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HIGHLIGHTS

« ER, WS and OP are suitable feedstocks for Southern European biorefineries.

« The proposed biorefining strategy is efficient for monosaccharide recovery.

« Maximal monosaccharide recovery was obtained after autohydrolysis at 210 °C.

« Maximal cellulose enzymatic digestibility was obtained after autohydrolysis at 230 °C.
« The conditions for maximal sugar recovery yield were similar for all feedstocks.
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This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning
(OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid
fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides
from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isother-
mal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction
while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosac-
charides was studied by optimizing sulfuric acid concentration (1-4% w/w) and reaction time
(10-60 min), employing a factorial (22) experimental design. The solids resulting from pretreatment were
submitted to enzymatic hydrolysis by applying commercial cellulolytic enzymes Celluclast® 1.5 L and
Novozyme® 188 (0.225 and 0.025 g/g solid, respectively). This strategy provides high total monosaccha-
ride recovery or high glucose recovery from lignocellulosic materials, depending on the autohydrolysis
conditions applied.
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1. Introduction wheat straw (WS) and olive tree pruning (OP) are lignocellulosic

materials largely available in Southern Europe (Faraco and Hadar,

Lignocellulosic materials are the largest renewable and poten-
tially sustainable source of biomass that can be used in a biorefin-
ery framework for the production of fuels, chemicals and materials
(FitzPatrick et al., 2010; Ghatak, 2011). Eucalyptus residues (ER),

Abbreviations: OS, oligosaccharides; GlcOS, gluco-oligosaccharides; XOS, xylo-
oligosaccharides; AOS, arabino-oligosaccharides; GalOS, galacto-oligosaccharides;
MOS, manno-oligosaccharides; HMF, 5-(hydroxymethyl)furfural; X;, sulfuric acid
concentration; X, isothermal reaction time.
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2011), and their abundance in the Iberian Peninsula (Spain and
Portugal, area of approx. 582,000 km?) is estimated in 2.8 x 10°,
1.0 x 107 and 4.0 x 10° ton per year of ER, WS and OP (European
Union, 2013; FAOSTAT, 2014; Kim and Dale, 2004; Romero-
Garcia et al., 2014). Therefore, ER, WS, and OP, have been consid-
ered for the biomass supply chain of biorefineries within this
region. In fact, considering that a biorefinery could operate with
50% of the feedstocks available within 80 km radius, it would be
possible to process, in average, approx. 1,000 ton/day, which could
generate circa 50 million L of lignocellulosic ethanol per year.
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