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Abstract: The objective of this paper is to analyse the physical performance of two technologies in a water and 
electricity co-generation scheme: Concentrated Solar Power (CSP) plant coupled to a Reverse Osmosis (RO) unit for a 
location in the city of Trapani, in southern Italy. The modelled system is compared with the results of another study [2], 
in which a Multi-Effect Desalination (MED) is powered by a CSP plant for the same location in Italy, using as reference 
an existing stand-alone gas powered MED plant located at Trapani [3] (which has operated until very recently). The 
overall aim is to assess and compare these two cogeneration schemes, using as reference the existing MED plant. This 
work was conducted using as the main simulation tool: the System Advisor Model (SAM) developed by the US 
National Renewable Energy Laboratory (NREL); a recent upgrade to SAM made available to this work through 
Laboratório Nacional de Energia e Geologia I.P. (LNEG); and the Reverse Osmosis System Analysis (ROSA) 
developed by the Dow Chemical Company. A technical visit to a real commercial RO plant in the south of Portugal 
(Alvor) was conducted, and the data gathered was used in the validation of the ROSA model. The results for the 
Trapani case study show that the CSP-RO arrangement has the capability to produce ~50% of the total production of the 
full scale plant at Trapani, if operated at nominal capacity, year round. Also, the CSP-RO system provides ~20% more 
electricity and water than the CSP-MED system throughout the studied period of one year. The two co-generation 
schemes provide promising potential to fight the issues related to fresh water shortages and dependency on fossil fuelled 
desalination. Thus, they can aid in decreasing the effects associated with CO2 emissions and climate change. 
 
Keywords: Reverse Osmosis; Concentrated Solar Power; System Analysis; Multi-Effect Desalination; Solar Powered 
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1. INTRODUCTION 
 
The use of seawater desalination to provide fresh drinking water is a well-established and flourishing industry. The two 
main technologies used are thermal desalination and Reverse Osmosis (RO) membrane filtration. In the main market for 
the desalination industry – the Middle East – large scale desalination plants are heavily used for the production of fresh 
water. It is expected that at current growth rates and global climate changes, water demand in the Middle East and 
North Africa (MENA) region alone is going to increase by around 50% in the next 35 years [1]. The utilization of 
renewable energy sources for the production of drinking water is of great global interest, as it can potentially provide a 
sustainable solution for fresh water production in regions like the Middle East. The work described in this paper falls 
under this framework. It focuses on studying the potential of seawater desalination systems powered by Concentrated 
Solar Power (CSP) plants as a means of renewable desalination. RO and MED were selected to be analysed in this work 
as they present the best performances within the mature technologies operating in the desalination market. 
 
1.1 Methodology 
The steps applied to perform this study are based on freely available computer modelling tools used for the simulation 
of RO and CSP operation. These steps include, firstly the validation of the Reverse Osmosis System Analysis (ROSA) 
tool with operational data for nominal conditions  from a small scale water desalination plant in Alvor, Portugal. 
Secondly, the utilisation of the System Advisor Model (SAM) developed by the National Renewable Energy Laboratory 
(NREL) to simulate a CSP plant, together with ROSA to simulate the RO unit using data for the location of Trapani. 
The results of both models were combined to obtain the performance of a CSP-RO co-generation scheme. Thirdly, an 
analysis and comparison between: 1) the CSP-RO modelled; 2) a CSP-MED co-generation scheme previously studied 
in [2]; and 3) data from a real TVC-MED plant that exists in Trapani, Sicily [3]. 
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2. REVERSE OSMOSIS SYSTEM ANALYSIS (ROSA) TOOL  
 
ROSA can be used to estimate the performance of a new RO system under design conditions, or the performance of an 
existing RO system under off-design conditions. This projected performance is based on the nominal performance 
specification for the DOW FILMTEC™ element(s) (or membranes) used in that system. Accurate results can be 
obtained very quickly using the ROSA computer program. Thus, it can be used to modify and optimize the design of an 
RO system. The entire system calculation methods will not be described in detail, however the major governing 
equations and parameters will be briefly described in this section. These equations were also used previous work [4] to 
develop a computer model, similar to ROSA, to predict the performance of RO systems based on membrane-to-
membrane analysis (single element performance). 
 
2.1 Design Equations and Parameters 
The performance of a specified RO system, in ROSA, is defined by its feed pressure (or permeate flow, if the feed 
pressure is specified) and its salt passage (amount of salt passing through the membrane). In its simplest form, the 
permeate flow (Q) through an RO membrane is a function of the membrane active area (wet area) (S), the Net Driving 
Pressure (NDP) (ΔP-Δ) and the membrane permeability. The permeate water flux can be calculated from the following 
equation [5]: 
 

∆ ∆       (1) 
 
Van’t Hoff’s theoretical osmotic pressure equation is adapted to operational conditions by DOW FILMTECTM, and then 
used to calculate the osmotic pressure of the feed solution: 
 
 1.12 273      (2) 
 
For a given recovery rate, applied feed pressure (Pf) increases with the increasing feed osmotic pressure. It should be 
noted that there’s a minor drop in feed pressure as the feed solution passes from one membrane to another in the 
pressure vessel due to friction. Pressure drop in the concentrate side of an RO membrane can be estimated from the 
following equation: 
 

	 0.01 .       (3) 
 
The average concentrate side flow rate (qfc), is equal to the arithmetic average of the feed and concentrate flow rates as 
in the following equation: 
 

      (4) 

 
In a typical RO process, as water flows thorough the membrane and the membrane rejects salts, a boundary layer is 
formed near the membrane surface in which salt concentration exceeds the salt concentration in the bulk solution by a 
factor equal to the concentration polarization value [5]. This parameter can be calculated from the following equation: 
 

      (5) 

 
Experimentally, DOW FILMTECTM has determined that CP=EXP(0.7R). Where R is the recovery rate. Equation (5) 
shows that the nominal salt rejection rate in RO membranes is lower than the true rejection rate. The actual rejection 
rate can be defined as the ratio between the permeate concentration to the feed concentration at the membrane surface: 
 

1 ⁄     (6) 
 
Although the membranes are designed for high rejection, some amounts of salt always pass through the membranes. In 
the ROSA design equations, the salt passage is by salt diffusion through the membrane. Thus, the salt flux is 
proportional to the salt concentration difference between both sides of the membrane. The proportionality constant is 
known as the salt diffusion coefficient or the B factor.  
 

                   (7) 
 
The quality of the permeate is proportional to the B factor, concentration polarization, salt rejection, feed concentration 
and membrane active area. It can be calculate using the following equation:  



 

∗ ∗ ∗ ∗                 (8) 

 
The permeate concentration Cp represents the quality of the treated water which is a function of membrane type and 
operational conditions such as feed water temperatures and TDS levels. The permeate osmotic pressure can be 
calculated using the feed osmotic pressure as a reference: 
 
  1                   (9) 
 
Permeate flow through the RO membrane can be expressed more completely by rearranging Eq. 1 taking into account 
the effect of the permeate osmotic pressure, average pressure drop in the RO vessel, permeate pressure, and fouling 
factor: Eq. 1 can be rewritten as follows: 
 

           (10) 
 
The fouling factor is applied to membrane to simulation aging and lose of permeability due to compaction and scale 
fouling. Typically a fouling factor of 1 is applied to new membrane, and a fouling factor between 0.65 to 0.85 for three 
year old membranes and onwards. Also, because the performance of the RO membranes is typically tested at 25 oC, a 
Temperature Correction Factor (TCF) is considered were suitable in the equations above to adjust the temperature 
differences. TCF is determined using the following equations:  
 

2640 ; T25 oC                        (11) 

 3020 ; T25 oC                       (12)   
  
 
3. ROSA VALIDATION       
  
The reverse osmosis plant data used in the validation procedure was provided by the plant operators  of a desalination 
plant in the southern city of Alvor, Algarve, Portugal on October 10th 2014. The plant has a water production of around 
800 m3/day, and the data referred to nominal operation of the plant 
 
3.1 Plant Configurations 
The plant is composed of a pre-treatment system, 54 semipermeable membranes (9 pressure vessels with 6 membranes 
each) as seen in figure 1, an energy recovery system (figure 2) , and three main pumps: a low pressure pump (1 bar) 
between the intake and pre-treatment filters, a high pressure pump (60 bars) forcing the water through the membranes, 
and the energy recovering pump (56 bars). It also has a post-treatment system and a reservoir for produced water of 
1000 m3. A high efficiency energy recovery system is used, it recovers energy by transferring most of the remaining 
pressure contained in concentrate stream to a portion of the total feed water mass flow. This system allows the mixing 
of a small amount of brine water (5-10%) with the supply water, which can compensate for minimum required salinity 
to run the membranes to produce the targeted permeate quality. 
 

 
Figure 1: Alvor plant membrane assembly 

 



As part of this study, the Reverse Osmosis System Analysis (ROSA) model, a product of DOW FILMTECTM, is 
validated against another manufacturer’s desalination membranes (Toray). Such experiments are found in the literature 
[6]. The Alvor plant uses Toray TM820C-400 membranes. These are high rejection seawater membranes, with an area 
of 37m2 per element that according to the manufacturer maximize productivity and enable predictive system design. 
The current membranes being used at Alvor were replaced in a successive manner, one by one, starting from the first 
maintenance operation carried out, and by May 2014, they had all been replaced. (the first element of each pressure 
vessel is normally replaced during each major maintenance operation, being the new replacement placed at the back of 
each pressure vessel). 

 
Figure 2: Energy Recovery Device 

 
In the validation procedure carried out in this work, it is assumed that all membranes are new. The RO cross reference 
tool [7] is used to determine the corresponding Dow membrane type with similar physical and operating characteristics 
to the ones used at the Alvor plant. 
 
The plant is located at 17 m above sea level. It has three wells. One used as a water intake at -8m below the sea level, 
one used to monitor the water level, salinity and temperature. In addition to a third well which acts as a brine discharge 
located at 30m depth and connected to underground currents that carry the brine into the sea. It is the furthest away 
from the plant to ensure that no mixing occurs between the feedwater and the brine. The wells are located near the coast 
and the changing tide levels can have an impact on the operation of the plant by causing a mixture of underground fresh 
water streams with the seawater underground intake, which can lead to a decrease in the salinity of the feed water 
throughout the year (depending on the rainfall precipitation levels). 
 
3.2 Validation Input Data 
The validation of the ROSA model is done using the quality, mass flow rate, and temperature of the total feed water. 
The main parameters used in the validation are shown in table 1. 
 
3.3 Outputs Results 
The main results of the validation process are shown in table 2, where real operational data at nominal conditions from 
the RO plant in Alvor is compared to the model outputs for the general operating parameters of permeate and 
concentrate flow rates and salinities, as well the feed pump pressure. 
 
The model predictions fall in the line with the operational data from the plant, with an error margin of ~10% compared 
to the real plant outputs (figure 3). The most important finding is that the model under predicted the feed pump pressure 
by around 7.5%. These marginal differences can be attributed to simplifying assumptions within the models 
mathematical algorithms, and to the quality of the real data gathered. Performance parameters for nominal operation, 
regarding the water quality, were not collected during the technical visit to the plant, as it was not in operation during 
the site visit and a shutdown procedure in which fresh water is flushed through the membranes had been performed. 
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4. CASE STUDY 
 
4.1 System Description 
The aim of this study is to simulate the performance of a parabolic trough plant coupled with a seawater desalination 
RO unit and compare it with an existing large-scale (Thermal Vapor Compression) TVC-MED parallel feed 
desalination plant, capable of producing 36000 m3/d [8]. This MED plant was chosen as reference for this case study, 
firstly, because it is one of the few plants with detailed design information available in the literature. Secondly, because 
it was possible to use data from a previous study regarding the operation of this MED plant using natural gas versus the 
option of using a CSP plant as power source [2]. Thirdly, no relevant detailed comparison is available in the literature 
regarding the operation of CSP-RO, versus CSP-MED, versus the operation of an existing plant for the same site. 
 
Such a coupling (CSP-RO) will initially assume that all the net electrical power output from the power block will drive 
the RO unit’s high-pressure pump and both pre and post-treatment systems. The unit’s main operating parameters, that 
is, the recovery and feed pressure, are established by considering membrane control and operation limits. The CSP-RO 
system modelled consists of an 110 MWe parabolic trough CSP plant with a conventional steam Rankine cycle coupled 
with a large-scale two-stage RO plant (first stage assumed to have 49 pressure vessels, and second stage 36 pressure 
vessels, each pressure vessel with 6 elements). The size selected for the CSP plant is much larger than necessary (~110 
MWe instead of ~6.7 MWe gross) in order to compare the performance of the modelled CSP-RO system to that of a 
low temperature CSP-MED, with an equal power capacity previously studied in [2] for the same geographical location. 
The RO system is divided into six parallel connected trains, to enable flexible partial operation (each train with 2 
stages). The RO system has a total recovery of 45%, and energy is recovered using a high efficiency pressure 
exchanger. The first stage recovers 37.6%, and the second stage 11.8% (the second stage receives as feed the brine 
produced on the first stage). Each simulated RO train produces 6000 m3/day of fresh water, with a total of 36000 
m3/day at nominal capacity (matching the output of the full-scale MED plant described in [2]).  
 
The study focuses on the water production of the CSP-RO system using four different cooling systems with the CSP 
plant: Wet cooling (using fresh water), wet cooling (using seawater), dry cooling and once-through seawater cooling 
assuming no grid connection in all cases. The location chosen for the system is the city of Trapani, in the southern 
island of Sicily, in Italy. The simulation for the CSP plant was done by System Advisor Model’s (SAM) (version 
2014.1.14) physical trough model [9], using the integrated TRNSYS software program. SAM is a validated simulation 
program that can simulate the performance of CSP systems among other renewable energy systems using hourly 
resource data. The simulations for the once through and seawater wet cooling systems are performed using an add-on 
recently developed for SAM [2]. This add-on is also able to simulate the operation of a CSP-MED system, and the 
detailed hourly data describing the operation of the CSP-MED system used in this work to compare with the outputs of 
the CSP-RO system was obtained from the work described in [2] using this same add-on. It was defined that the CSP-
RO system operates in a way that ensures that, in both full and partial operation of the CSP plant, each train is operated 
either at 100% capacity or it is shut down, depending on availability of power under different water temperatures across 
the simulation period (one year). Pumping costs of the seawater from the intake to the high pressure pump of the RO 
system are not accounted for in this work. The water temperatures are expected to range yearly within 10-22oC. A 
constant permeate flow is maintained by adjusting the feed pressure according to temperature in a way that keeps the 
same ratio of permeate flow against feed flow during operation. In the simulation, as an approximation it is assumed 
that the duration of both the start-up and shutdown of the RO unit is zero, e.g. the RO system will start-up or shutdown 
immediately, depending on availability of electric energy from the CSP plant (in reality full scale RO plants can 
perform the start-up and shutdown procuderes in a short amount of time, ~5-15 minutes). These procedures vary a lot 
from plant to plant. Figure 4 shows a simpified scheme of the CSP-RO system considered in this work.  
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Table 3: Main Simulations Inputs for SAM and ROSA 

 
*The solar multiple makes it possible to represent the solar field aperture area as a multiple of the power block rated capacity. A solar multiple of one 
(SM=1) represents the solar field aperture area that, when exposed to solar radiation equal to the design radiation value (irradiation at design), 
generates the quantity of thermal energy required to drive the power block at its rated capacity (design gross output), accounting for thermal and 
optical losses. [9] 
†fraction of the power block design turbine gross output from the Power Block that can be met by the backup boiler. 
  

Input Value Value Units 
CSP Plant    
Installed CSP Power (PT using oil as HTF) 99 net (110 gross) MWe 
Thermal Storage 13 h 
Rated cycle conversion efficiency 37.74 % 
Condenser temperature for rated cycle conversion efficiency 35 oC 
Solar Multiple* 3 - 
Irradiation at design (reaching the solar field) 950 W/m2 
Total collector loop conversion efficiency (Solargenix SGX-1) 71.69 % 
Design inlet temperature  391 oC 
Design outlet temperature 291 oC 
Operating boiler pressure 100 bar 

Hot standby period 2 h 
Thermal power fraction for standby 20 % 
Max. turbine overdesign operation 105 % 
Min. turbine operation 25 % 
Direct normal irradiation (DNI) 2004 kWh/m2/yr 
Fossil fill fraction† 0 % 
   
RO   
Total number of pressure vessels n=85 - 
Pressure vessels staging Ratio 49:36 - 
Total number of membranes n=3060 - 
Feed water flow rate 13333 m3/day 
System recovery rate 45 % 
Flow factor 1  - 
Water Temperatures 10(min)/22(max) oC 
Feed water salinity (TDS) 40000 mg/l 
pH 7.6 - 
Pre-stage ΔP 0.345 Bar 
Membrane Type SW30HRLE-400i - 
Pump Efficiency 90 % 
Energy Recovery Device Efficiency 90 % 
   
Once through seawater cooling   
Distance between plant and water intake tube 2000 m 
Intake tube water velocity 0.3 m/s 
Temperature approach 5 oC 
Distance between plant and end of brine discharge tube 2000 m 
Brine tube water velocity 0.3 m/s 
Plant site elevation above sea level 10 m 
Water storage tank distance from plant 100 m 
Water storage tank height 5 m 
Condensation temperature 40 oC 
   

Dry cooling   

Minimum condenser pressure 2 inHg 
Initial temperature difference at design 16 oC 
   

Wet cooling   

Minimum condenser pressure 1.25 inHg 
Approach temperature 5 oC 
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months in winter. The MED consumption for pumping 
only (2.81 kWh/m3) is slightly lower than that of the RO 
(3.32 kWh/m3) which highly depends on the salinity of 
the input water (it is important to note that no pumping 
energy costs are assumed between the intake and the RO 
plant in the simulations conducted in this work). For the 
Trapani case study the cutback introduced by the MED 
coupling to the CSP plant is equivalent to 15.54 kWh/m3. 
The plant settings leading to this high value, favored the 
number of hours that the MED would operate at nominal 
capacity instead of optimizing the average cutback that 
the MED plant would impose on the electric production 
of the CSP plant. Other CSP+MED configurations can 
achieve better results than the one studied in [2] implying 
that the present conclusions are not generally valid for all 
CSP+MED integration schemes but only for the 
configurations described in the present work. 
 
From the analysis above, it is seen that the electricity 
yield of the CSP-MED is considerably lower. This is due 
to the high cold end temperature of the steam turbine 
which result in the delivery of less mechanical work to 
the power generator than in the case of using a steam 
turbine with lower cold end temperature as in the case of 
RO representing the difference (cutback) in electricity 
production. The MED reduces significantly the potential 
electrical production of the CSP plant for the case study 
of Trapani. In order to produce the water amount equal to 
the full scale plant found at Trapani, using the same 
capacity factor for the RO unit of 48% achieved in the 
simulations, the number of trains in the RO system has to 
double e.g. system will have a nominal capacity of 72000 
m3/day. 
 
Future work should include the economic evaluation of 
the two configurations in order to determine the best 
option for any specific site. Additionally, the effects of 
the partial operation of the RO system should be 
investigated over the long term to determine the 
economic viability of such an operating strategy as used 
in the CSP-RO coupling, and the option of grid 
integration. Finally, the comparison should be performed 
against different CSP+MED configurations. 
 
Although, the results are in favor of the CSP-RO 
configuration for the case study of Trapani, the coupling 
of CSP and MED has many advantages. For example, the 
MED system replaces the cooling system of the CSP 
plant, and all the power consumption is related to water 
pumping. On the other hand, CSP and RO systems can be 
completely separated, allowing the installation of CSP in 
potentially more suitable locations inland. The losses due 
to transportation of electricity must be accounted for in 
this CSP-RO configuration. 
 
As the results show, the electric production follows a 
typical seasonal pattern similar to that of most CSP 
systems, in which lower levels of production occur in 
winter, and the highest level in summer, due to the 
increased availability of solar irradiation. Interestingly, 

this falls in line with the water and electricity demand 
profile at Trapani, with high demands during the summer 
time and low demands in winter [2]. Additionally, large-
scale water storage is possible in the region, as rainwater 
can be and is usually collected in the winter time and 
stored in artificial lakes, acting as large open reservoirs. 
Thus, for the location of Trapani, water production using 
desalination plants does not require a constant output 
throughout the year. Also, there’s the possibility of 
connecting the system to the grid, if necessary, to sustain 
the operation during nighttime and/or in winter. The peak 
demand could be met by the CSP-RO/SWCC system and 
in winter, the lakes and reservoirs could provide 
freshwater. A hybrid CSP-MED/RO plant could also be 
considered, where the exhaust steam from the Rankine 
cycle is fed into the MED system, while most of the net 
electric power is delivered to the RO unit. This kind of 
integration could also aid in providing higher purity 
product water with the RO system using less stages, by 
blending the output water of the two systems. Thus, 
improving the overall water quality and avoiding the 
installation of a multistage RO system which in turn, 
reduces energy consumption. The combination of RO and 
MED also allows for greater flexibility in the production 
of water and electricity by adapting to seasonal demand. 
Therefore, the system could benefit from the RO 
technology’s improved production during winter 
compared to MED when coupled with CSP for the case 
study of Trapani. Combining MED and RO allows to use 
a common water intake unit with the consequent 
decreases is cost of civil works and reduction in pumping 
energy [14]. On the other hand, interconnecting these 
three systems (CSP+MED+RO) could also lead to 
operational issues more frequently. 
 
Finally, CSP desalination is a promising field in the 
development of medium and large-scale renewable 
energy desalination and could compete in the medium 
term with conventional desalination techniques. It can be 
the future solution to the MENA region’s water issues. 
Thus, there is a need for further research and 
development of CSP technologies, and further testing of 
its coupling with different desalination technologies 
under multiple conditions to further analyze the co-
generation potential of fresh water and electricity using 
these technologies. 
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Nomenclature 
 
S  membrane area (m2) 
A   water permeability constant (L/ 
m2.h.bar) 
B   salt permeability constant (m/day) 
Cb   bulk concentration (mg/L) 
Cf   feed concentration (mg/L) 
Cfc   concentrate feed concentration (mg/L) 
CP   concentration polarization factor (-) 
Cp   permeate concentration (mg/L) 
Cw  membrane surface concentration 
(mg/L) 
FF   fouling factor (-)  
Q   permeate water flux (L/ m2.h) 
n   number of RO elements in series (-) 
NA  Salt flux (-) 
mj  sum of molality concentration of all 
constituents in a solution (moles of solute/kg of solvent) 
Pcd   concentrate side pressure drop (bar) 
Pf  Feed pressure (bar) 
Pp  Permeate pressure (bar) 
ΔP   membrane pressure gradient (bar) 
Qc   concentrate flow rate (m3/h) 
Qf   feed flow rate (m3/h) 
Qp   permeate flow rate (m3/h) 
Qfc   average concentrate side flow rate 
(m3/h) 
R   recovery rate (-) 
Rj   membrane rejection rate (-) 
T   feed temperature (°C) 
TCF   temperature correction factor (-) 
Δπ   osmotic pressure gradient (bar) 
πave   average concentrate side osmotic 
pressure (bar) 
πf   feed osmotic pressure (bar) 
πp   permeate osmotic pressure (bar) 
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