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Summary Under the trade name lipolysed milkfat (LMF), concentrated cheese flavours obtained via enzymatic

treatments of cheese (or other dairy substrates) have been made available in increasing numbers. In this

research effort, (anhydrous) milkfats from cows, ewes and goats were used as substrates for production of

cheesy flavours. Those milkfats were subjected to modifications brought about by ten different (commercial)

lipases and one cutinase, and the free fatty acids released were analysed by high performance liquid

chromatography. Both the degrees of hydrolysis and the free fatty acid profiles of the final products were

similar to those reported for several LMF products, although specific keynotes could be pinpointed.

Consequently, those milkfats may represent alternative raw materials for manufacture of cheesy flavours,

while contributing to alleviate the problem derived from the increasing surplus of milkfat in Western

countries.
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Introduction

Partial hydrolysis of fat in milk is typically an enzyme-
mediated transformation that is intrinsic to several dairy
products. Such a process can be carried out: by the
enzymes released by native microflora (when viable or
upon lysis), as occurs in raw milk cheese manufacturing;
or by deliberately added extraneous enzymes. Depend-
ing on the extent and specificity of said hydrolysis,
enzymatically modified milkfat will exhibit distinct
flavour notes: at very low extent, lipolysis can impart
sensory tones of acid-free richness; at relatively higher
extent, the modified fat acquires either a buttery, a
creamy or a cheesy taste.
Lipolysed milkfat (LMF) has accordingly become an

important ingredient in the food industry. There are
several current and potential applications thereof, such
as an additive to bakery products (bread, cake and
cookie mixes), cereal products (flakes), candies (choco-
late products and toffees), dairy products (coffee whit-
eners, confectionary creams, cheese and butter spreads)
and a variety of other products (popcorn seasoning,
sauces, salad dressings and snack foods). Under specific

processing conditions, LMF may actually exhibit an
intense cheese flavour – in this case, it is often used in
enzyme-modified cheeses (EMC). LMFs may thus be
viewed as a vehicle of cheese flavours, produced by
enzymatic modification of dairy substrates, viz. milkfat.
Besides being inexpensive in manufacture, they are easy
to store, have long shelf-lives and are consistent from
batch-to-batch (Kilcawley, 2001). Therefore, they are
convenient ingredients for many processed foods – e.g.
sauces, salad dressings, pasta and pizza products,
cheese-spreads, frozen and canned foods, and biscuits,
as they impart intense flavour even at low incorporation
rates [typically below 2%(w/w)].
In the manufacture of LMF specifically from cheese

curd, the substrate is mixed with emulsifying salts, and
both proteolytic and lipolytic enzymes may be added;
this slurry is then kept at an optimal temperature for
a certain period of time (Talbott & McCord, 1981).
During incubation, protein is hydrolysed by proteases
into peptides and free amino acids, hence decreasing
viscosity. Simultaneously, lipases catalyse the partial
and selective hydrolysis of fat into a mixture of free fatty
acids, hence generating flavour compounds or precur-
sors thereof. Among these, short-chain fatty acids play a
nuclear role in imparting the cheesy taste (Ha &
Lindsay, 1993; Lai et al., 1997). Long-chain fatty acids
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are also important, but their concentration should not
exceed a given threshold so as to avoid soapy tastes. The
ratio of short-to-long chain fatty acids in free form is
thus an important parameter, which depends to a great
extent on the enzyme(s) utilised. Lipases employed in
LMF manufacture may be from animal or microbial
origins; the choice of these enzymes is critical, as it
dictates the final profile of the fatty acids released, and
consequently the flavour of the resulting product.
In this research effort, ten lipases and one cutinase –

an enzyme able to hydrolyse ester bonds in the absence
of an interface – were employed to bring about (partial)
lipolysis of bovine, caprine and ovine milkfats. Fatty
acids released into the reaction media were analysed by
high performance liquid chromatography, and the
profiles obtained were duly compared with each other
and discussed.

Experimental

Materials

Enzymes
The lipases utilised were commercial (crude) prepara-
tions kindly supplied by Amano Pharmaceutical
(Nagoya, Japan), obtained from Candida cylindracea
(AY30TM), Candida lipolytica (L5TM), Rhizopus delemar
(D20TM), Rhizopus niveus (NTM), Penicillium roquefortii
(R10TM), Penicillium camembertii (G50TM), Pseudo-
monas fluorescens (AK20TM), Humicola lanuginosa
(CE10TM), Geotrichum candidum (GC4) and Mucor
circinelloides (M10). The cutinase utilised was a (crude)
laboratory preparation from Fusarium solani-pisi, ob-
tained from a recombinant Saccharomyces cerevisiae
strain (SU50) (Calado et al., 2002).

Processing apparatus
A 200-mL-volume, round bottom flask, inserted within
a jacketed glass beaker (Schott, Mainz, Germany), was
used to carry out each of the hydrolysis reactions. The
supporting setup comprised a constant temperature bath
equipped with a mechanical agitator and a digital
temperature controller (Julabo Labortechnik GMBH,
Seelbach, Germany), with external recirculation through
the jacketed glass beaker.

Chemicals
Orthophosphoric acid (85%, v/v), potassium carbonate,
sodium hydroxide and anhydrous sodium sulphate
were obtained from Merck (Darmstadt, Germany); 18-
crown-6-ether was purchased from Merck (München,
Germany); butylated hydroxyanisole, p-bromophena-
cylbromide, polyethylene glycol (PEG) 3350 and potas-
sium phosphate were from Sigma (St Louis MO, USA);
chloroform, formic acid, acetonitrile (190TM) and meth-
anol (205TM) were from ROMIL Chemicals (Leicester,

UK). All free fatty acid standards (>99.9% pure) were
obtained from Sigma. Fermentation ethanol [96% (v/v)]
was obtained from AGA (Lisbon, Portugal). Dry
nitrogen (C-55TM) (<1 parts per million H2O and
<1 vpm O2) was purchased from Carburos Metalicos
(Barcelona, Spain). All chemicals purchased were rea-
gent-grade or higher, and were used without further
purification. Water was subjected to sequential steps of
reverse osmosis, adsorption, deionisation, microfiltra-
tion and photo-oxidation in a Milli-Q Plus 185 water
purification system (Molsheim, France), to a final
conductivity of 18.2 MX cm)1.

Substrates
Salt-free, pasteurised butter produced from bovine milk
was purchased from AGROS (Vila do Conde, Portugal),
and kept at )30 �C in sealed plastic bags of c. 250 g
until experimental use. Butters (unsalted) produced
from ovine and caprine milks were kindly supplied by
ANCOSE (Guarda, Portugal), and also stored in sealed
plastic bags at )30 �C prior to use.

Analytical equipments
Nylon membrane filters (NALGENETM, 0.45 lm) were
purchased from Nalge (New York, NY, USA). The
HPLC equipment (MERCK, Darmstadt, Germany)
consisted of a programmable autosampler (model L-
7250), a LichroCART� 250–4 C-18 reversed-phase col-
umn (25 cm · 4 mm · 5 lm Lichrospher�100) coupled
with a pre-column cartridge (4 mm LichroCART�,
Manu-CART� ‘4’), a programmable solvent delivery
system with a quaternary pump (model L-7100), a
programmable multiwavelength UV spectrophotometer
(model L-7400) and an interface (model D-7000),
coupled with a software package for system control
and data acquisition (model D-7000 Chromatographic
Data Station Software), all from MERCK Instruments
(San Jose, CA, USA).

Methods

Production of recombinant cutinase
This enzyme was produced elsewhere, as reported in
detail by Calado et al. (2002) and Cunha et al. (2003),
and kindly provided by those authors. In short, genetic
engineering was integrated with production and purifi-
cation of F. solani-pisi cutinase by a recombinant
S. cerevisiae strain SU50; an aqueous two-phase system
of PEG 3350, dipotassium phosphate and whole
broth was then used for extraction of the extracellular
cutinases expressed therein.

Preparation of anhydrous butterfat
Milkfat (from either bovine, ovine or caprine milks) was
pre-treated by the procedure of Kalo et al. (1990), with
slight modifications (Balcão & Malcata, 1997, 1998a,b;



Balcão et al., 1998a,b). Water was removed from butter
in a separating funnel at 60 �C, and fat was then filtered
out using normal filter paper and dried in a vacuum of
c. 800 mbar for 1 h in a boiling water bath. Anhydrous
nitrogen was bubbled in the melted butterfat for
c. 5 min (to help in removing residual oxygen and
water); the dried fat was poured into 500-mL Schott
flasks, and stored under nitrogen at )30 �C until
experimental use.

Performance of hydrolysis reactions
All hydrolysis reactions involving butterfat were carried
out at 40 �C, using the experimental setup described
above. For each reaction involving a particular milkfat
and a given lipase, 130 mL of anhydrous butterfat was
poured into the jacketed, round bottom flask, and
thermal equilibration of the mixture (at 40 �C) was then
allowed to proceed for c. 10 min. A 500-lL sample was
withdrawn and poured into a vial containing 2.25 mL
of an internal standard solution [1.0 g L)1 of both
margaric and non-anoic acids, in 1:1 (v/v) methanol-
chloroform containing 0.05% butylated hydroxyani-
sole] and 2 g of sodium sulphate. Crude lipase powder
(750 mg) was dissolved in 15 mL of Tris–HCl (pH 7.0),
and added to the flask. The reaction was allowed to
proceed for 5 h, with the medium being continuously
agitated via magnetic stirring at 750 r.p.m. Aliquots
were withdrawn at regular time intervals, poured
directly into vials containing a known amount of the
internal standard solution, and assayed for free fatty
acids.

Assay for free fatty acids
Free fatty acids in plain butterfat and in the reaction
mixture were analysed by HPLC, according to the
procedures by Garcia et al. (1990) and Malcata (1991),
with modifications (Sousa et al., 1996; Balcão &
Malcata, 1997, 1998a,b; Balcão et al., 1998a,b). For
calibration, stock solutions of twelve different free fatty
acid standards, viz. C4:0 (butyric acid), C6:0 (caproic
acid), C8:0 (caprylic acid), C10:0 (capric acid), C12:0
(lauric acid), C14:0 (myristic acid), C16:0 (palmitic
acid), C18:0 (stearic acid), C18:1 (oleic acid), C18:2 x6
(linoleic acid), C18:3x6 (c-linolenic acid) and C20:0
(arachidic acid) were obtained by weighing given
amounts of the corresponding fatty acid standards and
dissolving them in a 1:1 (v/v) methanol/chloroform
mixture, so as to obtain a final (known) concentration of
c. 0.2 mol L)1 for each free fatty acid standard. Aliquots
(100 lL) of all stock solutions of fatty acid standards
were added to a 1:1 (v/v) methanol/chloroform mixture,
so as to obtain a total sample volume of 6.0 mL. A
volume of 4.5-mL solution of internal standards con-
taining 0.00316 mol L)1 of C9:0 (non-anoic acid) and
0.00185 mol L)1 of C17:0 (margaric acid) in a 1:1 (v/v)
methanol/chloroform mixture prepared according to

a similar procedure [and further stabilised with 0.05%
(v/w) butylated hydroxyanisole] was then added, so as
to obtain a final 4:3 (v/v) ratio of sample to internal
standard solution. This procedure was independently
carried out for other aliquots of the fatty acid standard
stock solutions, viz. 200, 300, 400 and 500 lL. Aliquots
(100 lL) of each resulting solution were withdrawn and
added to 4.0 mL of a 1 g L)1 solution of p-bromophen-
acylbromide in acetonitrile. To the resulting solution,
80 lL of a 5 g L)1 solution of 18-crown-6-ether in
acetonitrile was added, and this procedure was followed
by addition of 0.2 g of potassium carbonate. After
thorough mixing, this biphasic mixture was incubated at
75–80 �C for 30 min (in order to promote derivatisa-
tion), allowed to cool to near room temperature, added
with 40 lL of a 40 g L)1 solution of formic acid in
acetonitrile (so as to quench derivatisation), and finally
incubated at 75–80 �C for an additional 5 min. Follow-
ing refrigeration for at least 1 h (at c. 4 �C), samples
were cold-filtered through 0.45 lm nylon membrane
filters.
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Figure 1 Changes with time in levels of total free fatty acid concen-

tration in bovine milkfat, undergoing enzyme-mediated hydrolysis via

recombinant cutinase from Fusarium solani pisii, and lipases from

Candida cylindracea (AY), Pseudomonas fluorescens (AK), Humicola

lanuginosa (CE), Rhizopus delemar (D), Penicillium camembertii (G),

Geotrichum candidum (GC), Candida lipolytica (L),Mucor circinelloides

(M), Rhizopus niveus (N) and Penicillium roquefortii (R).



For actual experiments, samples of LMF (withdrawn
at pre-determined time intervals) were put in vials
containing 2.25 mL of the internal standard solution
and c. 2 g of anhydrous sodium sulphate; a volume of
500 lL of this solution was withdrawn and poured into
another vial containing 4 mL of p-bromophenacylbro-
mide. After this point, the derivatisation procedure was
the same as for calibration.
In either situation, aliquots of 20 lL of the filtered

samples were injected into the HPLC system described
above; separation was effected at 33 �C using a mobile
phase of water, methanol and acetonitrile under a
complex gradient system – described elsewhere to some
length by Balcão & Malcata (1998a); the flow rate of
eluant was 1 mL min)1, and absorbance of the eluate
was read at 254 nm. These determinations were carried
out in duplicate.

Results and discussion

The evolution with time of the total concentration of
free fatty acids in hydrolysed bovine, ovine and caprine

milkfats, incubated with each of the eleven microbial
enzymes tested, is depicted in Figs 1–3. It is apparent
that hydrolysis proceeded for 1–2 h, and then essentially
halted – most likely due to product inhibition and/or
(reversible) enzyme inactivation, because of a progres-
sively lower pH of the reaction media (Balcão et al.,
1998c).
The mole percent of each individual fatty acid, from

C4:0 to C18:3, relative to the total amount of fatty acids
released by 5 h, is represented in Fig. 4 for the cutinase
and all lipases experimented with. For most enzymes
tested and with bovine and ovine substrates, the fatty
acids released to a greater extent were C16:0 and C18:0,
followed by C12:0 and C14:0. In the case of caprine
milkfat, the fatty acid that underwent the highest extent
of release was C16:0, while C18:0 was released at levels
comparable to C10:0, C12:0 and C14:0. Recall that 16-
and 18-carbon fatty acid residues are the predominant
ones in milkfats, so our results are expected based on
substrate competition for the active site. The degree of
hydrolysis, and the profiles of fatty acids released are
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Figure 2 Changes with time in levels of total free fatty acid concen-

tration in ovine milkfat, undergoing enzyme-mediated hydrolysis via

recombinant cutinase from Fusarium solani pisii, and lipases from

Candida cylindracea (AY), Pseudomonas fluorescens (AK), Humicola

lanuginosa (CE), Rhizopus delemar (D), Penicillium camembertii (G),

Geotrichum candidum (GC), Candida lipolytica (L),Mucor circinelloides

(M), Rhizopus niveus (N) and Penicillium roquefortii (R).
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Figure 3 Changes with time in levels of total free fatty acid concen-

tration in caprine milkfat, undergoing enzyme-mediated hydrolysis via

recombinant cutinase from Fusarium solani pisii, and lipases from

Candida cylindracea (AY), Pseudomonas fluorescens (AK), Humicola

lanuginosa (CE), Rhizopus delemar (D), Penicillium camembertii (G),

Geotrichum candidum (GC), Candida lipolytica (L),Mucor circinelloides

(M), Rhizopus niveus (N) and Penicillium roquefortii (R).
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Figure 4 Fractional concentration of each free fatty acid normalised by the total free fatty acid concentration, by 300 min of hydrolysis, in

bovine (h), ovine ( ) and caprine ( ) milkfats, mediated by the recombinant cutinase and lipases from various sources.



also in agreement with previous reports on the experi-
mental manufacture of EMCs. Moskowitz & Noelck
(1987) studied Swiss and Cheddar types of EMC, and
observed that palmitic acid attained the highest con-
centration. Kilcawley et al. (2001) reported a similar
conclusion, based on a survey of fifteen commercial
Cheddar-based EMC products. The results obtained
pertaining to P. fluorescens lipase can also be compared
with those by Marangoni (1994), referring to hydrolysis
of butteroil brought about by a similar lipase: the
predominant fatty acid released was, once again,
palmitic acid, followed by the C18 family, and then by
butyric acid.
Quite distinctive results were produced by cutinase, in

particular when acting upon bovine and ovine milkfats.
In these cases, the proportions of short-to-medium chain
free fatty acids were significantly higher, as shown in
Table 1 – e.g. free butyric acid levels were 16–17%, and
free caproic acid levels were 13–14%, irrespective of
substrate; furthermore, there was essentially no net

Table 1 Proportions of Short(C4-C8) : Medium (C10-C14) : Long

(C16-C18) chain fatty acid moieties in lipolysed milkfats (LMF) from

various origins, by 300 min of hydrolysis

Cutinase Lipase source

S:M:L proportions in LMFs

Bovine

milkfat

Ovine

milkfat

Caprine

milkfat

Candida cylindracea 14:26:60 14:27:59 17:28:55

Pseudomonas fluorescens 11:22:67 11:25:64 8:23:69

Fusarium solani pisii 34:36:30 34:37:29 33:37:30

Humicola lanuginosa 18:31:51 20:34:46 14:29:57

Rhizopus delemar 13:23:64 13:27:60 15:25:60

Penicillium camembertii 24:32:44 17:38:45 31:38:31

Geotrichum candidum 17:24:59 18:26:56 11:14:75

Candida lipolytica 15:24:61 14:25:61 17:28:55

Mucor circinelloides 17:27:56 16:28:56 17:25:58

Rhizopus niveus 15:26:59 13:26:61 12:24:64

Penicillium roquefortii 25:34:41 25:34:41 29:39:32
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Figure 4 (Continued)
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milkfats, mediated by the recombinant cutinase

and lipases from various sources.



release of C16:0, which is in agreement with the
specificity claimed for this enzyme (Carvalho et al.,
1998). Also worthy of mention are the high amounts of
C18:1, C18:2 and C18:3 released by the lipase from G.
candidum; it is known (de Greyt & Huyghebaert, 1995)
that this enzyme possesses high specificity for long-chain
fatty acid moieties containing a cis-double bond at the
n-9 position. Therefore, the profile of free short-to-
medium chain fatty acids apparently depends on the
microbial source of lipase – a realisation that is
consistent with claims by Ha & Lindsay (1993).
Based on the average overall fatty acid composition of

milkfat, as reported by Nawar (1985), Alonso et al.
(1999) and Jensen (2002), the average molecular weight
of the fatty acids esterified in bovine milkfat is c.
236.5 g mol)1, that of ovine milkfat is c. 220.0 g mol)1

and that of caprine milkfat is c. 227.2 g mol)1. Assu-
ming that milkfat is composed only of triglyceride
molecules, and considering that the density of milkfat at
40 �C is 0.905 g mL)1 (Kurtz, 1965), then the theoret-
ical amount of fatty acids released from milkfat, in the
case of complete hydrolysis, would lead to a total
concentration of c. 3632 mmol L)1 for bovine milkfat,
3890 mmol L)1 for ovine milkfat and 3773 mmol L)1

for caprine milkfat. The combination of these values
with the data depicted in Figs 1–3 enables one to
estimate the fractional net hydrolysis by 5 h of reaction.
These results are plotted in Fig. 5. From inspection of
this figure, one concludes that net hydrolysis of milkfat
has occurred in all cases to extents below 10%. The
highest net degrees of hydrolysis were achieved via the
action of C. cylindracea lipase upon ovine milkfat
(8.7%), R. niveus lipase upon ovine milkfat (8.0%) and
P. fluorescens lipase upon bovine milkfat (8.3%). Also,
high were the degrees of hydrolysis promoted by
R. delemar lipase on ovine milkfat (7.4%) and by
C. lipolytica lipase on caprine milkfat (7.2%). On the
other hand, the recombinant cutinase produced the
lowest degrees of hydrolysis, particularly when acting
upon caprine milkfat (0.1%).
Comparing the degrees of hydrolysis produced by

each enzyme on the three distinct raw materials, one
concludes that, in most cases, it was higher in the case of
ovine or caprine milkfats. Overall, the levels of hydro-
lysis may be considered low, but they lie in the usual
range observed in LMF or EMC products (de Greyt &
Huyghebaert, 1995).
In view of the above, one concludes that the milkfat

systems utilised in this work are amenable to enzy-
matic modifications that parallel those carried out in
the manufacture of LMF. Those modified substrates
have indeed the potential to be used as ingredients –
for which advantage of their unique free fatty acid
profile (both qualitative and quantitative) can be
taken, so as to impart specific flavour notes to the
final product. Sensory evaluation of the LMFs

remains, nevertheless, to be carried out in comple-
mentary works.
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(1999). Fatty acid composition of caprine milk: major, branched-
chain, and trans fatty acids. Journal of Dairy Science, 82, 878–884.

Balcão, V. M. & Malcata, F. X. (1997). Lipase-catalyzed modification
of butterfat via acidolysis with oleic acid. Journal of Molecular
Catalysis B: Enzymatic, 3, 161–169.

Balcão, V. M. & Malcata, F. X. (1998a). Interesterification and
acidolysis of butterfat with oleic acid by Mucor javanicus lipase:
changes in the pool of fatty acid residues. Enzyme and Microbial
Technology, 22, 511–519.

Balcão, V. M. & Malcata, F. X. (1998b). On the performance of a
hollow-fiber bioreactor for acidolysis catalyzed by immobilized
lipase. Biotechnology and Bioengineering, 60, 114–123.

Balcão, V. M., Kemppinen, A., Malcata, F. X. & Kalo, P. (1998a).
Lipase-catalyzed acidolysis of butterfat with oleic acid: character-
ization of process and product. Enzyme and Microbial Technology,
23, 118–128.

Balcão, V. M., Kemppinen, A., Malcata, F. X. & Kalo, P. (1998b).
Modification of butterfat by selective hydrolysis and interesterifica-
tion by lipase: process and product characterization. Journal of the
American Oil Chemists’ Society, 75, 1347–1358.

Balcão, V. M., Oliveira, T. A. & Malcata, F. X. (1998c). Stability of a
commercial lipase from Mucor javanicus: kinetic modelling of pH
and temperature dependencies. Biocatalysis and Biotransformation,
16, 45–66.

Calado, C. R. C., Taipa, A. M., Cabral, J. M. S. & Fonseca, L. P.
(2002). Optimisation of culture conditions and characterisation of
cutinase produced by recombinant Saccharomyces cerevisiae.
Enzyme and Microbial Technology, 31, 161–170.

Carvalho, C. M. L., Aires-Barros, M. R. & Cabral, J. M. S. (1998).
Cutinase structure, function and biocatalytic applications. Electronic
Journal of Biotechnology, 1, 160–173.

Cunha, M. T., Costa, M. J. L., Calado, C. R. C., Fonseca, L. P., Aires-
Barros, M. R. & Cabral, J. M. S. (2003). Integration of production
and aqueous two-phase systems extraction of extracellular Fusarium
solani pisi cutinase fusion proteins. Journal of Biotechnology, 100,
55–64.

Garcia, H. S., Reyes, H. R., Malcata, F. X., Hill, C. G. & Amundson,
C. H. (1990). Determination of the major free fatty acids in milkfat
using a 3-component mobile phase for HPLC analysis. Milchwis-
senschaft-Milk Science International, 45, 757–759.

de Greyt, W. & Huyghebaert, A. (1995). Lipase-catalysed modification
of milkfat. Lipid Technology, 7, 10–12.

Ha, J. K. & Lindsay, R. C. (1993). Release of volatile branched-chain
and other fatty acids from ruminant milkfats by various lipases.
Journal of Dairy Science, 76, 677–690.

Jensen, R. G. (2002). The composition of bovine milk lipids. Journal of
Dairy Science, 85, 295–350.

Kalo, P., Huotari, H. & Antila, M. (1990). Pseudomonas fluorescens
lipase-catalysed interesterification of butterfat in the absence of a
solvent. Milchwissenschaft-Milk Science International, 45, 281–285.



Kilcawley, K. N. (2001). The enzyme effect. Dairy Industries Interna-
tional, 66, 26–28.

Kilcawley, K. N., Wilkinson, M. G. & Fox, P. F. (2001). A survey of
lipolytic and glycolytic end-products in commercial Cheddar
enzyme-modified cheese. Journal of Dairy Science, 84, 66–73.

Kurtz, F. E. (1965). The lipids of milk: composition and properties. In:
Fundamentals of Dairy Chemistry (edited by B. H. Webb & A. H.
Johnson). Pp. 161.Westport, CT: AVI Publishing Company.

Lai, D. T., Mackenzie, A. D., O’Connor, C. J. & Turner, K. W. (1997).
Hydrolysis characteristics of bovine milkfat and monoacid triglycer-
ides mediated by pregastric lipase from goats and kids. Journal of
Dairy Science, 80, 2249–2257.

Malcata, F. X. (1991). Hydrolysis of butterfat by immobilized lipase
using three-phase membrane reactors. PhD. Thesis, University of
Wisconsin, Madison.

Marangoni, A. G. (1994). Candida and Pseudomonas lipase-catalyzed
hydrolysis of butteroil in the absence of organic solvents. Journal of
Food Science, 59, 1096–1099.

Moskowitz, G. J. & Noelck, S. S. (1987). Enzyme-modified cheese
technology. Journal of Dairy Science, 70, 1761–1769.

Nawar, W. W. (1985). Lipids. In: Food Chemistry (edited by O. R.
Fennema). P. 139. New York, NY: Marcel Dekker.

Sousa, M. J., Balcão, V. M. & Malcata, F. X. (1996). Evolution of free
fatty acid profile during ripening in cheeses manufactured from
bovine, ovine, and caprine milks with extracts of Cynara cardunculus
as coagulant. Zeitschrift fur Lebensmittel-Untersuchung und-For-
schung A-Food Research and Technology, 205, 104–107.

Talbott, L. L. & McCord, C. (1981). The Use of Enzyme-Modified
Cheeses for Flavoring Processed Cheese Products. Madison, WI:
Marschall International Cheese Conference, September 15–18.


