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Abstract

nsible
f l and 2,6-
d e molecular
m NTA. The
e rresponding
M servation of
b ses, as
h

Keywords: Enzyme; Oxidoreductase; White-rot fungus

I

a
m
a
e
f
n
w
s

a
f
2
a

th a
ver-

ators
eral
dus-
er-

ecies:

al
oly
led

his
e, as
endent
tion
ds on
ium.
From the extracellular fluid of a novel strain ofBjerkandera sp., it was isolated, purified and identified the main enzyme respo
or Remazol Brilliant Blue R dye decolourisation. Such an enzyme is able to oxidise manganese, as well as veratryl alcoho
imethoxyphenol in manganese-independent reactions; hence, it can be included in the new group of versatile peroxidases. Th
ass of said enzyme is ca. 45 kDa, and the N-terminal amino acid sequence obtained by Edman degradation is VAXPDGV
nzyme substrate range for oxidation of several phenolic and non-phenolic aromatic compounds was determined and the co
ichaelis–Menten kinetic constants calculated. Furthermore, spectrophotometric assays showing the Soret band and allowing ob
and shifts of the enzyme led to the conclusion thatBjerkandera strains may also synthesise at least two different versatile peroxida
appens withPleurotus eryngii.

ntroduction

During the last decade, research on the lignin-degradation
bility of fungi has focused mainly on basidiomycetes com-
only known as white-rot fungi. The complexity of the lignin
ttack mechanisms—which involve a number of different
nzymes, the relative importance of which depends on the

ungus considered, reveals the importance of the search for
ovel fungal isolates as a potential source of new enzymes
ith improved performances considering kinetics and sub-
trate specificity.

Among those studies attention has recently been paid to
novel class of ligninolytic peroxidases, with high affinity

or manganese and dyes; these enzymes can also oxidise
,6-dimethoxyphenol (DMP) and veratryl alcohol (VA) in
manganese-independent reaction, hence combining typical
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properties of both MnP and LiP enzymes—coupled wi
broad substrate range. Another unique feature of these
satile peroxidases (VP) is that they do not require medi
for substrate oxidation, including decolourisation of sev
dyes—a fact that could be of potential interest in many in
trial biotechnological applications. Until now, versatile p
oxidase enzymes have been isolated only from a few sp
Pleurotus ostreatus, Pleurotus eryngii, Bjerkandera adusta
andBjerkandera sp. strain BOS55[1–9].

Not surprisingly, the search for new ligninolytic fung
strains exhibiting high decolourisation activity on P
R-478 and Remazol Brilliant Blue R (RBBR) dyes, revea
a new type ofBjerkandera sp. strain B33/3[10]. Analyses
of peroxidase activities in the extracellular fluid of t
strain demonstrated the existence of lignin peroxidas
well as manganese-dependent and manganese-indep
peroxidase activities. In such a strain, RBBR decolourisa
occurs via an enzyme-mediated process, which depen
the presence of hydrogen peroxide in the reaction med



For further elucidation of the mechanism of decolourisation
it was important to isolate, purify and characterise the
peroxidase which was mainly responsible for the RBBR dye
decolourising activity of this newBjerkandera sp.

Materials and methods

     Culture conditions and enzyme purification

Bjerkandera sp. strain B33/3 was grown in CDBYE
medium, as described elsewhere[10]. The extracellular fluid
of a 5.5-L culture was separated from the mycelium by fil-
tration through Whatman no. 1 filter paper (from Millipore).

The proteins extracted from that clear extracellular fluid
were adsorbed on Q-Sepharose Fast Flow (Pharmacia);
elution afterwards was by 10 mM Na cacodylate buffer (pH
6.0), using a linear gradient of NaCl (0–0.6 M); further
concentration was provided by ultrafiltration with an
Amicon YM 10 membrane (10 kDa MW cut-off), followed
by dialysis overnight against 10 mM cacodylate buffer (pH
6.0). The concentrated fractions were applied on a G-100 gel
filtration column (Pharmacia), and eluted once again with
the aforementioned buffer.

Pooled fractions possessing dye decolourising activity
were then applied onto a Q-Sepharose Fast Flow column
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sodium tartrate buffer (pH 5.0); the reaction was initiated
via addition of 0.1 mM H2O2 (ε238= 6500 M−1 cm−1).
The 2,2′-azinobis(3-ethylbenzothiazolme-6-sulphonic acid)
(ABTS) oxidising activity was assayed spectrophotometri-
cally by measuring the decrease in absorbance at 420 nm
(25◦C) [14]. The standard reaction mixture consisted of
0.5 mM ABTS and 100 mM sodium tartrate buffer (pH 4.5).
The reaction was initiated via addition of 0.1 mM H2O2
(ε420= 36,000 M−1 cm−1). Kinetic constants for selected
substrates in 100 mM sodium tartrate, at pH 3.0, 3.5 and 5.0,
were derived from the linear phases of reaction. Activities
were calculated from the molar absorbance of the reaction
products produced from catechol (ε238= 6500 M−1 cm−1),
hydroquinone (ε247= 21,000 M−1 cm−1), 4-methoxyphenol
(ε253= 4990 M−1 cm−1), methylhydroquinone (ε250=
21,120 M−1 cm−1), p-aminophenol (ε246= 15,627 M−1

cm−1), guaiacol (ε456= 12,100 M−1 cm−1), ferulic acid
(ε310= 8680 M−1 cm−1), �-naftol (ε255= 12,800 M−1 cm−1)
and Reactive Black 5 (ε598= 50,000 M−1 cm−1). The physic-
ochemical data were from Heinfling et al.[1]. ApparentKm
andVmax values were estimated from Hanes plots.

The pH dependence and stability of the enzyme in terms
of substrate oxidation reaction were measured under stan-
dard assay conditions, using 100 mM sodium tartrate buffer.
All assays were performed in triplicate; the data values con-
sidered hereafter are means of the replicates that exhibit a
s
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Pharmacia), and eluted by 20 mM sodium tartrate buffer
.0) using a linear gradient of NaCl (0–0.4 M). The fracti
f interest were concentrated by ultraflltration with an A
on YM 10 membrane (10 kDa MW cut-off), and dialys
vernight against 10 mM cacodylate buffer (pH 6.0).

The fractions, thus obtained were further resolved
on exchange chromatography on a Mono Q column (
R5/5, from Pharmacia), using a 0–0.4 M linear grad
f NaCl, with an Akta FPLC system (Amersham-Pharm
iotech). The pooled fractions were once again concentr
ialysed overnight against 10 mM cacodylate buffer (pH 6
nd stored at 4◦C before enzymatic assays were in orde

    Enzyme activity characterisation

The activity of manganese peroxidase (MnP,
.11.1.13) was determined using 3-methyl-2-benzithi

inone hydrazone (MBTH) and dimethylaminobenzoic a
DMAB) as substrates, following the method by Cas
t al. [11]. The manganese-independent peroxidase (
ctivity was estimated using DMP as substrate, accordi
ester and Field[12]. The activity of lignin-peroxidase (LiP
C 1.11.1.14) was determined using VA as substrate, fo

ng the procedures reported by Linko and Haapala[13]. The
BBR decolourising activity was assayed spectrophoto

ically by measuring the decrease in absorbance at 59
30◦C), as described elsewhere[10]. The Mn(II) activity was
ssayed spectrophotometrically by measuring the dec

n absorbance at 238 nm (30◦C) [3]. The enzymatic standa
eaction mixture consisted of 0.1 mM MnSO4 and 100 mM
tandard error below 10%.

    Proteinaceous feature determination

During the sequential purification steps, the pro
oncentration was estimated spectrophotometricall
80 nm. The final protein concentration of the fracti
ith interest was also determined via Bradford Pro
ssay (Bio-Rad), using bovine serum albumin (Fluka
tandard.

Sodium dodecyl sulfate (SDS)-polyacrylamide gel e
rophoresis of 20�g of the native protein was performed

10% (w/w) polyacrylamide gel, and protein bands w
tained with Coomassie Blue R-250. For molecular we
etermination, the gels were calibrated using the 10 kDa

ein ladder (Gibco BRL) as standard.
The N-terminal sequence of the mature peroxidase

btained by automated Edman degradation of ca. 5�g of
rotein, using a Procise Protein Sequencing System (Ap
iosystems).

    Spectral characterisation

Purified protein (0.08 g L−1) in 10 mM cacodylate buffe
pH 6.0) was spectrophotometrically scanned from 30
o 700 nm, so as to identify the Soret band; H2O2 (0.4 mM,
30 molar equivalents) was then added to oxidise the en
nd hence allow observation of the corresponding b
hifts.

 



Table 1
Comparison of N-terminal sequences of RBP with those encoding novel versatile peroxidases recently described for other strains

Strain Enzyme N-terminal sequence Reference

Bjerkandera sp. B33/3 RBP VAXPDGVNTA This work

Bjerkandera sp. BOS55 Mnp-LiP hybrid VACPDGVNTATNAACCALFAVRDDI [2]

Bjerkandera sp. BOS55 BOS1 VAXPDGVNTATNAAXXXLFAVRDDI [5]
BOS2 VAXPDGVNTATNAAXXALFAVRDDI

Bjerkandera adusta DSM11310 MnP1 VAXPDGVNTATNAAXXALFAVRDDI [1]

Bjerkandera adusta UAMH8258 MnP VAXPDGVNTATNAAXXALFA [22]

Pleurotus ostreatus MnP2 VTCATGQTTANEACCALFPILED [23]

Pleurotus eryngii MnPL1 ATCDDGRTTA-NAACCILFPILDDI [9]
MnPL2 ATCADGRTTA-NAACCVLFPILDDI

Pleurotus eryngii PS1 VTCATGQTTANEAXXALFPI [7]
PS3 VTCADGNTV

Note: Mismatches are denoted in bold, undetermined are denoted in underlined.

Results

     Enzyme features

The efficiency of the purification steps was monitored by
the RBBR dye-decolourising activity. The aforementioned
activity pertaining to the extracellular fluid from a 5.5-L
culture was 254 IU, and the associated specific activity was
5.4× 10−3 IU mg−1. One unit of enzyme activity (IU) was
defined as the amount of enzyme that transforms 1�mol of
RBBR per minute.

Several peaks were obtained following resolution by
Mono-Q ion exchange chromatography, which were charac-
terised by distinct enzyme activities; fractions were collected
and divided into four main pools, according to their RBBR
decolourising activity and ligninolytic activity detected. One
of the pools was found to contain a pure protein with
high RBBR decolourising activity—as it produced a sin-
gle band in SDS-PAGE (Fig. 1). This enzyme will hereafter
be denoted as RBP (RBBRBjerkandera Peroxidase), for
short. Its RBBR decolourising and ligninolytic specific activ-
ities were: 11 IU mg−1, for the RBBR decolourising activ-
ity; 12 IU mg−1, for the LiP activity; 8.71 and 162 IU mg−1,
for the MnP activity and 3.7 IU.mg−1, for the MIP activ-
ity (1 IU = 16.67 nKatal). The RBP exhibited also properties
characteristic of the novel class of peroxidases that are able
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The absorption spectrum of the RBP protein exhibits a
large Soret band at 407 nm, and two small peaks at 498 and
640 nm, which are indicative of a heme protein (Fig. 2). The
A407/A280 (RZ) value—which reflects the purity and spectral
characteristics of the purified enzyme, was ca. 3.2 in 10 mM
cacodylate buffer (pH 6.0). The estimated molar extinction
coefficient at 407 nm was ca. 203 mM−1 cm−1.

When hydrogen peroxide (225 molar equivalents) was
added to the enzyme, the peak at 407 nm became broader and
smaller, the peak at 498 nm shifted to 550 nm and the peak
at 640 nm shifted to 655 nm. TheA407/A280 value changed to
1.3.

     Enzyme kinetics

The effect of pH upon RBBR and DMP oxidation activi-
ties was duly studied. The optimum pH for RBBR oxidation
was ca. 4.0 in 100 mM sodium tartrate buffer. The optimum

F (indi-
c

o oxidise manganese, as well as VA and DMP in mangan
ndependent reactions.

The molecular mass of RBP, estimated by 10% S
AGE, was ca. 45 kDa (Fig. 1). The N-terminal amino ac
equence of RBP was VAXPDGVNTA. Comparison of
-terminal sequence of said enzyme with those enco
ther versatile peroxidases, shown inTable 1, reveals striking
imilarities, especially with regard to those enzymes obta
rom Bjerkandera sp.

1 Specific activity for MnP, calculated using MBTH/DMAB as substra
2 Specific activity for MnP, calculated using DMP as substrate.
ig. 1. SDS-PAGE electrophoregram of RBP. Lane 1, purified enzyme
ated by an arrow) and lane 2, standard molecular weight markers.



Fig. 2. Absorption spectrum of plain purified RBP 10 mM cacodylate buffer
(pH 6.0) (—), and of RBP after addition of 0.4 mM hydrogen peroxide (
); 1, 2 and 3 denote major peaks in plain RBP; 1′, 2′ and 3′ denote major
peaks in RBP after addition of hydrogen peroxide.

pH range for oxidation of DMP in the presence of Mn(II)
was between 4.5 and 5.0 on the same buffer. In the absence
of Mn(II), but in the presence of EDTA (a chelating agent
thereof), the optimum pH range was 3.0–3.5.

The stability of RBP, at various pH values, was studied
as the oxidation activity on RBBR and DMP remaining after
overnight incubation at 4◦C in 100 mM sodium tartrate buffer
(pH range 2.0–5.5). For both substrates, the enzyme was sta-
ble at pH values above 3.5.

In order to ascertain the substrate specificity of this
enzyme, the oxidation abilities towards a variety of
potential substrates—including the aforementioned two
dyes, were determined (Tables 2 and 3). RBP was able to
oxidise all compounds tested, hence confirming its high
versatility and broad specificity. RBP was also able to

Table 2
Kinetic constants for RBP oxidation of selected substrates

Substrate pH Km

(�M)
Vmax

(IU mg−1)

H2O2 (0.1 mM Mn(II)) 5.0 7 250
H2O2 (0.05 mM RBBR) 5.0 3 25
H2O2 (1.0 mM DMP; 1.0 mM EDTA) 3.0 72 25
H2O2 (0 5 mM VA) 3.0 182 28
Mn(II) 5.0 86 4
Mn(II) (1.0 mM DMP) 5.0 55 125
D
D
D
D
R
V
V
A
A

Table 3
Specific activity of RBP for the oxidation of selected aromatic substratesa

Substrate Wavelength (nm) Specific activity
(IU mg−1)

Cathecol 238 168
Hydroquinone 247 30
4-Methoxyphenol 253 47
Methylhydroquinone 250 28
p-Aminophenol 246 85
Guaiacol 456 8
Ferulic acid 310 43
�-Naftol 255 21
Reactive Black 5 598 1

a Measured in 100 mM sodium tartrate (pH 3.5).

oxidise Poly-R 478 (50.00�Abs min−1 mg−1 at 420 nm),
o-anisidin (95.00�Abs min−1 mg−1 at 460 nm) andp-
anisidin (70.00�Abs min−1 mg−1 at 460 nm) in the absence
of mediators-although actual activity values were not
determined.

The kinetic constants for selected substrates at given pH
values, were duly calculated; the apparent values ofKm and
Vmax, are tabulated inTable 2.

Discussion

The homogeneous preparation of RBP was a brownish-red
solution, hence suggesting the presence of a heme group. The
spectral characteristics of RBP are similar to those of typical
peroxidases; the Soret band representative of the absorp-
tion peak of peroxidases[15] was observed at 407 nm for
the native RBP; the shifts in the smaller peaks observed are
also similar to those reported in literature[15,16]for peroxi-
dases containing a protoheme as prosthetic group. The molar
extinction coefficient obtained at 407 nm is of the same mag-
nitude of those reported for ligninolytic peroxidases[15–17].
The absorption spectrum is similar, but not identical to the
one reported elsewhere[18] pertaining to a versatile perox-
idase fromB. adusta which shows a Soret band at 409 nm,
a
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MP (1.0 mM Mn(II)) 5.0 23 83
MP (1.0 mM EDTA) 5.0 100 13
MP(1.0 mM Mn(II)) 3.0 79 25
MP (1.0 mM EDTA) 3.0 48 13
BBR 5.0 1 13
A 5.0 3670 83
A 3.0 1500 13
BTS 5.0 5 25
BTS 3.0 5 25
nd two charge transfer bands at 501 nm and 632 nm.
It has been suggested that, in LiP and MnP, the heme

tom is predominantly in the hexacoordinated high spin s
ith a water molecule bound at the sixth coordination p

ion [19]. The similarity of the spectra obtained pertainin
BP and to those of LiP and MnP made available from o
uthors[20,21]suggests that the major heme state of RB
lso a hexacoordinated high spin state.

It is usually claimed that changes in absorbance pe
uch as those observed in RBP following addition of hy
en peroxide, arise because of formation of compoun
owever, this transformation of native peroxidase is usu
ompleted with the addition of one molar equivalent of
forementioned compound[17]. It was also reported[17]

or manganese peroxidase fromP. chrysosporium that the
ddition of two equivalents of hydrogen peroxide produ
ompound II, and that the addition of 250 equivale



(considered as an excess of hydrogen peroxide) produced
compound III. In fact, the amount of such a reagent used in
this assay (225 molar equivalents) is very close to this value
but the spectrum produced is still similar to that observed for
compound II of MnP and HRP[17]. The amount of hydrogen
peroxide required, at pH 4.5, to produce MnP compound III
from P. chrysosporium (ca. 250 equivalents) is similar to that
required to produce HRP compound III[17], yet much greater
than the amount needed to obtain LiP compound I fromP.
chrysosporium (25 equivalents) at pH 6.0[16]. As the pH used
in the RBP assay was 6.0, this fact might reflect structural and
functional differences between LiP and the RBP versatile
enzyme. Differences between RBP and MnPs could in fact
arise, partially because of the pH used in the assay. According
to Renganathan and Gold[16], the formation of LiP com-
pounds I and II is strongly influenced by reaction pH—and
so this effect might also be present for other peroxidases. The
catalytic differences, between RBP and other manganese per-
oxidases, observed may also help to explain those values. In
general, the presence of such too high an excess of hydrogen
peroxide (225 molar equivalents) in the absence of a reducing
substrate leads to emergence of compound III, both for LiP
and MnP.

The value of 45 kDa estimated for the molecular mass
of the enzyme via SDS-polyacrylamide gel electrophoresis
is similar to that of the other versatile peroxidases—which,
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Oxidation of VA is favoured at pH 3.0, as happens with
LiP peroxidases, and has an apparentKm value of 1500�M.
This value is one half of those reported for other versatile
peroxidases (viz. 3000–5330�M) [3,5,7,9], with the excep-
tion of the MnP–LiP hybrid obtained fromBjerkandera sp.
strain BOS55 (viz. 534–116�M) [2]. Such smallKm value
for VA oxidation is probably the main characteristic that
distinguishes this MnP–LiP hybrid peroxidase from others
in the same versatile group. The difference found in theKm
values pertaining to VA oxidation suggests that RBP and
MnP–LiP hybrid peroxidase could actually be isozymes.
Bjerkandera strains might produce more than one differ-
ent versatile peroxidase, as happens with the two versatile
peroxidases already demonstrated to be present onP. eryngii.

Conclusions

A novel versatile peroxidase (RBP), possessing unique
kinetic and spectral characteristics, was isolated and puri-
fied from a Bjerkandera strain isolate. This enzyme is
able to oxidise manganese, as well as VA and DMP in
manganese-independent reactions. Despite the differences
found in terms ofKm values, namely for VA oxidation, RBP
seems closely related to other versatile peroxidases from
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t present, encompasses onlyBjerkandera andPleurotus sp.
trains[1–6,8,9]; it is also of the same order than the mole

ar masses of typical ligninolytic peroxidases. Compariso
he N-terminal sequence of the purified RBP enzyme to t
f the novel versatile peroxidases—recently described
roduced by other strains[2,4,5,7,9], indicates that the high
st degree of similarity is associated with enzymes iso

rom Bjerkandera sp., as expected.
With the exception of VA, all substrates tested exh

pparentKm values (at one or more of the conditio
ested) similar or lower than those found for Mn
xidation—hence suggesting a high affinity of the RBP

hose substrates. This RBP enzyme shows also high a
or (the oxidising substrate) hydrogen peroxide at pH
ith Km values (3 and 7�M) much lower than those foun

or B. adusta LiP isoenzymes (40–60�M)—but similar to
hose obtained for thePleurotus andBjerkandera spp. versa
ile peroxidases[2,3,5,7,9].

Comparison ofKm values for the oxidation of Mn(II
lso revealed high similarity with values obtained for
ther versatile peroxidases. Smaller values ofKm for DMP
xidation were obtained, as expected, at or near the opt
H values (as previously determined) for each cond

ested.
The smallestKm values obtained were for oxidation

BBR and ABTS (1 and 5�M, respectively); this fact con
rms RBP as a versatile peroxidase with high affinity for
ubstrates, e.g. anthraquinone-derived, and high redox
ounds, e.g. ABTS (which are substrates usually prefe
y plant peroxidases).
trains of the generaBjerkandera or Pleurotus. However
he differences found between the versatile peroxidas
jerkandera strains point for the presence of at least
ifferent versatile peroxidases on this genus, as alr

ound within thePleurotus genus.
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