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‘‘Alheira” is a fermented sausage typical of the Northern regions
in Portugal (Trás-os-Montes). The product is produced by boiling
meat (pork and/or poultry) in lightly salted and spiced water. Slices
of bread are then added to a level of approximately 25% of the total
raw material. Fine cut portions of meat, spices and olive oil or fat is
then added. The paste is stuffed into cellulose-based casings and
allowed to ferment naturally (i.e. without the addition of starter
cultures), during a smoking process. Additional salt and spices
are added according to taste, the sausages are bent into a horse-
shoe shape (approximately 15 cm long and 6 cm in diameter)
and smoked for a maximum of eight days at temperatures below
37 �C at uncontrolled humidity. The shelf life of ‘‘Alheiras” is about
1 month stored at 4 �C in air or longer if the sausages are packed
under modified atmosphere. ‘‘Alheiras” are cooked before con-
sumption; either by frying, grilling or boiling. The taste is described
as being pleasant, lightly smoked, very particular, with a hint of
garlic. The lightly smoked aroma is described as sui generis.

Although the aroma and flavour characteristics of ‘‘Alheira” and
other fermented meat sausages are mainly influenced by the qual-
ity and origin of the raw materials and the ripening process, the
: +351 225580111.
).
composition of the microflora, especially lactic acid bacteria
(LAB), plays a key role (Moretti et al., 2004; Papamanoli,
Kotzekidou, Tzanetakis, & Litopoulou-Tzanetaki, 2003). Lactobacil-
lus sakei, Lactobacillus curvatus and Lactobacillus plantarum are
the dominant species in fermented meat sausages, but seldom
reach numbers in excess of 107 cfu/g (Talon, Leroy, & Lebert,
2007). Apart from the production of lactic acid and antimicrobial
compounds such as bacteriocins (Bacus, 1986), LAB produce a
number of other antimicrobial and organoleptic compounds, e.g.
acetic acid, ethanol, acetoin, carbon dioxide and pyruvic acid (Ba-
cus, 1986).

In general, sausages that undergo a short fermentation, without
starter cultures, have a higher pH and thus also a larger population
of Enterococcus spp. (Dellapina, Blanco, Pancini, Barbuti, &
Campanini, 1994). The proportion of enterococci versus other
LAB in fermented dry sausages is thus important. However, only
a few papers have been published on the microbial composition
of ‘‘Alheira” (Ferreira, Barbosa, Vendeiro et al., 2006; Ferreira, Barb-
osa, Silva et al., 2007) and even less is known about the role of
enterococci in ‘‘Alheira’’.

The use of selected starter cultures is important to produce the
desired flavour and aroma compounds and extend the shelf life of
the product (Bacus, 1986). In most studies, LAB in fermented sau-
sages have been identified based on simple physiological, bio-
chemical and chemotaxonomic methods (Montel, Talon,
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Table 1
Species- and genus-specific primers used in PCR reactions (* = genus-pecific primers).

Species Primer pair/sequence (50–30) 20 ll reactiona PCR-cycle Origin (product size) Reference strain used as
positive control

Reference

L. plantarum planF (F) CCG TTT ATG CGG AAC
ACC TA

5.0 ll DNA, 0.25 ll PlanF, 0.5 ll REV, 2.0 ll buffer
10x, 1.6 ll dNTṔs, 0.1 ll Taq

b94 �C/
30 s

recA gene Lb. plantarum ATCC 14917T Torriani, Felis, and
Dellaglio (2001)

56 �C/10 s (318 bp)
72 �C/30 s

REV (R) TCG GGA TTA CCA AAC ATC
AC

30 cycles

L. paraplantarum ParaF (F) GTC ACA GGC ATT ACG
AAA AC

5.0 ll DNA, 0.5 ll ParaF, 0.5 ll REV, 2.0 ll buffer 10x,
1.6 ll dNTṔs, 0.1 ll Taq

b94 �C/
30 s

recA gene Lb. paraplantarum ATCC
700211T

Torriani et al. (2001)

56 �C/10 s (107 bp)
72 �C/30 s

REV (R) TCG GGA TTA CCA AAC ATC
AC

30 cycles

L. rhamnosus Y2 (F) CCC ACT GCT GCC TCC CGT
AGG AGT

5.0 ll DNA, 2 ll Y2, 2 ll Rham, 2.0 ll buffer 10x,
1.6 ll dNTṔs, 0.1 ll Taq

b94 �C/
45 s

16S rRNA gene: V1 region
(290 bp)

Lb. rhamnosus ATCC 7469T Ward and Timmins (1999)

48 �C/45 s
72 �C/
1 min

Rham (R) TGC ATC TTG ATT TAA TTT
TG

30 cycles

L. sakei 16 (F) GCT GGA TCA CCT CCT TTC 5.0 ll DNA, 0.6 ll 16, 0.6 ll Ls, 2 ll MgCl2, 2.0 ll
buffer 10x, 2 ll dNTṔs, 0.1 ll Taq

c94 �C/
1 min

16S rRNA gene (222 bp) Lb. sakei DSMZ 20117 Berthier and Ehrlich
(1998)

47 �C/30 s
72 �C/
1 min

Ls (R) ATG AAA CTA TTA AAT TGG
TAC

35 cycles

L. zeae LCZ (F) TTG GTC GAT GAA C 5.0 ll DNA, 2 ll LCZ, 2 ll LBLR1, 2.0 ll buffer 10x,
1.6 ll dNTṔs, 0.1 ll Taq

c94 �C/
30 s

16S rRNA gene (985 bp) Roy, Sirois, and Vincent
(2001)

40 �C/ 30 s
72 �C/
1 min

LBL R1 (R) CCA TGC ACC ACC TGT C 35 cycles
L. brevis Br1 (F) CTT GCA CTG ATT TTA ACA 5.0 ll DNA, 0.4 ll Br1, 0.4 ll Br2, 2.0 ll buffer 10x,

1.6 ll dNTṔs, 0.1 ll Taq

c94 �C/
1 min

16S rRNA gene (1340 bp) Lb. brevis ATCC 8287 Guarneri, Rossetti, and
Giraffa (2001)

52 �C/30 s
72 �C/
1 min

Br2 (R) GGG CGG TGT GTA CAA GGC 25 cycles
Ln. mesenteroides Lmes-f (F) AAC TTA GTG TCG CAT

GAC
5.0 ll DNA, 1 ll Lmes-f, 1 ll Lmes-r, 4 ll MgCl2, 2.0 ll
buffer 10x, 4 ll dNTṔs, 0.1 ll Taq

d94 �C/
1 min

16S rRNA gene Lb. mesenteroides subsp.
mesenteroides NCDO 523T

Lee, Park, and Kim (2000)

57 �C/
1 min

(1150 bp)

72 �C/
2 min

Lmes-r (R) AGT CGA GTT ACA GAC
TAC AA

30 cycles



Enterococcus spp.* EntF (F)
TACTGACAAACCATTCATGATG

5.0 ll DNA, 0.4 ll EntF, 0.4 ll EntR, 2 ll MgCl2, 2.0 ll
buffer 10x, 1.6 ll dNTṔs, 0.1 ll Taq

e94 �C/
30 s

16S rRNA gene (112 bp) Ec. faecalis ATCC 29212 Ke et al. (1999)

55 �C/30 s
72 �C/30 s

EntR (R)
AACTTCGTCACCAACGCGAAC

35 cycles

E. faecalis Ef0027R (F)
GCCACTATTTCTCGGACAGC

4.0 ll DNA, 2 ll Ef0027F, 2 ll Ef0027R, 4 ll MgCl2,
2.0 ll buffer 10x, 1.6 ll dNTṔs, 0.2 ll Taq

e94 �C/
30 s

Putative transcriptional
regulator gene (518 bp)

Ec. faecalis ATCC 29212 Dutka-Malen, Evers, and
Courvalin (1995)

55 �C/30 s
72 �C/30 s

Ef0027F (R)
GTCGTCCCTTTGGCAAAT

35 cycles

E. faecium Enf1 (F)
ATTACGGAGACTACAATTTG

4.0 ll DNA, 0.4 ll Enf1, 0.4 ll Ent2, 4 ll MgCl2, 2.0 ll
buffer 10x, 1.6 ll dNTṔs, 0.2 ll Taq

e94 �C/
30 s

16S rRNA gene (300 and
400 bp)

Ec. faecium LMG 8149 Dutka-Malen et al. (1995)

55 �C/30 s
72 �C/30 s

Ent2 (R)
TAGCGATAGAAGTTACATCAAG

35 cycles

P. acidilactici PacF (F)
CGAACTTCCGTTAATTGATTAT

5.0 ll DNA, 2 ll PacF, 2 ll PuR, 4 ll MgCl2, 2.0 ll
buffer 10x, 1.6 ll dNTṔs, 0.1 ll Taq

e94 �C/
30 s

16S rRNA gene Mora, Fortina, Parini, and
Manachini (1997)

67 �C/30 s (872 bp)
72 �C/
1 min

PuR (R) ACCTTGCGGTCGTACTCC 35 cycles
P. pentosaceus PpeF (F) CGA ACT TCC GTT AAT TGA

TCA G
5.0 ll DNA, 2 ll PpeF, 2 ll PuR, 4 ll MgCl2, 2.0 ll
buffer 10x, 1.6 ll dNTṔs, 0.1 ll Taq

e94 �C/
30 s

16S rRNA gene Ped. pentosaceus NCDO 813T Mora et al. (1997)

67 �C/30 s (872 bp)
72 �C/
1 min

PuR (R) ACC TTG CGG TCG TAC TCC 35 cycles
Weissella spp.* WeiF (F) CGT GGG AAA CCT ACC

TCT TA
5.0 ll DNA, 2 ll WeiF, 2 ll WeiR, 0.1 ll MgCl2, 2.0 ll
buffer 10x, 1.6 ll dNTṔs, 0.1 ll Taq

e94 �C/
30 s

16S rRNA gene (725 bp) W. hellenica ATCC 51523T Jang et al. (2002)

55 �C/30 s
72 �C/30 s

WeiR (R) CCC TCA AAC ATC TAG
CAC

35 cycles

a 10 mM each primer (MWG Biotech AG, Ebersberg, Germany); 5 mM MgCl2, 2.5 mM dNTṔs, Taq DNA polymerase (TaKaRa Ex TaqTM, TAKARA, BIO INC. Japan).
b Initial denaturation at 95 �C for 3 min and final extension of the amplified product at 72 �C for 5 min.
c Initial denaturation at 95 �C for 5 min and final extension of the amplified product at 72 �C for 5 min.
d Initial denaturation at 95 �C for 5 min and final extension of the amplified product at 72 �C for 10 min.
e Initial denaturation at 95 �C for 5 min and final extension of the amplified product at 72 �C for 5 min.



Fournaud, & Champommier, 1991). Although valuable from a prac-
tical point of view, results obtained by these methods are not al-
ways sufficient to characterize strains to species level, especially
within the genera Lactobacillus (Ammor et al., 2005; Aquilanti,
Zannini, Zocchetti, Osimani, & Clementi, 2007) and Enterococcus
(Velasco et al., 2004). SDS–PAGE of whole cell proteins (Samelis,
Tsakalidou, Metaxopoulos, & Kalantzpopulos, 1995), restriction
fragment length polymorphism (RFLP) of 16S rRNA (Sanz, Selgas,
Parejo, & Ordrhez, 1998), hybridization with rRNA probes (Nissen
& Dainty, 1995), PCR with species-specific primers (Yost &
Nattress, 2000), temperature gradient gel electrophoresis (TGGE)
of PCR products (Cocolin, Manzano, Cantoni, & Comi, 2000), dena-
turing gradient gel electrophoresis (DGGE) (Cocolin, Manzano,
Cantoni, & Comi, 2001) and randomly amplified polymorphic
DNA (RAPD)–PCR analysis (Berthier & Ehrlich, 1999), have been re-
ported to be more accurate.

In this paper, the phenotypic and genotypic diversity of LAB iso-
lated from ‘‘Alheira” produced in seven different processing plants
was studied.

‘‘Alheiras”, unwrapped, sealed in modified atmosphere pack-
ages or vacuum-packed, were collected from different retail stores.
Samples collected from seven production plants in North-East
Portugal were labelled Ef, Tp, Tx, Gr, Ag, Am and PV.

Twenty-five grams of each sample were added to 225 ml of
sterile buffered peptone water (Merck, Darmstadt, Germany),
homogenized in a stomacher for 2 min and serial dilutions were
plated onto De Man, Rogosa Sharpe (MRS) Agar (LabM, Bury, UK)
and M17 agar (Merck). Plates were incubated under microaero-
philic conditions for 72 h at 30 �C. Colonies were randomly se-
lected, based on colony morphology, from plates having between
15 and 150 colonies and cultured in MRS or M17 broth for 48 h
at 30 �C. Isolates were purified by repeated streaking onto the
respective growth media. All isolates were tested for Gram reac-
tion, oxidase and catalase production. Gram-positive, catalase-neg-
ative and oxidase-negative isolates were selected and stored at
�80 �C in growth medium, supplemented with glycerol (30%, v/v,
final concentration).

Isolates were sub-cultured twice in MRS or M17 broth at 30 �C
for 24 h before cell morphology was observed with an optical light
microscope. All isolates were tested for CO2 production from glu-

Material and methods

Identification of lacticacid bacteria

Origin and sampling of isolates

Phenotypic and biochemical tests
Table 2
Physiological and biochemical tests used to classify lactic acid bacteria isolated from ‘‘Alh

Morphology CO2

from
Glucose

Growth
at 10 �C

Growth
at 45 �C

Growth in the
presence of 4%
NaCl

Growth in the
presence of 6.5%
NaCl

Gro
at p
4.4

Rods 0 90 85 87 69 90

Rods 21 21 0 16 6 21

Cocci 0 159 159 159 159 159

Coccobacilli 4 4 0 3 2 2
Cocci in

tetrads
0 9 6 9 4 9

a Preliminary classification was based on Bergey’s Manual of Determinative Bacteriol
Trüper, Dworkin, Harder, & Schleifer, 1992).

b Total number of strains isolated.
cose in MRS broth adjusted to pH 7.0, fitted with Durham tubes
(Müller, 1990). Incubation was for 48 h at 30 �C. Isolates were con-
sidered heterofermentative if gas had been formed. Growth at
10 �C and 45 �C was tested by incubating the isolates in appropri-
ated media (pH 7.0) for 7 and 2 days, respectively. Growth was re-
corded by an increase in turbidity.

Acid production from D-glucose, D-fructose, galactose, sucrose,
lactose, maltose, mannitol, rhamnose, ribose, trehalose and D-xy-
lose was determined using microtitre plates (Parente, Griego, &
Crudele, 2001). Filter-sterilized sugar (1 ml of a 100 g/l solution)
was added to 9 ml basal medium (MRS without glucose and meat
extract and with 0.16 g/l bromocresol purple, pH 7.0) and 180 ll
dispensed into each well. Cells harvested from 16-h-old broth cul-
tures (6000g, 5 min, 20 �C) were suspended in sterile saline and
20 ll inoculated into each well. The microtitre plates were incu-
bated under microaerophilic conditions at 30 �C for 48 h. A colour
change from purple to yellow was regarded as a positive reaction.
Hydrolysis of esculin was tested by adding 2 g/l esculin (Sigma
Diagnostics, St. Louis, MO, USA) and 5 g/l ferric ammonium citrate
(Sigma) to the basal medium. Incubation was as described before.
A black colouration of the medium was regarded as a positive reac-
tion. Growth in the presence of 4% and 6.5% (w/v) NaCl, and at pH
4.0 and pH 9.6 was determined in MRS broth, adjusted with 1 N
HCl or NaOH before autoclaving and supplemented with bromoc-
resol purple. Microtitre plates were inoculated as described before.
A colour change to yellow was recorded as growth. Arginine hydro-
lysis was tested by inoculating the isolates into MRS broth, supple-
mented with arginine (3 g/l) and ammonium citrate replaced by
sodium citrate. Incubation was at 30 �C for 4 days, as described be-
fore. Production of ammonia was detected by using Nessleŕs re-
agent (Carlo Erba, Rodano, MI, Italy). All tests were performed in
triplicate.

Two DNA extraction methods were used. Iso-
lates collected from M17 agar were grown to mid-log phase in M17
broth (to an optical density of 1.4 at 600 nm), harvested (8000g,
5 min, 4 �C), rinsed twice with sterile saline (0.9%, w/v, NaCl), sus-
pended in 50 ll sterile distilled water and boiled for 15 min. The
DNA of isolates collected from MRS plates was extracted with phe-
nol–chloroform, as described by Dellaglio, Bottazzi, and Trovatelli
(1973). Both sets of DNA extracts were frozen at �20 �C.

gene sequencing. Isolates within each group were identified to
genus and species level by using genus or species-specific primers.
Representative strains were selected and the gene encoding 16S
rRNA sequenced. The DNA primers and PCR conditions used are

Genotypic tests

DNA isolation       :

       PCR withs pecies-and  and 16Sr RNAgenus-specific primers
eira”. The figures refer to the number of strains positive in each test.

wth
H

Growth
at pH
9.6

NH3 from
Arginine

Esculin
Hydrolysis

Preliminary classificationa Group

0 3 90 Homofermentative or
facultatively Heterofermentative
lactobacilli

G1
(90)b

0 16 0 Obligately heterofermentative
lactobacilli or Weissella spp.

G2
(21)

159 104 120 Enterococcus spp. G3
(159)

0 1 0 Leuconostoc spp. G4 (4)
3 6 9 Pedioccocus spp. G5 (9)

ogy (Holt, Krieg, Sneath, Staley, & Williams, 1994) and ‘‘The Prokaryotes” (Ballows,



Table 3
Sugar fermentation reactions recorded for lactic acid bacteria isolated from ‘‘Alheira”. The numbers in superscript refer to the number of negative strains in each test.

Group Biochemical
profile

Esculin
hydrolysis

Fructose Galactose Glucose Lactose Maltose Mannitol Rhamnose Ribose Sorbitol Sucrose Trehalose Xylose NH3

from
arginine

Phenotypic
identificationa

Genotypic
identificationb

G1 (90) G1.1. (76) + + + + + +1 + � + + + + � � L. plantarum; L
paraplantarum; L.
rhamnosus; L.
paracasei; L. pentosus

L. plantarum
(70); L.
rhamnosus
(3); L.

paraplantarum (1); L.
paracasei (2)

G1.2. (4) + � +1 + � + + 1 � + + + + � � L. plantarum; L.
paraplantarum; L.
rhamnosus; L.
paracasei; L. pentosus

L. paraplantarum (2);
L. plantarum (1); L.
paracasei (1)

G1.3. (4) + + � + + + + � + + + + � � L. plantarum; L.
paraplantarum; L.
rhamnosus; L.
paracasei; L. pentosus

L. rhamnosus (3); L.
paracasei (1)

G1.4. (3) + nd + + + � + � + � + + � � L. plantarum L. zeae (2); L.
plantarum (1)

G1.5.
(3)

+ + + + + + � + + � + + � + L. sakei L. sakei (3)

G2 (21) G2.1. (8) � + +2 + + +1 � � + � + + + + L. brevis
L. brevis (7);
L. plantarum
(1)
G2.2. (11) � nd + + + + � nd � � + � � + Weissella spp. Weissella spp. (6); W.

cibaria (3); W.
viridescens (1); L.
mesenteroides (1)

G2.3.
(2)

+ + + + + + + � + + + + � � Not determined L. plantarum (2)

G3 (159) G3.1.
(101)

+ +3 + + +/� + + +/� + + +2 + � � Enterococcus spp.

Enterococcus spp.
(32); E. faecalis (43);
E. faecium (26)

G3.2. (44) + + +2 + + + + +/� + + + + � � E. faecalis E. faecalis (44)
G3.3. (14) + + + + +/� + + � + � + + � + E. faecium E. faecium (12); P.

pentosaceus (2)
G4 (4) G4. (4) + + + + � + � � + � + + + � Ln. mesenteroides Ln. mesenteroides (3);

P. pentosaceus (1)
G5 (9) G5. (9) + + + + + +3 + � � + + + Pediococcus spp. P. acidilactici (3); P.

pentosaceus (6)

nd, not determined.
a Preliminary classification, based on Bergey’s Manual of Determinative Bacteriology (Holt et al., 1994) and ‘‘The Prokaryotes” (Ballows et al., 1992).
b Using genus or species-specific primers, and 16S rRNA gene sequencing to confirm results.
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III
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listed in Table 1. Samples without genomic DNA were used as neg-
ative controls. Amplified fragments were separated on agarose gels
at a constant 100 V. Tris–acetate (TAE) was used as buffer. Gels
were stained with 0.5 lg/ml ethidium bromide (Sigma). A 100-bp
DNA ladder (BioRad Laboratories, Richmond, CA) was used as
molecular weight marker when the expected product size was less
than 400 bp; otherwise Lambda DNA, digested with EcoR1 and Hin-
dIII (Roche, Indianapolis, USA) was used.

To confirm results, representative strains within each group
were subjected to 16S rRNA gene sequencing, as described by
Felske, Rheims, Wolterink, Stackebrandt, and Akkermans (1997).
The following primers were used: 8 F (50-CAC GGA TCC AGA CTT
TGA TYM TGG CTC AG-30) (Y = C + T; M = A + C) and 1512 R (50-
GTG AAG CTT ACG GYT AGC TTG TTA CGA CTT-30). PCR products
were purified with the GFX PCR DNA and Band Purification kit
(GE HealthCare, Amersham Biosciences, Amersham, UK) and used
as templates. The ABI PRISMs BigDyeTM Terminator Cycle Sequenc-
ing Ready Reaction Kit (PE Applied Biosystems, Foster City, CA) was
used. Sequences obtained from an automatic DNA sequencer (ABI
PRISMs 310 Genetic Analyser, PE Applied Biosystems) were aligned
with sequences in Genbank using the BLAST program (Altschul
et al., 1997).

Strains
identified as members of the genera Enterococcus and Lactobacillus
were selected for further studies. The genetic heterogeneity of iso-
lates that grouped within the most prevalent species was deter-
mined by numerical analysis of DNA profiles obtained by RAPD–
PCR.

DNA primers M13 (50-GAG GGT GGC GGT TCT-30) and D8635
(50-GAG CGG CCA AAG GGA GCA GAC-30) of Huey and Hall
(1989) were used. RAPD–PCR was performed on total (genomic
and plasmid) DNA, as described by Andrighetto, Zampese, and
Lombardi (2001). The 25 ll reaction volume contained 0.99 mM
primer M13, 1 � PCR buffer (MBI Fermentas, Mundolsheim,
France), 2.5 mM MgCl2 (MBI Fermentas), 0.15 mM dNTP (Abgene,
Surrey, UK) and 1 U Taq DNA polymerase (MBI Fermentas). The
second amplification contained 0.88 mM primer D8635, 1 � PCR
Buffer, 2.5 mM MgCl2, 0.2 mM dNTP and 1 U Taq DNA polymerase.
Amplification was in a DNA thermal cycler (My CyclerTM Thermal
Cycler Firmware, BioRad Laboratories) by using the following pro-
gram: Initial denaturation at 94 �C for 2 min, 35 cycles of 1 min per
cycle at 94 �C, and 1 min at 46.9 �C, followed by an increase to
72 �C over 90 s. Extension of the amplified product was at 72 �C
for 10 min. Amplified products were separated by electrophoresis
in 1.2% (w/v) agarose gels in 1 � TAE buffer at 80 V for 2 h. Gels
were stained in TAE buffer containing 0.5 lg/ml ethidium bromide.
A 100-bp DNA ladder (BioRad Laboratories) was used as molecular
weight marker.

Banding patterns were analysed using Gel Compare, Version 4.1
(Applied Maths, Kortrijk, Belgium). Similarities were calculated by
using the Dice product–moment correlation coefficient. Dendro-
grams were obtained by means of the Unweighted Pair Group
Method using Arithmetic Average (UPGMA) clustering algorithm
(Vauterin & Vauterin, 1992).
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Tp 2A
Tp 2G
Tp 5L
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Pv 3E 
Tp 5M
Pv 6A
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Fig. 1. Numerical analysis of RAPD–PCR profiles obtained for strains of L. plantarum
isolated from ‘‘Alheira” manufactured in seven different plants. Clusters are
indicated with Roman numerals. Ef, Tp, Am, Gr, Tx, Ag and PV are the producers.
Based on a few key biochemical characteristics, 283 isolates
were separated into five phenotypic groups (Table 2). All isolates
in groups G1 and G2 were rod-shaped. Because none of the isolates
in group G1 produced CO2 from the fermentation of glucose, they
were tentatively classified as homofermentative (group I Lactoba-
cillus) and facultatively heterofermentative (group II Lactobacillus).
Most of the isolates (85 out of 90) grew at 45 �C, suggesting that
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they belong to the group I – Lactobacillus. Five isolates did not grow
at 45 �C and were tentatively classified as members of the group II
– Lactobacillus. Isolates from group G2 produced CO2 from the fer-
mentation of glucose and were classified as members of group III –
Lactobacillus or Weissella. Isolates collected from M17 medium
were coccoid, grew at pH 9.6 and in the presence of 6.5% NaCl (Ta-
ble 2), and were tentatively classified as Enterococcus spp. (group
G3, Table 2). Four isolates had a coccobacillus (oval) shape and
were tentatively classified as members of the genus Leuconostoc
(group G4, Table 2). Nine isolates were cocci arranged in tetrads
and were tentatively classified as Pediococcus spp. (group G5, Table
2).

Sugar fermentation reactions separated the 90 isolates in group
G1 into five subgroups (G1.1–G1.5, Table 3). Most of these isolates
(84) shared the same sugar fermentation reactions and were clas-
sified as L. plantarum, Lactobacillus paraplantarum, Lactobacillus
rhamnosus, Lactobacillus paracasei and Lactobacillus pentosus (Table
3). Small differences in sugar fermentation reactions separated the
strains into subgroups G1.1, G1.2 (fructose and lactose not fer-
mented), and G1.3 (fructose fermented, but galactose not fer-
mented). Three isolates did not ferment maltose and sorbitol and
were tentatively classified as strains of L. plantarum (subgroup
G1.4, Table 3). Another three isolates did not ferment mannitol
and sorbitol, but fermented rhamnose and produced NH3 from
arginine, and were tentatively classified as strains of L. sakei (sub-
group G1.5, Table 3). Isolates in group G2 were rod-shaped and
were separated into three subgroups (G2.1–G2.3, Table 3). Eight
of the isolates were tentatively classified as strains of Lactobacillus
brevis (subgroup G2.1) and 11 as strains belonging to the genus
Weissella (subgroup G2.2). Two isolates remained unclassified
(subgroup G2.3). The vast majority of isolates (159) were coccoid
and resembled a homogeneous collection of strains, tentatively
classified as members of the genus Enterococcus (group G3, Table
3). Most of the isolates (101) could not be identified to species level
and were tentatively classified as Enterococcus spp. (subgroup
G3.1). The remaining isolates were classified as Enterococcus faecal-
is (44 strains in subgroup G3.2) and Enterococcus faecium (14
strains in subgroup G3.3). Four Isolates with an oval (coccobacillus)
morphology were placed in group G4 and were tentatively classi-
fied as Leuconostoc mesenteroides (Table 3). Nine isolates with a
coccoid morphology and arranged in tetrads were placed in group
G5 and were tentatively classified as Pediococcus spp.

All the isolates were identified to species level by PCR with spe-
cies- and genus-specific primers. Representative strains from each
group were subjected to 16S rRNA sequencing. The majority of
strains in group G1 (72 out of 90) were identified as L. plantarum,
six as L. rhamnosus, three as L. paraplantarum, four as L. paracasei,
two as Lactobacillus zeae and three as L. sakei (Table 3). Strains in
Group G2 were genotypically heterogeneous and represented L.
plantarum (three strains), L. brevis (seven strains), Weissella sp.
(six strains), Weissella cibaria (three strains), Weissella viridescens
(one strain) and L. mesenteroides (one strain). The majority of
strains (87 out of 159) in group G3 were identified as E. faecalis
and grouped into subgroup G3.2 as a homogeneous collection of
strains. Thirty-eight strains were identified as E. faecium and two
as Pediococcus pentosaceus (Table 3). Thirty-two strains remained
unidentified and were regarded as Enterococcus spp. (Table 3).
Three isolates in group G4 were identified as L. mesenteroides and
one as P. pentosaceus (Table 3). Isolates in group G5 belonged to
Pediococcus acidilactici and P. pentosaceus (Table 3).

The genotypic relatedness of L. plantarum strains isolated from
‘‘Alheira”, determined by RAPD–PCR, is shown in Fig. 1. Fourteen
strains shared similar DNA banding profiles and grouped in Cluster
I at 66%. Three subgroups were identified in Cluster I at P70%.
Forty-two strains were genotypically closely related and grouped
in Cluster III at 72%. Three subgroups were identified within Clus-



Table 4
Identification of strains isolated from seven producers of ‘‘Alheiras”.

Species Ef Tp PV Am Tx Gr Ag Total

L. plantarum 21 27 15 5 4 2 1 75
L. paraplantarum – 2 – – 1 – – 3
L. rhamnosus 4 – – 1 1 – – 6
L. sakei – 1 – – – 2 – 3
L. zeae 2 – – – – – – 2
L. paracasei 4 – – – – – – 4
L. mesenteroides 1 2 – – 1 – – 4
L. brevis 1 1 2 – 1 – 2 7
Enterococcus spp. 1 + 12a 1 + 3a 5a 1a 1 + 1a 1a 5 + 1a 8 + 24a

E. faecalis 6 + 44a 8 + 9a 6a 5a 1a 2a 3 + 3a 17 + 70a

E. faecium 17a 1 + 9a 1 + 5a – 3a 2a – 2 + 36a

P. acidilactici 1 – 1 – – – 1 3
P. pentosaceus 3 3 – – 1 – 2 9
Weissella spp. 2 1 3 – – – – 6
W. cibaria 3 – – – – – – 3
W. viridescens – – 1 – – – – 1

Total 49 + 73a 47 + 21a 23 + 16a 6 + 6a 10 + 5a 4 + 5a 14 + 4a 153 + 130a = 283

a Isolated on M17 agar. All other organisms were isolated on MRS agar.
ter III, each with a specific level of relatedness. Six reference strains
of L. plantarum grouped in Cluster II at 73% and were genotypically
closer related to strains in Cluster I than strains in Cluster III. This
suggests that at least 14 strains (grouped in Cluster I) originated
from the type strain of L. plantarum (DSMZ 20174T) or closely re-
lated strains. It also suggests that 42 strains (grouped in Cluster
III) had evolved to become less related to the type strain of L. plan-
tarum. Nineteen strains were identified as L. plantarum, but were
genotypically not closely related to the strains in Clusters I, II
and III and formed smaller groups with little intra- and inter-geno-
typic similarity. Based on these results, L. plantarum consists of a
heterogeneous collection of strains, similar to findings reported
by Duffner and ÓConnel (1995) and Molenaar et al. (2005). More
strains of L. plantarum will have to be studied to determine the tax-
onomic status of the species. It is also evident that strains from
Cluster III form the core group within the L. plantarum strains iso-
lated from ‘‘Alheira”. Strains within each of the two clusters (I and
III) were from different ‘‘Alheira” producers, suggesting that spe-
cific ingredients, method of production and area did not select
for a specific group of strains with specific genetic characteristics.

The genotypic relatedness of 70 of the original 87 strains of E.
faecalis is shown in Fig. 2. Three well-separated clusters were iden-
tified. Cluster I contained four strains grouped at 64%. Cluster II
consisted of 43 strains grouped at 66%, separated into two sub-
groups. Cluster III consisted of 12 strains, grouped at 68%. The eight
reference strains of E. faecalis and 11 strains isolated from ‘‘Alheira”
did not group into any of the three clusters. This suggested that the
E. faecalis strains isolated from ‘‘Alheira” are genotypically not clo-
sely related to the type strain and other reference strains included
in this study. Clusters I and II contained strains isolated from all
producers. Cluster III contained 12 strains, mostly isolated from
producer Ef. The genetic diversity could be explained by selective
pressure inflicted on the strains in ‘‘Alheira”. As far as we could
determine, this is the first detailed taxonomic study on E. faecalis
in ‘‘Alheira”. Further research is needed to determine if the strains
are characteristic for ‘‘Alheira” from a specific producer. It may also
be that the strains represent new species within the genus
Enterococcus.

The study has shown that ‘‘Alheira” contains a large number of
LAB. Since these bacteria play an important role in meat fermenta-
tion, it is safe to assume they will influence the aroma and taste of
the final product. LAB are also known to produce antimicrobial
compounds, including bacteriocins, and may be used to extend
the shelf life of the product. Identification of the strains is the first
step towards the selection of starter cultures. By choosing the cor-
rect strains, ‘‘Alheira”, with unique organoleptic properties, may be
developed.

Physiological and biochemical tests proved valuable in the pre-
liminary identification of the lactic acid bacteria (Teixeira et al.,
1997). However, in the present study, the identity of some isolates
could only be confirmed by PCR with species- and genus-specific
primers. To determine the specificity of this technique, representa-
tive strains within each group were subjected to 16S rRNA gene
sequencing, confirming the results obtained by PCR. RAPD–PCR
has indicated that L. plantarum and E. faecalis isolated from differ-
ent producers are genetically diverse, suggesting that conditions in
‘‘Alheira” from a specific producer do not select for a homogeneous
collection of strains. Similar findings have been reported for stud-
ies conducted on sausages produced in Greece, Hungary and Italy
(Rantsiou, Drosinos, Gialitaki, Urso et al., 2005; Rantsiou, Drosinos,
Gialitaki, Metaxopoulos et al., 2006; Urso, Comi, & Cocolin, 2006).

The distribution of isolates between different samples and thus
amongst different producers, is indicated in Table 4. It is interest-
ing to note that L. plantarum was isolated from all samples of
‘‘Alheira” (in total 75 isolates, which represented 27% of all iso-
lates). Similar results have been reported for Greek fermented sau-
sage (Drosinos et al., 2005), Botillo (Fontán, Lorenzo, Martínez,
Franco, & Carballo, 2007), Sardinian and regional Friuli-Venezia-
Giulia sausage (Aquilanti et al., 2007; Urso et al., 2006). L. brevis
was found in five different ‘‘Alheiras”, but at low numbers. A few
other isolates were classified as L. paraplantarum, L. rhamnosus, L.
sakei, L. mesenteroides, P. pentosaceus, P. acidilactici, W. cibaria, W.
viridescens and E. faecium. L. zeae and L. paracasei were present in
sample Ef. The presence of LAB and such a large variation of strains
are not surprising, as different production methods, recipes and
raw materials were used (bread, spices). Furthermore, the fermen-
tation process is not controlled, with a low ripening time and a
high aw of the final product. Others factors that may contribute
to the variability in strains is the manner in which the final product
is stored and distributed.

Enterococcus spp. were isolated from all samples, with E. faecalis
being the dominant species (87 isolates in total; 20% from MRS
medium and 80% from M17 medium). E. faecium was the second
most dominant (38 strains). Enterococci are frequently isolated
from fermented sausages, especially in products with a high pH
and in the absence of competitive starter cultures (Hugas, Garriga,
& Aymerich, 2003). Apart from the glycolytic, proteolytic and lipo-
lytic activities of enterococci, the role of these organisms in fer-



mented sausages has not been studied in detail (Sarantinopoulos
et al., 2001). The ability of enterococci to promote health and ill-
ness at the same time is not well understood. They produce antimi-
crobial compounds, including bacteriocins, that may extend the
shelf life of fresh products and they may contribute to the sensorial
quality of fermented foods. However, a number of enterococci have
been associated with the formation of biogenic amines and contain
virulence genes and have been associated with nosocomial and
opportunistic infections (Franz, Stiles, Schleifer, & Holzapfel, 2001).

A vast number of LAB were isolated from ‘‘Alheira”, despite the
high temperatures the ingredients were exposed to. It is important
to note that ‘‘Alheira” is smoked at low temperatures and had high
aw. Unlike other fermented meat products, ‘‘Alheira” is exposed to
a short ripening period. Many strains of LAB will withstand these
conditions. It is thus not surprising to isolate specific groups of
LAB from ‘‘Alheira”. Although L. plantarum and E. faecalis were
the dominant lactic acid bacteria in ‘‘Alheira”, strains within these
species are phenotypically and genetically different and may even
represent new species. The strains classified as E. faecalis will have
to be tested for virulence. This study forms the basis from which
safe starter cultures could be selected for production of ‘‘Alheira”.
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Duffner, F., & ÓConnel, M. (1995). Comparative evaluation of plasmid profiling and
rybotyping in the analysis of Lactobacillus plantarum strains heterogeneity in
silage. Journal of Applied Bacteriology, 78, 20–27.

Dutka-Malen, S., Evers, S., & Courvalin, P. (1995). Detection of glycopeptide
resistance genotypes and identification to the species level of clinically
relevant enterococci by PCR. Journal of Clinical Microbiology, 33, 24–27.

Felske, A., Rheims, W., Wolterink, A., Stackebrandt, E., & Akkermans, A. D. L. (1997).
Ribosome analysis reveals prominent activity of an uncultured member of the
class Actinobacteria in grassland soils. Microbiology, 143, 2983–2989.

Ferreira, V., Barbosa, J., Silva, J., Felício, M. T., Mena, C., Hogg, T., et al. (2007).
Characterisation of alheiras, traditional sausages produced in the North of
Portugal, with respect to their microbiological safety. Food Control, 18, 436–440.

Ferreira, V., Barbosa, J., Vendeiro, S., Mota, A., Silva, F., Monteiro, M. J., et al. (2006).
Chemical and microbiological characterization of alheira: A typical Portuguese
fermented sausage with particular reference to factors relating to food safety.
Meat Science, 73, 570–575.

Fontán, M. C. G., Lorenzo, J. M., Martínez, S., Franco, I., & Carballo, J. (2007).
Microbiological characteristics of Botillo, a Spanish traditional pork sausage.
LWT – Food Science and Technology, 40, 1610–1622.

Franz, C. M. A. P., Stiles, M. E., Schleifer, K. H., & Holzapfel, W. H. (2001). Enterococci
in foods – a conundrum for food safety. International Journal of Food
Microbiology, 88, 105–122.

Guarneri, T., Rossetti, L., & Giraffa, G. (2001). Rapid identification of Lactobacillus
brevis using the polymerase chain reaction. Letters in Applied Microbiology, 33,
377–381.

Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’s
manual of determinative bacteriology (9th ed.). PA, USA: Lippincolt Williams and
Wilkins.

Huey, B., & Hall, J. (1989). Hypervariable DNA fingerprinting in Escherichia coli:
Minisatellite probe from bacteriophage M13. Journal of Bacteriology, 171,
2528–2532.

Hugas, M., Garriga, M., & Aymerich, M. T. (2003). Functionality of enterococci in
meat products. International Journal of Food Microbiology, 88, 223–233.

Jang, J., Kim, B., Lee, J., Kim, J., Jeong, G., & Han, H. (2002). Identification of Weissella
species by the genus-specific amplified ribosomal DNA restriction analysis.
FEMS Microbiology Letters, 212, 29–34.

Ke, D., Picard, F. J., Martineau, F., Ménard, C., Roy, P. H., Ouellette, M., et al. (1999).
Development of a PCR assay for rapid detection of enterococci. Journal of Clinical
Microbiology, 37, 3497–3503.

Lee, H., Park, S., & Kim, J. (2000). Multiplex PCR-based detection and identification of
Leuconostoc species. FEMS Microbiology Letters, 193, 243–247.

Molenaar, D., Bringel, F., Schuren, F. H., De Vos, W. M., Siezen, R. J., & Kleerebezem,
M. (2005). Exploring Lactobacillus plantarum genome diversity by using
microarrays. Journal of Bacteriology, 187, 6119–6127.

Montel, M. C., Talon, R., Fournaud, J., & Champommier, M. C. (1991). A simplified
Key for identifying homofermentative Lactobacillus and Carnobacterium spp.
from meat. Journal of Applied Bacteriology, 70, 469–472.

Mora, D., Fortina, M. G., Parini, C., & Manachini, P. L. (1997). Identification of
Pediococcus acidilactici and Pediococcus pentosaceus based on 16S rRNA and ldhD
gene-targeted multiplex PCR analysis. FEMS Microbiology Letters, 151, 231–236.

Moretti, V. M., Madonia, G., Diaferia, C., Mentasti, T., Paleari, M. A., Panseri, S., et al.
(2004). Chemical and microbiological parameters and sensory attributes of a
typical Sicilian salami ripened in different conditions. Meat Science, 66,
845–854.

Müller, T. (1990). Comparison of methods for differentiation between
homofermentative and heterofermentative lactic acid bacteria. Zentralblatt
Mikrobiologie, 145, 363–366.

Nissen, H., & Dainty, R. (1995). Comparison of the use of rRNA probes and
conventional methods in identifying strains of Lactobacillus sake and L. curvatus
isolated from meat. International Journal of Food Microbiology, 30, 126–129.

Papamanoli, E., Kotzekidou, P., Tzanetakis, N., & Litopoulou-Tzanetaki, E. (2003).
Characterization of lactic acid bacteria isolated from a Greek dry-fermented
sausage in respect to their technological and probiotic properties. Meat Science,
65, 859–867.

Parente, E., Griego, S., & Crudele, M. A. (2001). Phenotypic diversity of lactic acid
bacteria isolated from fermented sausages produced in Basilicata (southern
Italy). Journal of Applied Microbiology, 90, 943–952.

Rantsiou, K., Drosinos, E., Gialitaki, M., Metaxopoulos, I., Comi, G., & Cocolin, L.
(2006). Use of molecular tools to characterize Lactobacillus spp. isolated from
Greek traditional fermented sausages. International Journal of Food Microbiology,
112, 215–222.

Rantsiou, K., Drosinos, E., Gialitaki, M., Urso, R., Krommer, J., Gasparik-Reichardt, J.,
et al. (2005). Molecular characterization of Lactobacillus species isolated from
natural fermented sausages produced in Greece, Hungary and Italy. Food
Microbiology, 22, 19–28.

Roy, D., Sirois, S., & Vincent, D. (2001). Molecular discrimination of lactobacilli used
as starter and probiotic cultures by amplified ribosomal DNA restriction
analysis. Currents Microbiology, 42, 282–289.

Samelis, J., Tsakalidou, E., Metaxopoulos, J., & Kalantzpopulos, G. (1995).
Differentiation of Lactobacillus sake and L. curvatus isolated from naturally
fermented Greek dry salami by SDS–PAGE of whole-cell proteins. Journal of
Applied Bacteriology, 78, 157–163.

Sanz, B., Selgas, D., Parejo, I., & Ordrhez, J. A. (1998). Characteristics of lactobacilli
isolated from dry fermented sausages. International Journal of Food Microbiology,
6, 199–205.



Sarantinopoulos, P., Andrighetto, C., Georgalaki, M. D., Rea, M. C., Lombardi, A.,
Cogan, T. M., et al. (2001). Biochemical properties of enterococci relevant to
their technological performance. International Dairy Journal, 11, 621–647.

Talon, R., Leroy, S., & Lebert, I. (2007). Microbial ecosystems of traditional fermented
meat products: The importance of indigenous starters. Meat Science, 77, 55–62.

Teixeira, L. M., Carvalho, M. G., Merquior, V. L., Steigerwalt, A. G., Brenner, D. J., &
Facklam, R. R. (1997). Phenotypic and genotypic characterization of Vagococcus
fluvialis, including strains isolated from human sources. Journal of Clinical
Microbiology, 35, 2778–2781.

Torriani, S., Felis, G. E., & Dellaglio, F. (2001). Differentiation of Lactobacillus
plantarum, L. Pentosus, and L. paraplantarum by recA gene sequence analysis and
multiplex PCR assay with recA gene-derived primers. Applied and Environmental
Microbiology, 67, 3450–3454.

Urso, R., Comi, G., & Cocolin, L. (2006). Ecology of lactic acid bacteria in Italian
fermented sausages: Isolation, identification and molecular characterization.
Systematic and Applied Microbiology, 29, 671–680.
Vauterin, L., & Vauterin, P. (1992). Computer-aided objective comparison of
electrophoretic patterns for grouping and identification of microorganisms.
European Microbiology, 1, 37–41.

Velasco, D., Perez, S., Peña, F., Angeles Dominguez, M., Cartelle, M., Molina, F., et al.
(2004). Lack of correlation between phenotypic techniques and PCR-based
genotypic methods for identification of Enterococcus spp.. Diagnostic
Microbiology and Infectious Disease, 49, 151–156.

Ward, L. J. H., & Timmins, M. J. (1999). Differentiation of Lactobacillus casei,
Lactobacillus paracasei and Lactobacillus rhamnosus by polymerase chain
reaction. Letters in Applied Microbiology, 29, 90–92.

Yost, C. K., & Nattress, F. M. (2000). The use of multiplex PCR reactions to
characterize populations of lactic acid bacteria associated with meat spoilage.
Letters in Applied Microbiology, 31, 129–133.


	Phenotypic and genetic heterogeneity of lactic acid bacteria isolated from “Alheira”, a traditional fermented sausage produced in Portugal
	Introduction
	Material and methods
	Identification of lactic acid bacteria
	Origin and sampling of isolates
	Phenotypic and biochemical tests
	Genotypic tests
	DNA isolation
	PCR with species- and genus-specific primers and 16S rRNA gene sequencing
	Random amplified polymorphic DNA (RAPD) analyses



	Results and discussion
	Acknowledgements
	References


