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This paper proposes new clustering criteria for distinguishing Saccharomyces cerevisiae (yeast) strains
using their spectrometric signature. These criteria are introduced in an agglomerative hierarchical clus-
tering context, and consist of: (a) minimizing the total volume of clusters, as given by their respective
convex hulls; and, (b) minimizing the global variance in cluster directionality. The method is determin-
istic and produces dendrograms, which are important features for microbiologists. A set of experiments,
performed on yeast spectrometric data and on synthetic data, show the new approach outperforms sev-
eral well-known clustering algorithms, including techniques commonly used for microorganism
differentiation.
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1. Introduction

Spectroscopy, together with statistical analysis of spectra, is
frequently used as a rapid microbiological identification method.
Rapid, simple and low-cost identification of microorganisms opens
several possibilities. For example, on pathogens in general, it has
been shown that fast classification has a major impact on the mor-
bidity, mortality, and duration of hospitalization [18]. For Saccharo-
myces cerevisiae (yeast), quick identification of different strains can
yield significant economic advantages, as yeasts not only provide
us with many distinctive types of aliment, but are also responsible
for food spoilage and can be medically relevant [13]. Winemaking,
a multibillion Euro industry, is a prime example, as it could prosper
from rapid and comprehensive yeast identification and classifica-
tion methods [9]. The international wine markets are constantly
presenting new challenges, such as taste standardization or
production of different and novel wine types with particular
characteristics, which can in turn benefit from developing these
techniques [6]. Additionally, new species of yeast are continually
discovered and explored [15], which requires the classification of
a high number of isolates, a task for which a rapid, simple, low-cost
identification method is important [13].

Both supervised and unsupervised statistical techniques have
been used on spectrometric data with varying degrees of success
[19]. Principal Component Analysis (PCA) [12] is one of the latter
methods, often employed as a dimensionality reduction step in a
broader analysis [6,18]. The majority of methods used for strain
differentiation are based on agglomerative hierarchical clustering
(AHC) with typical off-the-shelf implementations and parameters
[5,11,13,18–20,24,26].

This paper introduces two new clustering criteria for AHC,
based on minimizing: (a) the total volume of clusters, as given
by their respective convex hulls; and, (b) the global variance in
cluster directionality. These are inspired by data produced when
applying PCA to spectrometric data, although can be generically
used in other problems. A set of experiments, performed on yeast
spectrometric data and on synthetic data, show the new approach
outperforms several well-known clustering algorithms, namely
k-means [10], EM [7], Partitioning Around Medoids (PAM) [3]
and AHC with common distance metrics and linkages [10].

The rest of the paper is organized as follows. First, in Section 2,
previous work about spectroscopy as a fast identification method
and clustering with volume-based metrics is discussed. Next,
Section 3 describes the data sets and the dimensionality reduction
methods used in this work. The novel clustering metrics, as well as
their integration in AHC, are presented in Section 4. Results,
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