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Abstract

The objective of this work was to create a software application (Bugdeath 1.0) for the simulation of inactivation kinetics of
microorganisms on the surface of foods, during dry and wet pasteurisation treatments. The program was developed under the Real
Basic� 5.2 application, and it is a user-friendly tool. It integrates heat transfer phenomena and microbial inactivation under constant
and time-varying temperature conditions. On the basis of the selection of a heating regime of the medium, the program predicts the
food surface temperature and the change in microbial load during the process. Input data and simulated values can be visualised in
graphics or data tables. Printing, exporting and saving file options are also available. Bugdeath 1.0 includes also a useful database of
foods (beef and potato) and related thermal properties, microorganisms (Salmonella and Listeria monocytogenes) and corresponding
inactivation kinetic parameters. This software can be coupled to an apparatus developed under the scope of the European Project
BUGDEATH (QLRT-2001-01415), which was conceived to provide repeatable surface temperature-time treatments on food sam-
ples. The program has also a great potential for research and industrial applications.
Introduction

Studies on the bacterial spoilage of foods and on the
survival and possible outgrowth of microbial pathogens
are extremely important for the food processing industry.
The major incidence of food contamination by micro-
organisms occurs on food surfaces during harvesting
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(e.g. fresh fruits and vegetables), slaughter of animals
and further processing. As the surface of foods is the
interface for environmental contamination, development
of suitable surface heat treatments is important to reduce
microbial content, thus leading to safer products with
improved shelf life and quality.

In the last years, microbiologists jointly with food
engineers have been applying sophisticated mathemati-
cal approaches to predict microbial loads on foods
(see Ross & McMeekin (1994, 2002) for an overview).
The development of precise and accurate mathematical
models, able to describe the inactivation behaviour of
microorganisms on the food surface under stress factors
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Nomenclature

aw water activity
c1 bias factor
Cc variable related to the physiological state of

the cells
Cp specific heat (J kg�1 K�1)
D decimal reduction time (min)
Dsample characteristic dimension of the food sample

(m)
Dwater-air diffusivity of water in air (m2 s�1)
Evap evaporation term
h heat transfer coefficient (W m�2 K�1)
k inactivation rate constant (s�1)
Km mass transfer coefficient (m s�1)
M molecular weight (kg)
N microbial cell density (cfu g�1)
Nu Nusselt number
PT water vapour pressure at dew temperature

(Pa)
RH relative humidity
t time (s)
T temperature (K, �C)
Tu turbulence intensity (%)
V air velocity (m s�1)
x space coordinate (m)

z number of temperature degrees which leads
to a 10-fold reduction of D-value (�C)

zaw
distance of aw from 1 which leads to a 10-fold
increase of D-value

Greek symbols

a thermal diffusivity (m2 s�1)
DH latent heat of water evaporation (J kg�1)
k thermal conductivity (W m�1 K�1)
m kinematic viscosity of air (m2 s�1)

Subscripts

air of the air
bot at the bottom
eff effective value
i initial value
inf at bottom surface
max maximum value
ref reference value
steam of the steam
sup of the support
sur at food surface
top at the top
water of water
(e.g. high temperature, particular ranges of pH and
water activity), is crucial if industries are to design effi-
cient and reliable pasteurisation systems.

Diverse mathematical models have been suggested to
describe the kinetic behaviour of microorganisms in
foods. Zwietering, Jongenburger, Rombouts, and van�t
Riet (1990) referred and compared the most relevant
models used to describe microbial growth. Xiong, Xie,
Edmondson, Linton, and Sheard (1999) gathered the
most widely used mathematical expressions for model-
ling thermal inactivation. The majority of research
works in predictive microbiology deal with constant
process conditions. However, Van Impe, Nicolaı̈,
Martens, Baerdemaeker, and Vandewalle (1992), Nicolaı̈
and Van Impe (1996), Van Impe, Nicolaı̈, Schellekens,
Martens, and Baerdemaeker (1995) and Geeraerd,
Herremans, and Van Impe (2000) were innovative in
the way they approached the modelling of microbial
growth and/or inactivation under dynamically changing
temperature conditions.

There are several software applications (commercially
available, or down-loadable free of charge from the
internet) in the field of predictive microbiology. Exam-
ples, such as Pathogen Modelling Program (Buchanan,
1993), Food Micromodel (Anonymous, 1997), Food
Spoilage Predictor (Anonymous, 1998) and Seafood
Spoilage Predictor (Dalgaard, Buch, & Silberg, 2002),
illustrate the potential of predictive microbiology to
users with lack of comprehensive skills in mathematics.
These applications focus essentially on kinetic models
for microbial growth and on shelf life prediction, while
the (currently still available) versions 6.1 and 7.0 of
the Pathogen Modeling Program do include a range of
pathogen (non-) thermal inactivation and irradiation
models. Further development of accurate and versatile
mathematical software dealing with the microbial inacti-
vation on the surface of food products is needed.

The objective of this work was to integrate heat trans-
fer models and microorganisms inactivation kinetics on
the surface of foods during heat treatments. The models
were incorporated into a software program, developed
in a user-friendly environment. Based on the character-
istics of the heating regime, the surface temperature can
be estimated. As shown in Valdramidis et al. (2005b),
acceptable predictions of the microbial content at food
surface can be attained under certain circumstances.
These studies were based on the researching effort of
partners of the European project BUGDEATH
(QLRT-2001-01415), with FRPERC as the coordinator.
The need to obtain reliable data on relationship between
bacterial death and the surface temperature of real foods
lead to the design, construction and commission of



equipment under the scope of the project. The software
application here presented simulates the results obtained
in the rig apparatus (Foster et al., 2005) that will be mar-
keted and commercially available.
Modelling methodologies

Heat treatments are the most common and effective
procedures for controlling the survival of microorgan-
isms in foods, and should be designed to provide an ade-
quate safety margin against food-borne pathogens. A
global model, that combines heat transfer and microbial
inactivation kinetics, is of major importance to deter-
mine the level of microbial destruction during surface
pasteurisation, under wet and dry heating regimes. This
requires two modelling approaches: (i) an accurate mod-
elling of heat transfer, to describe the phenomena in-
duced to the food surface by the thermal process, and
(ii) modelling microbial inactivation behaviour under
such temperature conditions.
      Heat transfer model

The temperature history at the surface of the food
product can be estimated considering a one dimensional
heat transfer model, i.e., the product is assumed to be a
flat plate of infinite length and width, and with two dif-
ferent boundary conditions being applied on each side
of the plate. The surface temperature results from the
combination of different heat transfer phenomena: con-
duction, radiation, convection and evaporation/conden-
sation of water or steam (Kondjoyan et al., 2005;
Kondjoyan et al., 2005a).

Inside the product, conduction is the relevant phe-
nomenon, and the temperature T at each position (x)
and time (t) can be calculated according to Fourier�s sec-
ond law:

oT ðx; tÞ
ot

¼ a
o

2T ðx; tÞ
ox2

ð1Þ

where a is the thermal diffusivity of the food.
On the topside of the food product, the boundary

condition can be expressed by:

k
oT
ox

� �
top

¼ heffðT air or steam � T surÞ ð2Þ

being k the thermal conductivity of the food product,
and heff an external effective heat transfer coefficient,
that accounts for the exchanges by convection, evapora-
tion/condensation and radiation, and Tsur denotes the
surface temperature. If the heating medium temperature
varies with time, the values of heff are also time-depen-
dent (Kondjoyan et al., 2005, 2005a).
When the radiation is neglected, the following equa-
tion allows the estimation of the external effective heat
transfer coefficient in a dry environment:

heff ¼ hþ KmDH
P T � awP T sur

T air � T sur

ð3Þ

in which h is the convective heat transfer coefficient and
Tair is the air temperature; Km is a mass transfer coeffi-
cient [estimated by the correlation hMwater

Cpair
Mair
ð a

Dwater-air
Þ�0.67,

Holman (1983)] and DH is the latent heat of water evap-
oration; PT and P T sur are water vapour pressures at dew
temperature of the heating air and at food surface,
respectively, and aw is the water activity at the surface
of the food sample.

During a dry air decontamination process aw is
decreasing very fast. The theoretical determination of
aw requires the coupling of the heat transfer model to a
water transfer model. A coupled heat-water transfer
model was developed and validated under the rig condi-
tions (Kondjoyan et al., 2005a, 2005b). Traditional
experimental methods used to determine aw cannot be
used during decontamination treatments, as they require
equilibrium conditions which give plenty of time for the
product surface to rewet before measuring. Thus an indi-
rect method, based on weight loss measurement, was
developed to determine water activity during dry air
decontamination. Values of aw calculated by the coupled
transfer model were in very good agreement with those
obtained from weight loss measurements (Kondjoyan
et al., 2005a, 2005b). Calculations of the coupled heat-
water transfer were accurate, but very time consuming,
and cannot be incorporated into the user-friendly model.
To speed-up temperature predictions it was decided to
stop calculating water diffusion inside the product.
Therefore aw was not predicted and had to be replaced
by an evaporation term, Evap, which had to be fitted
on experimental results. All experimental conditions con-
sidered in the rig during dry air decontamination were
taken into account (i.e. 60 �C, 75 �C, 90 �C and 100 �C
fast and slow decontamination treatments). It was shown
experimentally that the variation of aw was closely con-
nected to that of the surface temperature of the product,
Tsur. Plateau or increase of Tsur, led to plateau or decrease
of aw. To keep that connection between aw and Tsur, Evap
was supposed to depend on the relative humidity (RH) of
an airflow which temperature would be that of the surface
of the product. At the beginning of the heat treatment
the air-flow was supposed to be saturated with water
(Evap = aw = 1), then its relative humidity would
decreased as Tsur increased. For all the conditions the
best fitting of Evap on meat was obtained for:

Initial conditions

Evap ¼ RHðT suriÞ ¼ 1 ð4Þ
at the initial surface temperature T suri .



Step by step variation

Slow ramping conditions

Evap ¼ 1.4RHðT surðtÞÞ; T sur < 60 �C ð5aÞ

Evap ¼ ð0.0167T sur þ 0.4ÞRHðT surðtÞÞ; T sur P 60 �C

ð5bÞ

Fast ramping conditions

Evap ¼ 3RHðT surðtÞÞ ð5cÞ

In Eq. (3), estimates of the convective heat transfer
coefficient can be obtained on the basis of empirical cor-
relations of dimensionless parameters, developed for dif-
ferent flux regimes. In the rig, turbulence intensity of the
air, Tu, was measured and was found to be between 20%
and 25% (Kondjoyan et al., 2005). The heat transfer
value determined in such conditions agreed with the
one calculated from a previous correlation obtained by
Kondjoyan and Daudin (1995) on short cylinders:

Nu ¼ hDsample

kair

¼ 1þ 0.0176Tu
DsampleV

m

� �0.5

ð6Þ

where Nu is the Nusselt number, Dsample the characteris-
tic dimension of the food sample (e.g. diameter) and kair,
m and V are the conductivity, kinematic viscosity and
velocity of the air, respectively. This correlation was
used in the present model to determine the heat transfer
coefficient for different air-flow conditions.

If steam is used, the surface temperature of the food
was assumed to be 3 �C below the steam temperature.
This was experimentally verified in the BUGDEATH
test-rig apparatus (see Foster et al., 2005).

Since the product is placed on a support, the bound-
ary condition of the bottom side of the food can be writ-
ten as:

k
oT
ox

� �
bot

¼ hinfðT sup � T infÞ ð7Þ
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Fig. 1. Comparison between measurements (grey) and results issued from
samples: (a) surface temperature was measured using the calibrated IR senso
(grey diamonds) and evaporation term came from correlations globally fitte
where Tsup and Tinf are the temperatures of the support
and bottom surface of the product, respectively; hinf is a
coefficient which describes exchanges by conduction be-
tween the support and the product.

In situations where the product thickness remains
above 0.5 cm, the exchanges between the bottom of
the product and the support can be neglected.

Combining the previous equations and applying con-
venient numerical analysis methods, the surface temper-
ature of the product can be calculated. Eq. (1) was
discretised by a finite-difference numerical procedure,
using the Crank–Nicholson method. The number of
nodes and time step were chosen in such a way that
the convergence of solution and speed of calculation
were achieved. If dry air is considered, the effective
transfer coefficient (calculated by Eq. (3)) was recalcu-
lated at the end of each time step, using the actualised
values of the variables. A computer program, written
in Basic language (REALbasic�, REAL Software,
Inc., Texas, USA, Version 5.2), was developed for
calculations.

For dry air decontamination treatments, results were
less accurate when using the present user-friendly model
than when using the coupled heat-mass model. An
example of user-friendly model predictions is given in
Fig. 1. For all the treatments the average difference be-
tween simple model predictions and IR measurements
was ±2 �C. However, local differences of ±4 �C were no-
ticed in some cases. The values of Evap, determined
from relations 4 and 5 a–c, were similar to those deter-
mined from weight loss measurements (Fig. 1b). Thus,
they could directly be introduced into the new inactiva-
tion model developed during BUGDEATH project, to
take into account the effect of aw on the thermo-resis-
tance of bacteria.

Calculations of surface temperature were performed
for air velocities ranging from 20 m s�1 (velocity of the
air jet in the rig) to 5.0 m s�1 (air velocity commonly
encountered in food factories) using: (i) the coupled
heat-mass model and (ii) the simple model. Results
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proved that air velocity had to be in between 15 m s�1

and 20 m s�1 to have an accuracy of ±2 �C on the tem-
perature calculated by the simple model. As the simple
model was mainly validated on meat, its accuracy would
probably be less for other products. Despite these limi-
tations the simple thermal model predicted the good
trends for the variations of Tsur and aw under a wide
range of decontamination conditions.
     Microbial inactivation models

The most widely used model to describe bacterial
death or inactivation is based on the analogy with a first
order chemical kinetics (see, for example, Schmidt,
1992). This model describes a linear decrease of the
microbial content (expressed in a log scale) along the
time. This is somehow restrictive, since in many situa-
tions a delayed decrease (lag phase or shoulder) is ob-
served at the beginning of the inactivation process.
Some models have been proposed to describe this ten-
dency, such as modifications of logistic and Gompertz
functions (Whiting, 1993; Bhaduri et al., 1991; Linton,
Carter, Pierson, & Hackney, 1995). Geeraerd et al.
(2000) developed a model that, besides the capability
of describing the initial lag phase, has the advantage
of dealing with time-varying temperature conditions,
typical of pasteurisation heat treatments (come-up time
followed by a holding temperature). This dynamic ver-
sion of the inactivation model is of the form:

dN
dt
¼ �kmax

1

1þ Cc

� �
N ð8Þ

where

dCc

dt
¼ �kmaxCc ð9Þ
Fig. 2. Screen of Bugdeath
N equals the microbial population (in absolute values),
kmax is the maximum specific inactivation rate and Cc

a variable related to the physiological state of the bacte-
rial cells.

Changes in the numbers of the microorganisms with
time can be calculated by combining Eqs. (8) and (9).
When applying a model in time-varying circumstances,
some implicit (so-called backstage) considerations are
involved (Valdramidis et al., 2005a). These consider-
ations are: (i) is there any growth possible during the
come-up time?; (ii) what is the lowest temperature for
inactivation?; and (iii) is there any affect of the heating
history, for example an induced heat resistance? For
the case studies considered in this research, the answers
are, respectively: (i) no; (ii) 49.5 �C; and (iii) no. The last
answer implies the hypothesis that the inactivation rate
can be related with the actual temperature and surface
water activity value solely, and that a relationship with
the past temperature and water activity values does
not need to be established (Valdramidis et al., 2005b).

The kinetic rate constant correlates to the decimal
reduction time of the well-known Bigelow model, D, tra-
ditionally used to describe the heat resistance of micro-
organisms in thermal processes via the relationship
kmax = ln10/D.

The kinetic parameter kmax is also affected by water
activity, being particularly important in dry heating
environments. In such conditions, aw rapidly reduces
to very (<0.2) low values (see Fig. 1b). If the Bigelow
model is modified in order to include this aw effect
(Gaillard, Leguerinel, & Mafart, 1998), the following
relationship emerges:

kmaxðT ; awÞ ¼
ln 10

Dref

exp
ln 10

z
ðT � T refÞ

� �

� exp
ln 10

zaw

ðEvap� 1Þ
� �

þ c1 ð10Þ
1.0 software—process.



in which Dref is the decimal reduction time at the refer-
ence temperature, Tref, z the conventional z-value, and
by analogy zaw is the distance of aw from 1 which leads
to a 10-fold increase of D-value; c1 is a bias factor
(see Valdramidis et al., 2005b).

To predict the change in microbial numbers at the
surface of foods, Tsur (calculated on the basis of all con-
siderations of heat transport) replaces the temperature T

in the previous equation.
All mathematical models were validated on the basis

of extensive experimental work, using two food products
(i.e. beef and potato skin-on/skin-off) and two patho-
genic microorganisms (i.e. Listeria monocytogenes and
Salmonella), under the scope of the BUGDEATH pro-
ject (Gaze, Boyd, & Shaw, 2005; McCann & Sheridan,
2005).
Fig. 4. Screen of Bugdeath 1.0 sof

Fig. 3. Screen of Bugdeath 1.0 softw
Kinetic parameters were estimated to produce accu-
rate predictive models for reduction in microorganisms,
that can be achieved on the surface of solid foods during
surface pasteurisation treatments.
Software program

The Bugdeath 1.0 software is a user-friendly inter-
face. Real Basic� 5.2 was selected as programming lan-
guage, because it allows an easy implementation and
performance using any personal computer (e.g. Pentium
IV, 2.4 GHz, using Microsoft Windows 98� or Windows
XP� operating systems from Microsoft Corporation�).

The user has to precise some process and product
considerations in all the specific fields that appear in
tware—output/temperature.

are—product/microorganism.



Fig. 5. Screen of Bugdeath 1.0 software—output/microbial load.
the screens. The first screen (as presented in Fig. 2) is re-
lated to the heating process. At this stage the user can
decide between a dry or wet thermal process. The air
properties and equipment parameters are linked to the
choice and the values automatically display in the boxes.
A pre-defined simple or complex heating regime can be
chosen. It is possible to specify the total process time,
heating time, holding temperature and duration of this
stage, and final temperature. An additional option
Table 1
Values of characteristic properties and parameters of the heat transfer
and kinetic models used in case study

Context Property/parametera

Heat transfer

Food (beef) Thickness = 0.0178 m
Dsample = 0.05 m
Initial temperature = 13.4 �C

a = 1.23 · 10�7 m2 s�1

k = 0.45 W m�1 K�1

Heating medium (dry air)
hinf = 5 W m�2 K�1

Tsup = 40 �C
V = 20 m s�1

Tu = 0.25
m = 20 · 10�6 m2 s�1

kair = 0.028 W m�1 K�1

Kinetics

Listeria monocytogenes N(t = 0) = 1.0 · 107 cfu g�1

Cc(t = 0) = 2.28
Dref = 1.1 min
Tref = 66.5 �C
z = 7.11 �C
zaw
¼ 0.23

c1 = 0.22

a Thermal properties of air and water can be found in literature
(Holman, 1983; Perry, 1984).
allows an input of time-temperature data of the heating
medium. This can be done manually or by an input file.
The values are automatically displayed in a table.

Optionally, the surface temperature of the food can
be read from a text file and the calculation of the micro-
bial death can be performed independently from the
temperature profile calculation.

In the second screen of Bugdeath 1.0 (Fig. 3), the user
can select a product and a microorganism, from a list of
available products and microorganisms. The program
interconnects automatically to a database of thermal
properties of the food and kinetic parameters of micro-
bial death models, and displays those results on the
screen in the other boxes. By input, the user can specify
the initial temperature and thickness of the product. The
sample diameter is a fixed value as it is related to the
sample holder in the BUGDEATH apparatus. In rela-
tion to the microorganism, the program allows the def-
inition of initial counts.

After all fields/boxes are filled in, the program starts
calculating the surface temperature of the product as a
function of time (equations presented in Section 2.1)
and assesses the microbial content (equations in Sec-
tion 2.2).

The preferred output can be specified in the third and
last screen. By selection, the user can show predicted re-
sults of temperature history (Fig. 4) and microbial load
(Fig. 5) at the food surface, in tables or graphs. The pro-
gram also includes edit and file options, such as printing,
exporting and saving jobs.
Case study

The following example demonstrates the use and
potential of Bugdeath 1.0.



The aim is to predict numbers of Listeria monocytog-

enes that survive on the surface of beef placed in dry air
at 100 �C for 500 s. The parameters and characteristics of
the food and the heating medium regime are presented in
Table 1. The values, which are to be specified by the user,
are indicated in bold, while the non-bold values are auto-
matically selected by linking to the database.

The predicted temperature at the surface of the beef
(Fig. 4) increases till approximately 60 �C, during the
first 40 s of the process. In the following 200 s, the tem-
perature goes up from 60 �C to approximately 80 �C.
During the remaining process time, the food surface
temperature gradually achieves 83 �C.

The simulated values of microbial load at the food
surface (Fig. 5) show that no inactivation occurs during
the first 250 s. Then, microbial content suffers a 1-log
reduction during the remaining process time.
Conclusions

Bugdeath 1.0 allows an easy access to predictive
microbiology. Accurate predictions of microbial load at
the surface foods surface during pasteurisation treat-
ments in the rig apparatus can be assessed within the
range of the process/product/microorganisms combina-
tions tested during the development of the modelling
methodologies. The simulations can be valuable to a wide
variety of companies in the food industry for developing
appropriate and safe processes. The software has also the
potential of being exploited for educational purposes.
Acknowledgement

This work was supported by the European Commis-
sion, under the Framework 5—Quality of Life and
Management of Living Resources Programme, as part
of the project BUGDEATH (QLRT-2001-01415).
References

Anonymous (1997). Food Micromodel—User Manual. Food Micro-
model, Surrey, United Kingdom.

Anonymous (1998). FSP, Food Spoilage Predictor Tool. Hastings
Data Loggers, Port Macquarie, New South Wales, Australia.

Bhaduri, S., Smith, P. W., Palumbo, S. A., Turner-Jones, C. O., Smith,
J. L., Marmer, B. S., Buchanan, R. L., Zaika, L. L., & Williams, A.
C. (1991). Thermal destruction of Listeria monocytogenes in liver
sausage slurry. Food Microbiology, 8, 75–78.

Buchanan, R. L. (1993). Developing and distributing user-friendly
application software. Journal of Industrial Microbiology, 12,
251–255.

Dalgaard, P., Buch, P., & Silberg, S. (2002). Seafood Spoilage
Predictor—development and distribution of a product specific
application software. International Journal of Food Microbiology,

73, 343–349.
Foster, A. M., Ketteringham, L. K., Swain, M. J., Kondjoyan, A.,
Havet, M., Rouaud, O., & Evans, J. A. (2005). Design and
development of apparatus to provide repeatable surface tempera-
ture–time treatments on inoculated food samples. Journal of Food

Engineering, this issue, doi:10.1016/j.jfoodeng.2005.05.012.
Gaillard, S., Leguerinel, I., & Mafart, P. (1998). Model for combined

effects of temperature, pH and water activity on thermal inactiva-
tion of Bacillus cereus spores. Journal of Food Science, 63(5),
887–889.

Gaze, J. E., Boyd, A. R., & Shaw, H. L. (2005). Heat inactivation of
Listeria monocytogenes Scott A on potato surfaces. Journal of Food

Engineering, this issue, doi:10.1016/j.jfoodeng.2005.05.035.
Geeraerd, A. H., Herremans, C. H., & Van Impe, J. F. (2000).

Structural model requirements to describe microbial inactivation
during a mild heat treatment. International Journal of Food

Microbiology, 59, 185–209.
Holman, J. P. (1983). Transferência de Calor. Brasil: McGraw-Hill, pp.

557–561.
Kondjoyan, A., & Daudin, J. D. (1995). Effects of free steam

turbulence intensity on heat and mass transfers at the surface of
a circular and an elliptical cylinder, axis ratio 4. International

Journal of Heat and Mass Transfer, 38(10), 1735–1749.
Kondjoyan, A., Belaubre, N., Daudin, J. D., Rouaud, O., Havet, M.,

Foster, A., & Swain, M. (2005). Temperature and water activity
calculations at the surface of unwrapped food products during
decontamination by jets of hot air. In Proceedings of the ninth

international congress on engineering and food, Montpellier, France.
Kondjoyan, A., Rouand, O., McCann, M., Havet, M., Foster, A., &

Swain, M., et al. (2005a). Modelling coupled heat-water transfers
during a decontamination treatment of the surface of solid food
products by a jet of air. 1. Sensitivity analysis of the model and first
validations of product surface temperature under constant air
temperature conditions. Journal of Food Engineering, this issue,
doi:10.1016/j.jfoodeng.2005.05.014.

Kondjoyan, A., Rouaud, O., McCann, M., Havet, M., Foster, A., &
Swain, M., et al. (2005b). Modelling coupled heat-water transfers
during a decontamination treatment of the surface of solid food
products by a jet of air. 2. Validations of product surface
temperature and water activity under fast transient air temperature
conditions. Journal of Food Engineering, this issue, doi:10.1016/
j.jfoodeng.2005.05.015.

Linton, R. H., Carter, W. H., Pierson, M. D., & Hackney, C. R.
(1995). Use of a modified Gompertz equation to model nonlinear
survival curves for Listeria monocytogenes Scott A. Journal of Food

Protection, 58(9), 946–954.
McCann, M. S., & Sheridan, J. J. (2005). Effect of steam pasteurisation

on Salmonella Typhimurium DT104 and Escherichia coli O157:H7
inoculated on the surface of beef, pork and chicken. Journal of

Food Engineering, this issue, doi:10.1016/j.jfoodeng.2005.05.024.
Nicolaı̈, B. M., & Van Impe, J. F. (1996). Predictive food microbiol-

ogy. Mathematics and Computers in Simulation, 42, 287–292.
Perry, R. H. (1984). Perry�s chemical engineers handbook. Singapore:

McGraw-Hill.
Ross, T., & McMeekin, T. A. (1994). Predictive microbiology.

International Journal of Food Microbiology, 23, 241–264.
Ross, T., & McMeekin, T. A. (2002). Predictive microbiology:

providing a knowledge-based framework for change manage-
ment. International Journal of Food Microbiology (Special Issue),

78(1–2), 133–153.
Schmidt, S. K. (1992). Models for studying the population ecology of

microorganisms in natural systems. In C. J. Hurst (Ed.), Modelling

in metabolic and physiologic activities of microorganisms

(pp. 31–59). New York: John Wiley & Sons.
Valdramidis, V. P., Belaubre, N., Zuniga, R., Foster, A. M., Havet,

M., & Geeraerd, A. H., et al. (2005a). Development of
predictive modelling approaches for surface temperature and
associated microbiological inactivation during hot dry air

http://dx.doi.org/10.1016/j.jfoodeng.2005.05.012
http://dx.doi.org/10.1016/j.jfoodeng.2005.05.035
http://dx.doi.org/10.1016/j.jfoodeng.2005.05.014
http://dx.doi.org/10.1016/j.jfoodeng.2005.05.015
http://dx.doi.org/10.1016/j.jfoodeng.2005.05.015
http://dx.doi.org/10.1016/j.jfoodeng.2005.05.024


decontamination. International Journal of Food Microbiology,

100(1–3), 261–274.
Valdramidis, V. P., Geeraerd, A. H., Gaze, J. E., Kondjoyan, A.,

Boyd, A. R., & Shaw, H. L., et al. (2005b). Quantitative descrip-
tion of Listeria monocytogenes inactivation kinetics with
temperature and water activity as the influencing factors; model
prediction and methodological validation on dynamic data. Journal

of Food Engineering, this issue, doi:10.1016/j.jfoodeng.2005.05.
025.

Van Impe, J. F., Nicolaı̈, B. M., Martens, T., Baerdemaeker, J. D., &
Vandewalle, J. (1992). Dynamic mathematical model to predict
microbial growth and inactivation during food processing. Applied

and Environmental Microbiology, 58(9), 2901–2909.
Van Impe, J. F., Nicolaı̈, B. M., Schellekens, M., Martens, T., &
Baerdemaeker, J. D. (1995). Predictive microbiology in a dynamic
environment: a system theory approach. International Journal of

Food Microbiology, 25, 227–249.
Whiting, R. C. (1993). Modelling bacterial survival in unfavourable

environments. Journal of Industrial Microbiology, 12, 240–246.
Xiong, R., Xie, G., Edmondson, A. S., Linton, R. H., & Sheard, M. A.

(1999). Comparison of the Baranyi model with the Gompertz
equation for modelling thermal inactivation of Listeria monocyt-

ogenes Scott A. Food Microbiology, 16, 269–279.
Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van�t Riet,

K. (1990). Modelling of the bacterial growth curve. Applied and

Environmental Microbiology, 56(6), 1875–1881.

http://dx.doi.org/10.1016/j.jfoodeng.2005.05.025
http://dx.doi.org/10.1016/j.jfoodeng.2005.05.025

	Integrated approach on heat transfer and inactivation kinetics of microorganisms on the surface of foods during heat treatments mdash software development
	Introduction
	Modelling methodologies
	Heat transfer model
	Microbial inactivation models

	Software program
	Case study
	Conclusions
	Acknowledgement
	References


