Dye assessment in nanostructured TiO₂ sensitized films by microprobe techniques

M. A. Barreiros^{1*}, J.Mascarenhas¹, V. Corregidor², L. C. Alves², F. Guimarães¹, E. Torres¹, M. J. Brites¹

⁽¹⁾ Laboratório Nacional de Energia e Geologia, Portugal; ⁽²⁾ Instituto Superior Técnico, Universidade de Lisboa, Portugal

DSCs

 \checkmark The dye sensitized solar cell (DSC) is the only photovoltaic using molecules that cell generate charge carriers after photo-excitation without the need for excitonic transport

Two dyes

Sample Preparation

Commercial dyes – ruthenium polypyridyl complexes

Analytical Techniques

- SEM / EDS
- PHILIPS XL 30 FEG
- Acceleration voltage 7 10 kV
- EDS microanalysis EDAX

EPMA/ WDS / EDS

Motivation

- \checkmark Dye adsorption on the TiO₂ is considered one key step of **DSCs** manufacturing
- \checkmark Effective loading of the dye in the TiO₂ electrode is important for controlling and optimizing solar cell parameters (J_{SC} , V_{OC} , ...)
- ✓ Few methods known and used today for quantitative evaluation of the total dye adsorbed in the film, but without taking into account the dye distribution profile
- \checkmark Microprobe techniques can be powerful tools to evaluate the dye distribution and dye depth profile in sensitized films

- JEOL JXA 8500F
- Acceleration voltage 15 kV
- **5 WD Spectrometers**
- **EDS Oxford Instruments INCA X-act**

Nuclear Microprobe - RBS set-up

- 1.8 and 2.0 MeV proton or alpha beam
- Resolution ~ 3x3 μm²
- PIPS RBS detector
- Si(Li) X-ray detector
- Software: Gupix Win for PIXE and WiNDF for RBS spectra

***** Dye load assessment

RESULTS AND DISCUSSION

✓ homogeneous surface distribution

of the dye Ru and S

Α 1 μm th	ickness	B 4 μm thickness				Mass fraction ratio in dye compound	
Ru/Ti mass fraction ratio (%) and Ru/S obtained		N719	Ru/S=1.6		N749	Ru/S=1.1	
		PIXE	RBS	WDS	PIXE	RBS	WDS
film	Ru/Ti [%]	1.1	0.9	-	0.7	1	-
А	Ru/S	1.6	*	-	1.3	*	-
film	Ru/Ti [%]	0.8	0.9	0.9	0.7	0.6	0.5
В	Ru/S	1.6	*	1.7	1.1	*	1.2
* Values kept constant during RBS simulation							

Ru/S - Experimental values agree with this ratio in N719 and N749 dyes \succ suitability to assess dye load in TiO₂

nine 1D nanostructured TiO₂ films (1 to 4 μ m thickness) sensitized by N719 and N749 - normal beam incidence to the sample surface analyses: PIXE (1.8 MeV H⁺ ion beam) RBS (1.8 MeV H⁺ and 2.0 MeV He⁺ ion beams) - cross section analyses: WDS (only five samples)

Consensus value for the Ru/Ti mass fraction ratio determined average of all the results (σ <20%)

SEM secondary electrons images of films C and D

RBS spectra and best fits (when two sample layers are considered), obtained with 2 MeV alpha particle beam and 1.8 MeV proton beam for C and D films

bottom layer (close to the FTO) has higher dye load > Ru/Ti difference between top and bottom layers: 18% in film C and 45% in film D

Backscattered electrons image and Si, Sn, Ti, S and Ru X-ray maps of film C (cross section) obtained by EPMA/EDS

Relative deviations (from consensus value) < 20%</p> except for one sample by PIXE (30%) and another by WDS (23%)

DSCs based on two sensitized films with Ru/Ti (%) values of 1.2% and 0.65% prepared and characterised under standard conditions

confirming the importance of the dye load evaluation

*** Concluding remarks**

- ✓ IBA techniques together with EPMA (WDS and EDS) proved to positively contribute for dye sensitized TiO₂ films characterisation
- ✓ One of the IBA most important features is its versatility and the complementary

information obtained when combining data from different techniques such as RBS and PIXE

- ✓ The sensitivity of the techniques used allowed to evaluate Ru/Ti mass fraction ratio with similar results, in different TiO₂ films
- ✓ It was possible to assess dye surface distribution and depth profile and to visualise the
- dye distribution in sample cross-section
- ✓ Dye assessment by microprobe techniques may contribute to study the photoanode

preparation of the DSCs photovoltaic devices

WORKSHOP ON NANOSTRUCTURES FOR SOLAR CELLS, October, 2-3, 2014

^{*}alexandra.barreiros@Ineg.pt