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Abstract

Three different accelerated life tests (ALT) were designed by computer simulation to investigate their practical applicability to

quantify kinetics of quality loss in frozen stored foods. Heat transfer and quality degradation inside a green bean were simulated,

using a spectral finite element method (SFEM), to develop pseudo-experimental data. Temperature fluctuations inside a refrigerator

were simulated, by a piecewise linear stochastic differential equation, and integrated into the SFEM program. Thereafter, the

simulated data was treated by non-linear regression analysis to estimate the kinetic parameters. The different ALT tests were then

compared in terms of precision and accuracy.

This study shows that temperature fluctuations, inside a refrigerator, influence the accuracy of the kinetic estimates, and if the

temperature spectrum is used to derive kinetic estimates, it is possible to apply accurately ALT methodologies to frozen foods.
Introduction

Slow reaction rates and long storage times have been

the major hurdles of frozen foods isothermal kinetics
studies. The time involved in these type of experiments is

exorbitant. For example, data must be collected over a

minimum period of 6–12 months, at temperatures of )7
to )30 �C, or even lower temperatures.

Accelerated life testing (ALT) techniques have been

developed as an engineering tool to reduce this experi-

mental time. ALT were originally developed for reli-

ability studies of long lasting events (e.g. mechanical
failure of engine parts, hardware failure, control failure

of nuclear reactors), and proved to be a very effective

tool for product development (Høyland & Rausand,

1994). By estimating product’s failures, corrections and

improvements can be done quickly.

ALT techniques have been used to estimate shelf life

of foods. The most generally accepted methodology is to

expose foods to controlled overstress conditions (e.g.
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high temperatures, low pH and high aw) to reduce the

�mean time to failure’. Thereafter, shelf life is extrapo-

lated into normal conditions of storage and distribution,

using the fitted models.
In early ALT methods for foods (Labuza & Schimdl,

1985; Ragnarsson & Labuza, 1977; Waletzko & Labuza,

1976), a reduced number of storage experiments were

made at two constant elevated temperatures to deter-

mine kinetic rates and the Arrhenius activation energy.

Then, kinetic rates were extrapolated to lower storage

temperatures.

Extrapolation increases the uncertainty of predicted
data, especially if the tested range is narrow (Bates &

Watts, 1988; Box, Hunter, & Hunter, 1978; Neter,

Kutner, Nachtsheine, & Wasserman, 1996). To over-

come this difficulty, Reid (1999) proposed use of the

glass transition temperature (T 0
g þ 5 �C) as an extra

regression point. It was assumed that the Arrhenius law

is observed above the glass transition temperature.

However, a number of quality degradation reactions are
not so dependent on phase transitions. For example,

oxidation by molecular oxygen, which has a high

mobility below the glass transition temperature.

Frozen foods are stored at temperatures higher than

)25 �C, and generally are distributed near the limit of

the legal temperature ()18 �C for most countries), i.e. at
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Nomenclature

a autoregressive process parameter

k thermal conductivity, Wm�1 K�1

r divergence operator

X physical domain

/ autoregressive process parameter (discrete
form)

q density, kgm�3

r2fcg quality value variance–covariance matrix

r2fug temperature variance–covariance matrix

h autoregressive process parameter (discrete

form)

a autoregressive noise at time t
ARMA autoregressive moving average model
b autoregressive process parameter

C capacitance matrix, JK�1

c the quality parameter value at time t
Cp heat capacity, J kg�1 K�1

Efcg expected average quality value

Efug expected average nodal temperature, K

Ea Arrhenius activation energy, Jmol�1

Er average absolute error

f force vector, W

h surface heat transfer coefficient, Wm�2 K�1

k kinetic rate, day�1

K stiffness matrix, WK�1

n normal to the surface boundary

R universal gas constant, Jmol�1 K�1

SE regression standard error

t time, s

u temperature, K

wðtÞ independent gaussian error source

Subscripts

1 environment

0 initial condition

d deterministic value

eq at the equilibrium

ref at the reference temperature

s at the surface
t at time t
temperatures higher than T 0
g. In this temperature range,

the Ahrrenius law agrees with experimental data, ob-

tained after selected isothermal experiments.

Non-isothermal methodologies used in the pharma-

ceutical industry have been applied in food research, but

not in the area of frozen storage. Some of these food

studies use a linear temperature increase with the

experimental time, covering the needed temperature
range to estimate kinetic parameters (Brand~ao &

Oliveira, 1997; Frias, 1998; Moreira, Oliveira, Silva, &

Oliveira, 1993; Rhim, Nunes, Jones, & Swartzel, 1989a,

1989b). Experiments and simulations were made to

optimise this technique, increasing the accuracy and

precision in the estimated parameters (Brand~ao &

Oliveira, 1997). However, results are unsatisfactory

when 5% error in concentration occurs, and a larger
number of samples has to be taken compared to iso-

thermal experiments. This is the case for most food

quality parameters (Labuza, 2000).

The frozen food industry applies a more practical

approach. Often, frozen foods are subjected to a number

of freeze-thaw cycles, and the number of cycles at which

quality degradation is evident is determined. Shelf life is

�extrapolated’ to normal storage and distribution con-
ditions on empirical basis (Reid, Kotte, & Kilmartin,

1999). This test is preferred for practical reasons, but

utilises a subjective interpretation of product’s shelf life.

Furthermore, the �extrapolation’ requires previous

knowledge of similar products, specially their sensory

attributes and consumer’s reaction, because degradation

kinetics are not taken into account along with storage
and distribution conditions, and this technique is of little

use for the development of inovative products.

In conclusion, two main difficulties exist in the design

of frozen foods quality loss experiments: (i) long

experimental times, and (ii) temperature fluctuations

inside a refrigerator. The second issue is particularly

relevant, because thermal fluctuations accelerate quality

losses and decrease the accuracy with which kinetic
parameters can be estimated, especially if a constant

temperature is assumed during regression analysis.

Dynamic ALT tests may overcome this problem, as

they take into account the temperature fluctuations

during the optimisation procedure. Under dynamic

testing, time, temperature and the quality parameter

must be continuously evaluated at regular time inter-

vals. For example, both time and temperature can be
measured with a data logger device, whereas, carefully

planned quality measurements must be obtained over

the experimental time. Thereafter, time and tempera-

ture histories are used as variables in the expected

integrated kinetic law, and kinetic parameters are

optimised.

Because ALT methodologies applied to frozen food

research are still in their infancy, the objectives of this
research study were to:

(i) Demonstrate the potentialities of three ALT

techniques, by computer simulation; (ii) compare the

proposed ALT techniques with the previous ALT

methodologies; (iii) derive conclusions on how quality

degradation kinetics of frozen stored foods should be

obtained.
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Fig. 1. Green beans finite elements mesh.
Green beans (Phaseolus vulgaris L.) quality losses

were previously studied along 250 days of storage at )7,
)15 and )30 �C (Martins & Silva, 2002, 2003a, 2003b).

These studies aimed at recording losses of vitamin C,

colour, chlorophylls, starch, reducing sugars and chan-
ges in texture versus storage time, at the three different

temperatures, in order to obtain their degradation

kinetics by an �isothermal’ method. Flavour difference

kinetics was obtained from Labuza (1982). These studies

concluded that there is a large deviation in terms of

temperature sensitivity of quality factors degradation

kinetics. Nutritional parameters are less retained by low

storage temperatures, than sensory parameters that are
very well retained at low storage temperatures (e.g. )30
�C). Table 1 presents the three most representative

quality loss kinetics in terms of temperature sensitivity.

Ascorbic acid loss and total vitamin C losses, and fla-

vour difference have, respectively, low, intermediate and

high sensitivity to temperature. Therefore, in this study

these were considered representative of the quality losses

spectrum.

A two-dimensional stochastic finite element method

(SFEM) was written in C++ language (Barton &

Nackman, 1991; Meyers, 1998). Because stochastic

algorithms lead to considerable computational load, the

SFEM code was changed to run on a distributed
architecture, using the Parallel Virtual Machine C li-

brary code (Geist et al., 1994). Simulations were let to

run in a LINUX Beowulf class cluster (Almeida &

Martins, 2001). Fig. 1 presents the SFEM mesh used to

simulate axial heat transfer on a green bean inserted in

an expanded polyethylene platform.

During the development of the heat transfer model

the following assumptions were made:

• Heat transfer inside the green bean is only by conduc-

tion, and on the exposed surface by convection. The

Heat transfer model

Green beans quality studies

Materials and methods
Table 1

Quality loss kinetic parameters

Quality parameter Ascorbic acid (mg 100 g�1)a V

c0 146.1 1

kref � 10�2 (day�1)c 15.61

Ea (kJmol�1) 3.861

SE 8.565

aData from Martins and Silva (2002, 2003a).
bData from Dietrich et al. (1959), referred by Labuza (1982).
c uref ¼ �15 �C.
value of h was assumed to be 12 Wm�2 K�1 at the
surface mesh, with no local variations;

• Heat capacity (Cp ¼ 1004 J kg�1 K�1) and heat con-

ductivity (k ¼ 0:08 Wm�1 K�1) of the air elements,

in the physical domain ðXÞ, are constant both in time

and space;

• Product heat capacity and heat conductivity evolu-

tion with temperature were modeled independently,

by fitting to experimental data the Schwartzberg
(1976), modified by Ramaswamy and Tung (1981),

and Schwartzberg (1981) equations, respectively.

The parameters of the mentioned equation were ob-

tained from Martins and Silva (2003b). These heat

transfer properties were implemented stochastically

using a spectral approach (Ghanem, 1991), so that

the biological variability can be taken into account;

• Heat production and latent heat loss, due to mass
transfer, is negligible;

• The expanded polyethylene heat diffusion is negligi-

ble, when compared to air or green beans.

Given these assumptions, the temperature at any

point of XðuÞ can be described by the Fourier law in the

conservative form (Ozisik, 1994; Shashkov, 1996):

qCp
ou
ot

¼ rðkruÞ ð1Þ

With the initial condition:

uðXÞ ¼ u0 and t ¼ t0 ð2Þ
itamin C (mg 100 g�1)a Flavour difference (%)b

46.1 100

3.226 7.769

42.01 117

8.565 5.000



where u0 is the initial temperature at t0, the instant zero,
and at the surface boundaries of X:

k
ou
on

¼ h � ðu1 � usÞ ð3Þ

where n is the normal to the surface boundary, h the

surface heat transfer coefficient, u1 the environmental

temperature and us the surface temperature.

The finite element method (FEM) approximates the

green beans physical domain by a mesh of finite ele-
ments, connecting points in space called nodes (Hen-

wood & Bonet, 1996). In each triangular element,

temperature is approximated by a linear relationship

between nodal temperatures (Braess, 1997). The final

solution to the 2nd Fourier law is reduced to the fol-

lowing linear differential equation (Segerlind, 1984):

C
ou
ot

þ Ku ¼ f ð4Þ

where C is the capacitance matrix, expressing the volu-

metric heat capacitance, K is the stiffness matrix, which

includes heat conduction and convection effects on no-

dal temperatures, and f is the force vector, that expresses

the influence of ambient temperature on nodal temper-

atures. Nodal temperature evolution can be calculated

using a finite difference scheme, such as the Crank–

Nicholson.
The SFEM approach generates different heat transfer

properties spectrum over time and space (Ghanem,

1991). Thus, the SFEM solves the temperature at every

nodal point, for each stochastic spectrum of heat

transfer properties.

Therefore, Eq. (4) has to be solved for each one of the

i possible independent thermal properties (k and Cp) on

that time interval:

Ci ou
ot

i

þ Kiui ¼ f i ð5Þ

Thereafter, the expected nodal temperature is given by
its average value ðEfugÞ. The variance–covariance ma-

trix of the solution can be also calculated:

r2fug ¼ ½ui � Efug� � ½ui � Efug�T ð6Þ

where the nodal temperatures variance is obtained as the

diagonal elements of r2fug (Ghanem, 1991).
Therefore, the model is capable to generate, for a

given time interval, the expected temperature, its vari-

ance and the covariance between nodal temperatures.
All the selected quality parameters (see Table 1) were
successfully modeled by a first order model, using the

one step optimisation procedure (Arabshahi & Lund,

1985):

Quality loss simulation
dc
dt

¼ �kref � exp
�
� Ea

R
� 1

uðXÞ

�
� 1

uref

��
� C þ wðtÞ ð7Þ

where c is the quality parameter, kref the kinetic rate at

the reference temperature uref , Ea the Arrhenius activa-

tion energy, R the universal gas constant and wðtÞ the

independent gaussian error as the stochastic source.

The quality degradation kinetics was implemented

with the SFEM heat transfer model, using the following
assumptions:

• Nutrients diffusion is negligible.

• The degradation rate is space independent.

• Degradation rate, at a given node of X, is only depen-

dent on temperature uðXÞ, and it is given by the Ar-

rhenius law.

For each time–temperature spectrum, quality loss is

calculated for the entire physical domain and at the
nodal positions. Therefore, the average value and vari-

ance of each quality loss parameter at a nodal position

can also be estimated by the calculation of the variance

covariance matrix.

However, quality parameters, such as vitamin C, are

measured experimentally by destructive tests. Therefore,

it is not possible to quantify quality losses experimen-

tally at specific nodal points, and an average value per
sample volume is computed for the green bean model.

Both first and second statistical moments can be calcu-

lated. It is possible to obtain the average quality loss and

standard deviation across the physical domain by Eqs.

(8) and (9), respectively:

Efcg ¼
R
X cdX
X

ð8Þ

r2ðcÞ ¼
R
Xðc� EfcgÞ2 dX

X
ð9Þ
It is generally accepted that during storage studies the

temperature inside a refrigerator remains constant.

However, food inside domestic freezers exhibit temper-
ature fluctuations as much as ±5 �C, with a frequency

between 0.25 and 3 cycles per hour (Giel, 1998).

Home freezers are built to reduce manufacture and

energy costs, and are not designed to maintain a con-

stant temperature. The refrigerator’s thermostat is very

simple. When temperature goes above a maximum

value, the compressor switches on. After the air tem-

perature has decreased below the minimum tempera-
ture, the compressor switches off. The main reason for

this type of control is to maximise the time in the off

position. By reducing the compressor work load, the

Refrigerator temperature spectrum



freezer cost is simply decreased, by using smaller com-
pressors (Giel, 1998).

Thermal fluctuations inside a refrigerator can be

regarded mathematically as a stable limit cycle, where

temperature undergoes a defined observable periodic

oscillation, and fluctuates around a central area on a

phase diagram. Physically, limit cycles represent the

dynamic stationary state of sustained oscillations,

which does not depend on initial conditions, but de-
pend exclusively on the system parameters (Tong,

1994).

This kind of physical dynamical behaviour can be

divided into two phases: (I) when the compressor is on

and (II) when the compressor is off (see Fig. 2). In each

region, it is possible to described the system’s dynamics

by a linear stochastic differential equation:

dn

dtn
u1ðtÞ þ an�1

dn�1

dtn�1
u1ðtÞ þ � � � þ a0u1ðtÞ

¼ bn�1

dn�1

dtn�1
wðtÞ þ � � � þ b1

d

dt
wðtÞ þ wðtÞ ð10Þ

This equation is called a continuous autoregressive

moving average model, AMðn; n� 1Þ (Pandit & Wu,

1983). However, it is possible to show that when a

continuous stochastic system, described by Eq. (10), is

sampled at constant time intervals, the observed data

can be represented in the discrete form:

ut � /1ut�1 � � � � � /nut�n

¼ at � h1at�1 � � � � � hn�1at�nþ1 ð11Þ

This linear stochastic difference equation is known as

the discrete Autoregressive Moving Average model,

ARMAðn; n� 1Þ, and the coefficients of this difference

equation can be obtained by regression analysis.
Therefore, for each On/Off phase, it is possible to obtain
Fig. 2. Refrigerator time–temperature spectrum.
an ARMAðn; n� 1Þ model, which describes the system
dynamics.

It is also necessary to model the u1 versus t curves
(see Fig. 2). A linear regression analysis was made to

model the maximum and minimum temperature limits

with the thermostat position.

The experimental ALT designs were divided into

three categories: designs I, II and III. An illustrative

example is presented in Fig. 3.

Three samples were put into three refrigerators, set to

the average thermostat temperature of )5, )7 and )15
�C, for 24, 25 and 30 days, respectively. Simulated

temperature and quality losses data were recorded every

minute to an output buffer file.

Green beans were subjected to consecutive increases

in temperature, by step levels. The design expects an

average of 25% quality degradation for each stress level.

Thus, the same sample is exposed for 15, 7, 6 and 5 days

at the average thermostat temperature of )30, )20, )10
and )5 �C, respectively.

A linear increase in the average thermostat position

was set up in this simulation. The temperature set-up

increased linearly from )30 to )5 �C, at a rate of 0.758

�Cday�1.

Non-linear regression analysis for model fitting was

performed on all data, in a one-step optimisation pro-
cedure (Arabshahi & Lund, 1985), by maximising the

likelihood function for all the three temperatures to the

isothermal kinetic equation:

c ¼ c0 � exp
�
� kref � exp

�
� Ea

R
� 1

u

�
� 1

uref

��
� t
�

ð12Þ

The kinetic parameters of Eq. (12) were estimated for

the quality attributes ascorbic acid, total vitamin C and

flavour difference. A computer program was developed

with the C++ language using the BLITZ++ Library

C++ code (Veldhuizen, 1999), with the Gauss-Newton

optimisation algorithm to solve the normal equations

and determine the parameter estimates. The estimated

parameter’s variance was obtained by the variance–
covariance matrix of the regression coefficients, and the

model standard deviation was estimated by the mean

standard error (Bates & Watts, 1988; Neter et al., 1996).

Design I

Data analysis

Design III

Design II

Design I

Accelerated life testing



Fig. 3. Accelerated life testing designs: (a) design I, (b) design II, and (c) design III.
The studentised effect ðbi=sfbigÞ of each kinetic
parameter was computed, to define its importance at a

5% confidence level (double sided T -test). The semi

studentised residuals were examined for outlayers, ran-

domness and tested for normality (Box et al., 1978), to

assess the quality of the fitted kinetic models.
The program developed for the analysis of design I

was modified to optimise the same kinetics under dy-

namic temperature conditions. Under dynamic temper-

ature conditions, Eq. (12) takes the form:

c ¼ c0 � exp
�
� kref �

Z t

0

�
� Ea

R
� 1

u

�
� 1

uref

��
� dt

�

ð13Þ

Thereafter, the same statistical analysis, as for design

I, was performed.

Designs II and III
The precision of the three different designs models

estimates was evaluated by the regression standard

error. The statistical significance of the different designs

Comparison between designs
estimated model parameters was accessed by their stu-
dentised effect (Table 2).

The different designs were compared in terms of

accuracy and precision. To access the model accuracy,

the kinetic models in Table 1 were assumed as having

the correct deterministic behaviour. Thus, each design

model accuracy, was calculated by average absolute

error between the correct �deterministic’ model and the

regression estimate:

Er ¼
R t
0
jc� cdjdt

t
ð14Þ

A multifactor ANOVA (with replication) was con-
ducted to study the effect of the ALT design (I, II and

III), storage temperature and activation energy, on the

kinetics accuracy (Er). The mean absolute error (Er) was

calculated for each of the factor levels presented in

Table 3, assuming that green beans were stored inside a

refrigerator, under isothermal storage (with the charac-

teristic temperature fluctuations). The study was per-

formed for four storage temperatures (between )30 and
)5 �C), and considering three Ea values, at minimum,

intermediate and maximum levels, respectively, for AA

(3.861 kJmol�1), total vitamin C (42.01 kJmol�1) and



Table 2

Regression statistical results of designs I, II and II

Quality parameter Design Ascorbic acid (mg 100 g�1) Vitamin C (mg100 g�1) Flavour difference (%)

c0 I 146.5± 0.333 145.5± 0.187 99.14± 0.267

II 145.1± 0.564 146.1± 0.311 99.99± 0.216

III 145.0± 0.693 145.9± 0.338 100.5± 0.244

kref � 10�2 (day�1) I 16.59± 0.056a 5.868± 0.007a 23.12± 0.012a

II 15.27± 0.624b 3.212± 0.019b 4.494± 0.064b

III 15.76± 0.335b 3.215± 0.017b 4.507± 0.037b

Ea (kJmol�1) I 3.602± 0.274 40.13± 0.127 115.0± 0.069

II 3.193± 1.476 41.97± 0.621 117.5± 1.557

III 4.574± 1.134 42.04± 0.851 115.5± 1.411

SE I 8.379± 0.339 9.258± 0.946 9.304± 0.699

II 8.494± 0.203 7.555± 1.488 8.833± 0.353

III 8.974± 0.258 8.106± 0.666 8.529± 0.167

a uref ¼ �7 �C.
b uref ¼ �15 �C.

Table 3

Absolute error (Er) as function of temperature, Ea and ALT design

Temperature (�C) Ea (kJmol�1) Design

I II III

)30 3.861 0.585± 0.036 0.084± 0.008 0.319± 0.040

42.01 1.821± 0.137 0.054± 0.003 0.077± 0.006

117 0.340± 0.034 0.007± 0.001 0.203± 0.012

)15 3.861 0.380± 0.051 0.474± 0.028 0.118± 0.028

42.01 1.779± 0.135 0.121± 0.007 0.112± 0.008

117 1.515± 0.149 0.207± 0.016 0.739± 0.056

)10 3.861 0.229± 0.033 0.763± 0.052 0.478± 0.031

42.01 0.877± 0.053 0.205± 0.012 0.126± 0.023

117 0.757± 0.068 0.587± 0.05 0.067± 0.008

)5 3.861 0.166± 0.025 0.986± 0.062 0.642± 0.063

42.01 0.166± 0.023 0.219± 0.025 0.121± 0.007

117 0.071± 0.007 0.284± 0.020 0.155± 0.015
flavour (117 kJmol�1) degradations, and the three ALT

designs (I, II and III).
Table 2 presents the estimated kinetic parameters of

designs I, II and III, for AA, total vitamin C and fla-

vour. Fig. 4 presents vitamin C degradation during de-

signs I, II and III.

All the model fittings in Table 2 are statistically valid.

The fitted models passed the lack of fit test ðp > 0:05Þ
and the residuals adjust the normal probability plot

properly. Furthermore, the regression parameters high

studentised effect ðtðbiÞÞ reassure that all estimates are

Regression analysis

Results and discussion
statistically meaningful, and describe the recorded data

correctly.
Data in Table 2 suggests that the regression param-

eters studentised effect is higher in design I than in de-

signs II and III. Therefore, the one-step optimisation

procedure, assuming constant storage temperature, has

better precision in the estimated parameters than the

optimisations in designs II and III.

Nevertheless, there are no differences between the
designs in terms of the regression standard error (SE).

Therefore, the models obtained by the different designs

are very similar in terms of precision of their predictions.

  
Model precision

ALT design comparison



Fig. 4. Total vitamin C ALT tests results: (a) design I, (b) design II, and (c) design III.

Fig. 5. Mean absolute error as function of (a) storage temperature, (b) activation energy and (c) experimental design.



The multifactor ANOVA lead to the conclusion that

model accuracy has a strong dependency on the experi-

mental design and activation energy, as well as their

interactions.

Table 3 presents the absolute error (Er) of model

prediction for the different designs, activation energies

(corresponding to each quality attribute) and storage

temperatures.
The multifactor ANOVA analysis of Table 3 data

shows that all the studied factors are very significant in

obtaining accurate estimates. However, the experimen-

tal ALT design has the highest f -value. Therefore, the
experimental design is, in statistical terms, the most

important factor in obtaining accurate models.

Fig. 5 shows the average factor effects on the absolute

error. The average model absolute error shows parabolic
pattern with storage temperature, with a maximum

value at )20 �C. The variation of the absolute error with

the activation energy is not so abrupt, where the abso-

lute error is around 0.45.

However, the absolute error shows a great decrease

between the design I and the dynamic ALT designs, which

leads to a significant increase in model accuracy from

the experimental design I to the designs II and III.
ALT tests showed that temperature inside refrigera-

tors cannot be considered isothermal in kinetic terms.

The time–temperature spectrum must be taken into ac-

count when deriving quality kinetics of frozen stored

foods. Although the ALT tests simulated in this paper

give excellent perspectives to the real experimental ones,

the researcher must take into account that it is not

possible to know a priori if the reaction mechanism will
stay the same at the different temperatures. Events, such

as increase in catalysts concentration, decrease in pH,

decrease of molecular mobility, the presence of other

degradation compounds, may change the reaction

pathway. Thus, preceding the kinetic study, it is neces-

sary to perform the reaction chain network identifica-

tion.

Thus, if the reaction kinetics remains unchanged, the
ALT methodologies prove to be very efficient experi-

mental designs to derive kinetic data.

 Model accuracy 
Conclusions

All ALT methods were a good tool for obtaining

frozen foods quality loss kinetics, once the degradation

mechanisms are well known. The experimental designs II

and III are more accurate than the generally used

accelerated method, the design I. Design III attained

better accuracy than design II, however it is more difficult

to implement.

Temperature inside freezers can not be considered as

isothermal conditions in terms of kinetics. Temperature
fluctuations inside freezers influence the accuracy of the
estimated models, and if this effect is taken into account,

a significant accuracy increase is obtained in the model

estimates.
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