

Journal of Molecular Structure 1079 (2015) 327–336

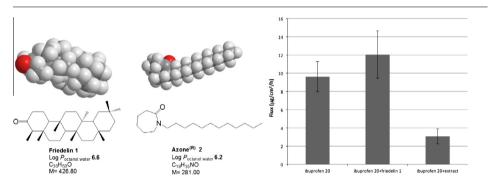
Journal of Molecular Structure

Novel insights for permeant lead structures through in vitro skin diffusion assays of Prunus lusitanica L., the Portugal Laurel

Maria do Céu Costa a,b,*, Patrícia Duarte A, Nuno R. Neng C, José M.F. Nogueira C, Filomena Costa d, Catarina Rosado^a

- ^a CBIOS, Universidade Lusófona, Campo Grande, 376, 1749-024 Lisboa, Portugal
- b LNEG, Laboratório Nacional de Energia e Geologia, I.P., Estrada da Portela, Bairro do Zambujal, Apartado 7586, Alfragide, 2610-999 Amadora, Portugal
- CUniversidade de Lisboa, Faculdade de Ciências, Departamento de Química e Bioquímica e Centro de Química e Bioquímica, Campo Grande, 1749-016 Lisboa, Portugal
- d ASAE Autoridade de Segurança Alimentar e Económica, Departamento de Riscos Alimentares e Laboratoriais (DRAL), Edifício F Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal

HIGHLIGHTS


- The P. lusitanica L. extract has a novel effect of retarding permeation of both lipophilic and hydrophilic model molecules.
- Terpenes were identified by GC-MS after extraction by ASE (50.55%) and Soxhlet (89.91%) using the same solvent (PE 40-60 °C).
- The ability of a triterpene to act as a promotor of the permeation of ibuprofen was herein determined for the first time.
- It was concluded that permeation enhancement capacity is linked to the lipophilic properties of friedelin.

ARTICLE INFO

Article history: Received 30 May 2014 Received in revised form 8 August 2014 Accepted 14 August 2014 Available online 23 August 2014

Keywords: Prunus lusitanica L. constituents Permeant model Skin barrier Friedelin Ibuprofen 20 Caffeine 19

G R A P H I C A L A B S T R A C T

ABSTRACT

As a contribution for the generation of libraries in which a natural product (NP) is used as the guiding structure, this work sought to investigate molecular features of triterpenes as deliver leads to cross the stratum corneum at a significant rate. Seeking a bioguided investigation of the dermocosmetic lead-like potential of triterpenes in Prunus lusitanica L., various extracts were obtained by two different methods (Soxhlet extractor and Accelerated Solvent Extraction-ASE) and analyzed by GC-MS and NMR. In vitro assays were conducted to quantify the friedelin 1 and crude plant extract permeation through a membrane of polydimethylsiloxane (PDMS), as well as their skin penetration enhancement capacity using two model molecules, caffeine 19 and ibuprofen 20. Friedelin 1 was identified as the major component (16-77%, GC) with isolated yield of 51% w/w (94%, GC) from Soxhlet residue (1.7% p/p) of the dried aerial parts of the plant harvested when in early flowering stage. Friedelin 1 promoted the penetration of the lipophilic molecule 20, however, it did not influence the permeation of the hydrophilic permeant 20. On the other hand, the crude extract acted as a retardant of the penetration of both substances. Molecular characteristics for the applicability of P. lusitanica L. in the development of dermocosmetics, as well as a new potential use for friedelin 1 in particular, are demonstrated. Probable mechanisms for chemical penetration enhancement using triterpenes as models for transdermal administration are herein discussed. © 2014 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: CBIOS, Universidade Lusófona, Campo Grande, 376, 1749-024 Lisboa, Portugal. Tel.: +351 21 0924691; fax: +351 214720203. E-mail addresses: p1658@ulusofona.pt, ceu.costa@lneg.pt, 214720203@fax.ptprime.pt (M.C. Costa).