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Abstract 

The current energy market requires urgent revision for the introduction of renewable, 

less-polluting and inexpensive energy sources. Biohydrogen (bioH2) is considered to be 

one of the most appropriate options for this model shift, being easily produced through 

the anaerobic fermentation of carbohydrate-containing biomass. Ideally, the feedstock 

should be low-cost, widely available and convertible into a product of interest. 

Microalgae are considered to possess the referred properties, being also highly valued for 

their capability to assimilate CO2 [1]. The microalga Spirogyra sp. is able to accumulate 

high concentrations of intracellular starch, a preferential carbon source for some bioH2 

producing bacteria such as Clostridium butyricum [2]. In the present work, Spirogyra 

biomass was submitted to acid hydrolysis to degrade polymeric components and increase 

the biomass fermentability. Initial tests of bioH2 production in 120 mL reactors with C. 

butyricum yielded a maximum volumetric productivity of 141 mL H2/L.h and a H2 

production yield of 3.78 mol H2/mol consumed sugars. Subsequently, a sequential batch 

reactor (SBR) was used for the continuous H2 production from Spirogyra hydrolysate. 

After 3 consecutive batches, the fermentation achieved a maximum volumetric 

productivity of 324 mL H2/L.h, higher than most results obtained in similar production 

systems [3] and a potential H2 production yield of 10.4 L H2/L hydrolysate per day. The 

H2 yield achieved in the SBR was 2.59 mol H2/mol, a value that is comparable to those 

attained with several thermophilic microorganisms [3], [4]. 

In the present work, a detailed energy consumption of the microalgae value-chain is 

presented and compared with previous results from the literature. The specific energy 

requirements were determined and the functional unit considered was gH2 and MJH2. It was 

possible to identify the process stages responsible for the highest energy consumption 

during bioH2 production from Spirogyra biomass for further optimisation. 
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1. INTRODUCTION 

Biofuels are regarded as a viable alternative to fossil fuels for the production of renewable 

energy. Special attention has been given to biomass-derived fuels thanks to their 

renewable and largely non-polluting qualities. Biohydrogen (bioH2) is one of such fuels, 

being easily convertible into energy through combustion, a process which yields solely 

water as sub-product [5]. BioH2 production can be attained by anaerobic fermentation of 

carbohydrate-containing biomass and originates a highly rich biogas containing both H2 

and CO2 [6]. A prime example of a feedstock adequate for bioH2 production is microalgal 

biomass. Microalgae are photosynthetic organisms able to assimilate atmospheric CO2 and 

store both lipids and carbohydrates in their intracellular space. They are also highly 

productive allowing for a near daily harvest and, unlike higher plant cultures, require no 

arable land or potable water [7]. BioH2 production has already been successfully achieved 

by the authors, using Scenedesmus obliquus [8], [9], Chlorella vulgaris [10] and 

Spirogyra sp. biomass [2]. Spirogyra, in particular, is able to accumulate starch, a 

preferential substrate for anaerobic fermentation by certain bacterial strains, at very high 

concentrations [2]. In this work, the production of bioH2 from Spirogyra biomass by 

Clostridium butyricum was evaluated in small-scale batch reactors and a bench-scale 

sequential batch reactor. Both processes were compared in terms of their H2 yield, 

production rate and overall energy consumption. 

 

2. MATERIALS AND METHODS 

The Spirogyra biomass used in this work had the following average composition (% (w/w) 

dry weight basis): 45.1% total sugars, 22% crude protein, 3.6% fat, 25.9% ash and 3.4% 

others (by difference). The microalga was cultured and harvested as already described [2]. 

Biomass hydrolysis was performed with H2SO4 1N (60 min, 121 ºC). Small scale 

fermentation was undertaken in 120 mL serum flasks containing 20 mL of MCM medium 

[11]. Bench-scale sequential batch fermentation was performed in a lab scale double jacketed 

reactor (1.65 L) with a total medium volume of 500 mL (10 g/L of total sugars, 37 ºC, 150 

rpm). After the first batch assay, 250 mL of the medium were replaced with a 1:1 mixture of 

hydrolysate and concentrated MCM. The produced biogas was collected and stored in 

inverted serum flasks filled with water, and quantified by displacement of the liquid phase. 

Biomass dry weight was determined throughout the fermentation. Gas samples were analysed 

by GC and the fermentate samples by HPLC [9]. The final energy consumption inventory 

associated with the microalga culturing, harvesting, drying, hydrolysis and fermentation was 

assessed based on direct equipment energy measurements. The results are expressed in 

MJ/MJH2. 

 

3. RESULTS AND DISCUSSION 

H2 production from Spirogyra sp. hydrolysate was first attempted in a small set-up consisting 

of individual flasks with the purpose of evaluating whether C. butyricum was able to 

successfully convert the sugars made available by the acid hydrolysis. The fermentation 

results are displayed in figure 1.  
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Figure 1. Time-course of H2 production, sugar consumption and cell dry weight in: A) small-scale batch 

reactor; B) bench-scale sequential batch reactor (□ – H2; ♦ – total sugars; ∆ – cells). 

 

As seen in figure 1 (A), H2 production occurred rapidly between 0 and 12 hours of incubation 

with no visible lag phase. The maximum H2 production was achieved at 42 hours of 

fermentation (2.1 L H2/L). The maximum H2 percentage in the biogas produced was 28% 

(v/v). The highest H2 production rate (141 mL/L.h) was detected from up to 12 hours and 

corresponded to a H2 yield of 3.78 mol H2/ mol glucose equivalents. These results show that 

not only H2 production from Spirogyra hydrolysate was viable as it was comparable or higher 

to already published results [8], [9].  

With the objective of scaling-up the bioH2 production, a sequential batch reactor (SBR) was 

set-up. The use of a sequential batch system maintains the concentration of biomass inside the 

reactor in a quasi-exponential status, virtually eliminating the lag-phase between consecutive 

batches and lessening the operation time of each batch. This enables to increase the number of 

batches per day and the overall H2 production rate. Figure 1 (B) depicts the results of bioH2 

production from Spirogyra hydrolysate in SBR during three consecutive batches. In 

comparison to the small-scale batch reactor, the H2production rate increased almost two-fold 

(324 mL/L.h) and the biogas produced was richer in H2 (>50% (v/v)). The bioH2 production 

did not change significantly during the consecutive batches, displaying a steady, uninterrupted 

production profile up to 4.4 L H2/L. 

Table 1 summarises the inventory of both production processes and the energy consumption 

associated to each stage of H2 production. The results are presented in MJ per g of H2 

produced. 
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Table 1. Inventory results of bioH2 production from Spirogyra biomass (MJ/gH2) 

Production stage 
BioH2 production in 

small-scale batch reactor 

BioH2 production 

in SBR 

Microalga culture 0.11 0.03 

Biomass harvesting  and drying 1.87 0.55 

Biomass hydrolysis 1.71 0.07 

Fermentation 1.96 3.09 

 

In order to show the results in MJ per MJ of hydrogen produced, a lower heating value of 120 

MJ/kg was used [1], [2]. A total energy consumption of 47 and 31 MJ/MJH2 was obtained in 

the small-scale batch reactor and the SBR, respectively. Previous studies on the fermentation 

of dried and ground microalgal biomass achieved total energy consumption values of 88 

MJ/MJH2 with Scenedesmus obliquus as feedstock and 207 MJ/MJ H2 with Spirogyra sp., 

values which are visible higher than those attained in this study [1], [2]. The use of less 

energy consuming harvesting and drying procedures (electrocoagulation and solar 

dewatering) and the use of a simpler culture medium contributed for this energy consumption 

decrease. In the small-scale process, the production and processing of the microalgal biomass 

(harvesting, drying, hydrolysis) was responsible for a considerable energy consumption (30 

MJ/MJH2), in accordance to what was already reported by other authors [12]. In contrast, the 

fermentation was clearly the stage which consumed more energy in the SBR. This result is 

directly related to the high energy consumption of the heating bath used for controlling the 

reactor temperature. Together, the biomass hydrolysis and the fermentation stages accounted 

for 85% (26 MJ/MJH2) of the total energy consumption in the SBR. 

The comparison between small-scale and bench-scale allowed us to assess that the SBR 

improved the cumulative H2 production, the H2 production rate and the global energy 

consumption. Although it is still necessary to reduce the ratio of energy input per energy 

output, the increase in the scale of bioH2 production allowed for a reduction of 34% of the 

energy requirements. The comparison of the results obtained in this work with others 

already published [2] shows a clear improvement in the process performance, likely due to 

the refinement of the microalga harvesting process, the culture medium optimisation and 

the bioconversion efficiency.  

 

4. CONCLUSIONS 

The purpose of the current study was to evaluate the effect of scaling-up the bioH2 

production from microalgal biomass in the energy requirements and production yield of 

the process. The fermentation results show that Spirogyra biomass is an adequate 

feedstock for the fermentation by C. butyricum, achieving H2 production yields close to 

the maximum theoretical value. The SBR system improved significantly the H2 production 

yield (from 2.1 to 4.4 L H2/L) and H2 production rate (from 141 to 324 mL/L.h), while 

supporting at the same time the operation in a continuous mode. The energy inventory 

analysis revealed that the process scale-up decreased the energy consumption in 34%. It is 
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possible that pursuing with the optimisation of the fermentation stage, the energy 

requirements may decrease to values which make the biological H2 production more 

sustainable. 
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