C-O-H isotopic evidences for fluid sources of granulites in Ribeira Belt, SE Brazil

T. BENTO DOS SANTOS¹*, J. MUNHÁ¹, C. TASSINARI², AND P. FONSECA¹

 ¹Centro/Departamento de Geologia, Universidade de Lisboa, Portugal (*correspondence: tmsantos@fc.ul.pt)
²Instituto de Geociências, Universidade de São Paulo, Brazil

Combined C-O-H isotopes with fluid inclusion and fO_2 results in Ribeira Belt (SE Brazil) granulites reveal that metamorphic peak fluids evolved under high fO_2 conditions (QFM +1) coeval with CO₂-N₂ (0 to 11 mol%) high to medium density (1.01 – 0.59 g/cm³) fluids at T ~ 800 °C [1] and X_{H2O} < 0.05 [2], whereas retrograde low density (0.19 to 0.29 g/cm³) CO₂-N₂ (0 to 36 mol%), CO₂ (94 to 95 mol%) – N₂ (3 mol%) – CH₄ (2 to 3 mol%) – H₂O (Flw = 0.1) (in graphitic granulites), N₂ (95 mol%) – CH₄ (5 mol%), H₂O-CO₂ and late H₂O fluids were reduced fO_2 (QFM -1 to -3) at T ~ 600 °C [1] and X_{H2O} > 0.1 [2].

 $δ^{18}$ O quartz results of 10.3 – 10.7% imply hightemperature CO₂ $δ^{18}$ O values of 14.4 to 14.8%, suggesting the involvement of a metamorphic fluid, whereas lower temperature biotite $δ^{18}$ O and δD values of 7.5 – 8.5% and -54 to -67%, respectively imply H₂O $δ^{18}$ O values of 10 to 11% and δD_{H2O} of -23 to -36%, suggesting $δ^{18}$ O depletion and increasing fluid/rock ratio from metamorphic peak to retrograde conditions. Isotopic results are compatible with low-temperature H₂O influx and *f*O₂ decrease that promoted graphitic deposition in retrograde granulites, simultaneous with low density CO₂-N₂ and CO₂-N₂-CH₄-H₂O fluid inclusions at T = 450 – 330 °C. Graphite δ^{13} C results of -10.9 to -11.4%, imply CO₂ δ^{13} C values of -0.8 to -1.3% suggesting decarbonation of Cambrian marine carbonates [3] with small admixture of lighter biogenic or mantle derived fluids.

Results suggest that peak fluids were ¹⁸O enriched metamorphic fluids derived from deep-seated carbonated sources. Rapid pressure and temperature drop during retrograde metamorphism induced fO_2 decrease by fluid admixture with shallower waters, turning peak carbonic fluids into CO₂-H₂O and depleting biotite δ^{18} O and δ D values, and as low-salinity H₂O fluids progressively became dominant, late-graphite deposited at shallower crustal levels.

[1] Bento dos Santos *et al.* (2007) *Geochimica et Cosmochimica Acta* **71**, 15, Sup. 1, A79. [2] Bento dos Santos *et al.* (2008) *Geophysical Research Abstracts* **10**, EGU2008-A-00262. [3] Veizer *et al.* (1999) *Chemical Geology* **161**, 59–88.

STXM-based study of microbial fossils in recent and ancient rocks

K. BENZERARA¹, S. BERNARD², K. LEPOT³, J. MIOT¹ AND G.E. BROWN, JR.⁴

¹IMPMC, UMR 7590, CNRS & IPGP, Paris, France (karim.benzerara@impmc.jussieu.fr)

²Laboratoire de Geologie, UMR 8538, CNRS & ENS (sylvain.bernard@ens.fr)

³IPGP, UMR 7154, CNRS & Univ Paris7

(lepot@ipgp.jussieu.fr)

⁴Stanford University, USA (gordon@pangea.stanford.edu)

We will review studies we performed on bacteria fossilized in the laboratory (e.g. 1) and on modern stromatolites (2) using a combination of nanoscale spectroscopy and microscopy techniques, mostly synchrotronbased X-ray microscopy (STXM) and Transmission Electron Microscopy (TEM). Those results will be compared with similar analyses performed on Archean stromatolites from Tumbiana (3) and on fossils preserved in high-grade metamorphic rocks from the Alps (4). STXM and TEM provide information on the chemical composition for major elements and on the speciation of elements such as carbon, oxygen, nitrogen, alcium, iron etc. at the few tens of nanometer scale. This opens new avenues for the search of a past biological activity in rocks. Indeed, it has been increasingly shown that what was formerly considered as unambiguous bio-signatures could actually be produced by abiotic processes as well. One way to better determine what might be truly biogenic consists in characterizing as exhaustively as possible the systems of interest at the nmscale. Bulk organic geochemistry has been a very powerful technique in this kind of studies so far. The capability to complement this approach at the submicrometer-scale is a unique way to assess potential contamination and to gain additional information on the role of minerals in organic preservation.

Benzerara *et al.* (2004) *Geobiol.*, **2**, 249-259. [2] Benzerara K. *et al.* (2006) *Proc. Natl. Acad. Sci. USA* **103**, 9440-9445.
Lepot K., Benzerara K., Brown Jr. G.E. & Philippot P. (2008) *Nature Geoscience* **1**, 118 - 121. [4] Bernard S. *et al.* (2007) *Earth Planet. Sci. Lett.* **262**, 257-272.