above and below freezing,

respectively. A computer program was developed with

the C++ language, using the BLITZ++ Library C++

code (Veldhuizen, 1999), and the Gauss–Newton opti-
misation algorithm to solve the normal equations

and determine the parameter estimates. The estimated

parameters variance was obtained by the variance–

covariance matrix of the regression coefficients and the

model standard deviation was estimated by the mean

standard error (Bates & Watts, 1988; Neter, Kutner,

Nachtsheine, & Wasserman, 1996). The studentised

effect ðbi=sfbigÞ of each parameter was computed to
define its statistical importance at a 5% confidence level

(double sided T -test). The semi-studentised residuals

were examined for outlayers, randomness and tested

for normality to assess the quality of the fitted kinetic

models. Fittings validity was also evaluated by the lack

of fit test (Box, Hunter, & Hunter, 1978).

Heat conduction law is generally considered deter-

ministic. Nevertheless, uncertainties arise from system-

atic or random errors do affect the Fourier laws and the

Regression analysis for thermal-physical properties 

Inverse problem methodology

estimation
thermocouple, (2) surface thermocouple and (3) inner thermocouple.



thermal-physical parameters. The uncertainty sources
are possible to be examined by including a stochastic

term into the heat conduction law:

q� ¼ kruþ eðX; tÞ ð9Þ
where q� is the heat flux per unit area and eðX; tÞ is a

random stochastic function across the physical domain

X.
This simple modification gives a stochastic interpre-

tation to phase change. Such modification states that
energy flow during phase change generally follows the

deterministic fourier law, but, at discrete positions of X,
it is subjected to unknown perturbations. Unknown

perturbations can arise from many multiple sources, and

for the sake of simplicity of a first approach are consid-

ered as independent. During freezing or thawing un-

considered effects, such as nucleation and crystal growth

and melting kinetics, are possible sources of systematic
errors on thermal-physical properties. Furthermore,

uncertainties on the tissue matrix composition and

structure present very significant effects during freezing

and thawing heat transfer problem. Thus, the second

Fourier law, that describes transient heat transfer with

and independent stochastic source function, is presented:

qCp
ou
ot

¼ rðkruÞ þ reðX; tÞ ð10Þ

which can be expressed in the linear form:

C
ou
ot

þ Ku� f ¼ e ð11Þ

where e is the fluctuating error vector.

This stochastic finite element equation (SFEM) pre-

serves the Fourier heat transfer equations, but temper-

ature and heat flow are subjected to unknown local

perturbations. If errors are random and no tendencies

are observed, the heat transfer model is using the most

important effects, and variability is attributed to inde-

pendent sources, to which their expected value is zero.
Under these circumstances, one can consider that the

freezing or thawing curves are well described by the

Fourier law, and the phase change problem is described

by a non-linear diffusional equation. Thus, Cp and k can
Table 1

Thermal-physical constrains for sequential simplex optimisation

Thermal-physical property

Thermal conductivity (Wm�1 K�1)

Apparent heat capacity (J kg�1 K�1)

Surface heat transfer (Wm�1 K�1)

Moisturea (%)

Densitya (kgm�3)

Freezing point (�C)
Maximum heat of fusionb (kJ kg�1)

Maximum enthalpy difference between )15 and )0.22 �C (kJ kg�1)

aAverage from five replications.
bMoisture (%) · 333.2· 10�2 kJ kg�1.
be determined simultaneously by minimising the error
vector (e). Error minimisation is achieved by changing

the constants of equations (1)–(4), that describe phase

change non-linearity.

Multivariable optimisation is achievable by several

optimisation methods. Nevertheless, evolutionary opti-

misation methods have proven to be very effective on

complex optimisations, such as the one performed. The

sequential simplex optimisation method has proven to
be very efficient in finding the optimum region (Walters,

Morgan, Parker, & Deming, 1999), and was used to

estimate parameters in Eqs. (1)–(4). Constrains were

applied to obtain physical meaningful estimates. Table 1

presents the constrain intervals for thermal-physical

properties. The model was optimised against the tem-

perature of two thawing curves at points (2) and (3) of

Fig. 1. The meshing of this figure was obtained using the
Delaunay triangulation algorithm on a green beans

scanned image.

The simplex optimisation was set not to change the

surface heat transfer coefficient. Good estimations of the

surface heat transfer coefficient (h) are possible with a

large number of thermocouples placed inside and on the

green beans surface. For such small specimen, it is dif-

ficult to map correctly the thermocouples, and the in-
crease in thermocouple number changes significantly the

physical domain, and consequently the proposed finite

element model. Moreover, the simultaneous optimisa-

tion of all three thermal-physical properties h, Cp and k
increases the difficulty in the simplex optimisation con-

vergence to physically meaningful values.

The thawing curve was preferred to perform the IPM,

in order to increase reproducibility. By thawing at en-
vironmental conditions, it is possible to maintain surface

heat coefficient at low and constant values, and obtain

better results than when using a freezing curve. Al-

though the environmental temperature is not control-

lable, this factor is accounted also for IPM. Frozen

green beans were thawed from an initial temperature of

)15 �C, at the room temperature of +20 �C.
It must be emphasised that frozen foods thermal-

physical properties, such as Cp and k obtained by
Unfrozen Frozen

0.3–0.8 0.7–1.8

3.2–4.1 1.5–2.3

9–15

90.76

1200

)0.221
282–302

311–332



thawing experiments, are possible to be used in freezing
simulations, when supercooling is negligible.
Green beans initial freezing point was detected in the

DSC thermogram heat peak at )0.221 �C. Thermo-

grams were converted into the enthalpy difference vs.

temperature curve presented in Fig. 2.

The enthalpy difference obtained by DSC between
)15 and 0 �C has the value of 279.88 kJ kg�1. This value

is below the expected when one takes into account the

water content of green beans (in accordance to Weast &

Astle, 1981), as presented in Tables 2 and 3. Neverthe-

less, data reported in literature agrees with the obtained

enthalpy difference. For example, for the same temper-

ature range, enthalpy differences of 283, 244, and 165

Results and discussion

Apparent heat capacity determination
Fig. 2. Green beans enthalpy estimation by DSC (+) and inverse

problem methodology ()).

Table 2

Green beans unfrozen apparent heat capacity (Cpapp ), unfrozen and frozen the

sequential simplex optimisation

u > um Cpm (kJ kg�1 K�1) oCp=

Cp
a 3.783± 3.313· 10�2 1.067

Cp
b 3.883± 3.523· 10�2 1.080

u > um km (Wm�1 K�1) ok=o

ka 0.624± 0.000 1.060

kb 0.624± 0.001 0.306

u < um km (Wm�1 K�1) kf (W

ka 0.624± 0.004 1.407

kb 0.624± 0.022 1.389

aNon-linear regression estimation.
b IPMP––sequential simplex optimisation.
kJ kg�1 were obtained for apple, pear and tomato, re-
spectively (S�a et al., 1994).

Above the freezing point, heat capacity is within the

expected limits, and follows a linear increase with tem-

perature, from 3.765 to 3.892 kJ kg�1 in the range of 0–

10 �C.
The apparent heat capacity regression parameter es-

timates to the modified Schwartzberg equation (Eq. (3))

and linear model, respectively below and above the
melting point um, are presented in Table 2, and shown in

Fig. 3. Both models exhibit a good correlation coeffi-

cients, between fitted and experimental data, 0.9997 and

0.9983, respectively. Thus, both passed the lack of fit test

(p > 0:05), and parameters studentised effect is signifi-

cant (tðbiÞ > tð1� a=2; df Þ). The estimated models agree

with published data by S�a et al. (1994). Therefore, are

suited as first apparent heat capacity estimate to be used
in the IPM.
Thermal conductivity regression estimates are pre-

sented in Table 2. Fittings to experimental data are

shown in Fig. 4. Both Schwartzberg equation (Eq. (4))

and linear model (Eq. (2)) exhibit a good correlation

coefficient between model and experimental data, 0.8834

and 0.8964, respectively. The parameters studentised

effect is also significant (see Table 2).
The finite difference scheme is capable of giving good

thermal conductivity estimates with temperature. Nev-

ertheless, k estimates are very sensitive near the melting

point um. This effect has already been verified, with the

transient probe methodology, by Wang and Kolbe

(1990). During the initialisation of phase change, the

large amount of latent heat makes temperature to re-

main almost constant. Therefore, as temperature dif-
ferences between nodes are very small, the calculated

thermal conductivity is very sensitive to fluctuations in

the temperature record.

Thermal conductivity estimation
rmal conductivity (k) equation parameters, estimated by regression and

ou (kJ kg�1 K�2) SE

· 10�2 ± 2.323· 10�3 0.433

· 10�2 ± 3.081· 10�3 –

u (Wm�1 K�2)

· 10�2 ± 3.772· 10�4 1.786· 10�2

· 10�2 ± 0.119· 10�3 –

m�1 K�1)

± 0.005 0.072

± 0.032 –



Table 3

Green beans frozen apparent heat capacity (Cpapp ), estimated by regression and sequential simplex optimisation

u < um a (kJ kg�1 �C�1) b (kJ kg�1 �C�2) c (J kg�1 �C) d (�C) SE

Cp
a 1.822 8.231 474.3 1.553 0.650

±5.952· 10�2 ±1.785· 10�3 ±4.441 ±1.027· 10�2

Cp
b 1.812 7.675 290.2 0.801 –

±2.193· 10�2 ±0.181· 10�3 ±18.535 ±8.476· 10�2

aNon-linear regression estimation.
b IPM––sequential simplex optimisation.

Fig. 3. Heat capacity regression analysis: (a) heat capacity below the melting point and (b) heat capacity above the melting point.
Furthermore, this method is very sensitive to errors in

the thermocouples distance, because green beans are not

very wide (5.79 mm approximately; see Fig. 1). Thus,
special care has to be taken while measuring thermo-

couples distances. A good methodology is to make an

axial cut between the two holes made by thermocouples

punctures. Thereafter, it is possible to make a scanned

computer image and estimate the exact thermocouple

location by image analysis.

Thermal conductivity data is limited. Available re-

sults are within the ranges of 0.4–0.9 and 0.9–1.8
Wm�1 K�1, for unfrozen and frozen foods, respectively.

The wide range is attributed to several reasons, such as

sample variety and variability, water content, tissue

composition and orientation to the heat source and

determination methodology (Delgado et al., 1997;

Sweat, 1974; Wang & Hayakama, 1993). Thus, a direct

comparison between results is not possible to be per-

formed. However, it is possible to state that obtained
thermal conductivity model estimates are within the

published ranges for frozen and unfrozen foods, and

therefore can be used as first estimates in the IPM.
Thermal capacity and conductivity IPM estimates are
presented in Tables 2 and 3. Fig. 5 presents the opti-

mised thawing curve by the inverse methodology and its

studentised residuals. During the realisation of this

thawing curve, no vapour condensation was observed

on green beans surface.

The sequential simplex converged very rapidly in re-

gions (I) and (III) of Fig. 5a. Lower conversion rates

were obtained in region (II). The algorithm converged
satisfactory, fitting between the FEM model and the

experimental data. The model standard error (SE) of

±1.15 �C, and its correlation coefficient of 0.98, obtained

between model prediction and experimental data are

very satisfactory. Thus, the model passed the statistical

lack of fit test (p > 0:05). However, Fig. 5b exhibits a

time correlation of studentised residuals, indicating that

the FEM model has both systematic and random inac-
curacies.

Inside region (I) of Fig. 5a, thermal conductivity

presents a small decrease as temperature raises to the

Inverse problem analysis



Fig. 5. Green beans simulated thawing curve vs. raw data: ()) FEM model prediction for temperatures in thermocouples 3 and 2, (+) surface

thermocouple, (�) inner thermocouple, and (�) air temperature.

Fig. 4. Thermal conductivity regression analysis: (a) thermal conductivity below the melting point and (b) thermal conductivity above the melting

point.
melting point um. Thermal capacity (Cp) remains in the

region of linear increase with temperature (u < �10 �C).
It is possible to observe that at low temperatures (<)10
�C in Fig. 2), the enthalpy difference obtained by IPM

optimisation is very similar to the obtained by DSC

analysis. Thus, at low temperatures both IPM and ex-

perimental determinations of Cp and k are in agreement.
However, semi-studentised residuals present a linear

decrease in zone (I) (see Fig. 5b). The lack of accuracy in

the initial temperature and temperature distribution in-

side green beans, poor control of room temperature, the

influence of the thermocouples and a small sub-estima-

tion of the surface heat transfer coefficient in this region
of the thawing curve, are possible sources of this small

offset.

Phase change dominates zone (II) in Fig. 5a. Model

residuals decrease with a linear trend until their mini-

mum value, near the melting point temperature (um) (see
Fig. 5b). During this temperature interval, both Cp and k
change abruptly, and therefore, most of the optimisation
effort of the simplex was spent in this region.

The simulated thawing curve, using the experimental

estimates of Cp and k, estimated a thawing time of 40

min. This underestimation is mainly attributed to a sub-

estimation of the enthalpy content of frozen green beans

between )10 and )0.221 �C. Fig. 2 presents frozen green



beans enthalpy difference obtained by DSC and IPM,
where at the melting temperature um the enthalpy peak is

279.88 and 320.30 kJ kg�1, respectively. The optimised

peak is near the expected range of enthalpy difference

for the high water content of green beans and calculated

by Weast and Astle (1981) formula (see Table 1). Thus,

it is observed experimentally that the DSC underesti-

mates the enthalpy difference by 10.14%, when com-

pared to the IPM optimisation.
It is also observable, in Fig. 2, that the optimised

curve is steeper, which is a consequence of green beans

high moisture content. The modified Schwartzberg

equation parameters (Eq. (3)) that control this region of

the enthalpy curve are c and d. Table 3 presents that c
decreased from 474.3 to 290.3 J kg�1 K, and d decreased

from 1.553 to 0.801 �C, respectively.
It is also possible to observe that the optimised IPM

FEM model is capable to describe the behaviour of the

surface temperature (see Fig. 5). The sigmoidal behav-

iour at the surface, especially in phase II, is a conse-

quence of the complete defrost of these cell layers. A

small offset is observed in the predictions of the surface

temperature. Uncertainties on the thermocouple loca-

tion, convection heat transfer coefficient and in the

thickness of the limit air layer may be behind this sys-
tematic error.

Errors in phase (III) have a slight increase, where

three outlayers exist. The thermocouple no. 3 (Fig. 5)

increases its temperature much more rapidly until 10 �C.
Nevertheless, the final thawing time is reasonably the

same, and residuals show an abrupt tendency towards

zero. One probable cause of this deviation is the as-

sumption of a constant value for the surface heat con-
vection coefficient (h), which may over-estimates the

heat transfer ratio.

Above the freezing point there are no significant

differences in the estimated heat capacity between model

optimisation and DSC results.

Small differences were detected in thermal conduc-

tivity at the freezing point (ku). The simplex optimisation

shows that thermal conductivity is 66% less sensitive
to the temperature increase than the expected from the

finite differences method.
The IPM is capable to estimate the apparent heat

capacity and thermal conductivity of frozen green beans

during thawing. Heat capacity values determined by

DSC agreed with published data. However, the DSC

underestimated phase change enthalpy, and conse-

quently thawing time.
IPM has a great potential to deal with the non-lin-

earity of the frozen green beans phase change problem.

The high variability of the fruits and vegetables thermal

Conclusions
properties, makes difficult to compare the obtained
values with the expected range. IPM has shown to help

to trace and correct the uncertainties to some extent,

giving information on model faults, aiding the re-

searcher to build better and more complex models to

simulate phase transition, rather than just fitting models

to experimental data.
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