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______________________________________________________________________________________ 
 
Abstract 
This paper proposes a new approach to determine the distribution of relaxation times (DRT) directly from the electro-
chemical impedance spectroscopy (EIS) data, i.e. without the use of an equivalent electrical circuit model. The method 
uses a generalized fractional-order Laguerre basis to represent EIS where both the parameters of the basis and their co-
efficients are estimated by solving a nonconvex minimization problem. Furthermore, the DRT confidence region is de-
termined to assess the accuracy and precision of the DRT estimate. The approach is applied to analyze the dominant 
dynamic properties of an open-cathode hydrogen fuel-cell under different current and air-flow conditions. Results showed 
that the estimated DRT closely reconstructs EIS data even when there is a higher variance at smaller relaxation times. 
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1 Introduction 

Hydrogen polymer electrolyte fuel cells 

(PEMFC) are a strong alternative for developing 

high-energy density generation systems that can 

be both efficient and enviromental friendly. Howev-

er, their performance depends on the mass 

transport phenomena inside the cell and the cata-

lyst reaction kinetics, together with their coupling 

effects.  

Electrochemical impedance spectroscopy (EIS) 

is commonly used as a base diagnostic technique 

because it retrieves information about the frequen-

cy response characteristics of the electrochemical 

system, but its direct use is limited. The usual ap-

proach to address EIS data is based on the devel-

opment of models to represent the electrochemical 

phenomena. The modeling step is based on the 

use of equivalent electric circuits as a mathematical 

representation of the process in the Laplace do-

main. 

Although this approach is widely used in the 

analysis of EIS data, it needs an informed insight 

on the nature of the phenomena inside the electro-

chemical cells. An alternative can be devised by 

using the distribution of relaxation times (DRT), 

which can be directly linked with the impedance 

spectrum through the Hilbert transform. Determin-

ing the DRT using impedance data requires the 

solution of a Fredholm integral equation of the first 

kind known as an ill-posed inverse problem. Alt-

hough other approaches exist in the literature [1], 

we propose the use of a general fractional-order 

Laguerre basis for the representation of EIS data. 

First, the Laguerre basis is optimized by solving a 

nonconvex optimization problem. Then, the DRT is 

computed in two steps: i) solving the integral equa-

tion for each basis function, and ii) multiplying the 

linear combination coefficients by the correspond-

ing DRT images of base functions to get the overall 

DRT.  

The accuracy and precision of the DRT esti-

mates was assessed using the residuals bootstrap 

method [2], modified to take into account the fre-

quency dependency of the EIS error. 

2 Experimental 

An eight-cell stack, with an active area of 3.8 

cm
2
, was employed using a commercial catalyst 

coating membrane (3M) and GDL (gas diffusion 

layer, Johnson Matthey). Bipolar plates were made 

of graphite from Schunk, with anode flow fields 

having a proprietary design. The stack has an 

open-cathode with vertical channels. An air fan is 

located at the edge of the manifolds providing high 

stoichiometry oxidant supply and stack cooling. A 

purpose-built fuel cell testing station was used to 

control the inlet temperature, pressure and flow 

rate for the anode gas stream. Impedance meas-

urements were carried out using a Solartron Fre-

quency Response Analyser Model 1260. The fre-

quency was typically spanned between 20 kHz and 

0.1 Hz. The EIS dataset was collected under a 

fixed hydrogen flow-rate (0.4 Lmin
-1

) and pressure 

(0.5 bar) by changing: a) the air flow-rate (2.4, 4.6, 

8.0 Lmin
-1

) with a fixed current of 0.5A; and, b) the 

current (0.35A, 0.5A, 1.0A) for a fixed air flow-rate 

of 8.0 Lmin
-1

. 

3 Estimation of the DRT and error analysis 

3.1 Modeling the distribution of relaxation times 

The method proposed for the analysis of im-

pedance data is based on the concept of DRT [3]. 

The relation between the impedance       and its 

related distribution      of relaxation times   is giv-

en by the following complex-valued integral: 
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where   is the complex unit and   is the frequency. 

The impedance       of a relaxation process is 

usually represented by a peak in the     . 
Impedance of a linear, time-invariant and casual 

system is uniquely characterized by the real part 

          or the imaginary part           of the 

transfer function (Kramers-Kronig relations). The 

integral of the distribution function over the whole 

domain is equal to the DC gain of the transfer func-

tion      , i.e. ∫                  . For a non-

resonant system,      is truly a density distribution 

function since it is always positive. Note that the 

mathematical relation defined by equation (1) is 

valid even if      takes negative values. 

The impedance spectrum of real electrochemi-

cal systems is commonly modelled by equivalent 

electric circuits with components displaying a frac-

tional order dependency on frequency [4]. This 

motivates the use of generalized fractional-order 

basis to describe the impedance spectrum [5], [6]. 

Let the fractional-order Laguerre base function be 

defined as [7]: 
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where   is the Laplace variable,      is the pa-

rameter for adjusting base poles and   is the base 
fractional order, common to all base functions. The 
stability condition requires that       and all 
the base poles    must be in the region where 
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. Unlike the rational case, the stability 

condition does not guarantee a fractional function 
to belong to the     

   Hardy space, i.e.      is 

analytic on the open right half-plane    so that 
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satisfied by imposing that the minimum degree for 
the base   satisfies the condition:  
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Where the function ⌊ ⌋ returns the largest integer 
not greater than  . For each Laguerre basis, it is 
possible to compute the associated distribution of 
relaxation times by solving equation (1) analytically 
using: 
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Note that for    , the associated DRT is the 
well known Cole-Cole distribution. So the use of 
the generalized Laguerre basis can be seen as an 
extension of the commonly used approach, which 
employs a number of resistances and constant 
phase elements connected in a Voigt-type-of elec-
tric circuit [8]. In general, the impedance function 
can be represented as a linear combination of the 
Laguerre functions: 

        ∑ ∑         
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where   is the number of the different modes,    
is the number of Laguerre basis for the m

th
 mode 

and      are the linear coefficient weights. 

3.2 Parameter estimation 

The approximation of the impedance data using 
the function defined in eq. 5 requires the solution of 
a nonlinear optimization problem. As a preliminary 
step, an estimate of the fractional order of the basis 
can be determined by using the technique pro-
posed by [7]. This step is important since it allows 
to simplify the optimization by setting the value of 

    , i.e.      
 

  
  . In this study, the minimum 

number of terms in the Laguerre basis is set to 
       and each mode will make use of a fixed 

number of basis functions, i.e.     . The overall 
optimization problem is defined as follows: 
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where   
 is the complex conjugate of the i

th
 error   , 

 ̅  are the   measured values of the impedance at 
the    frequency, ordered from lowest to highest, 

and   is the number of modes used. Note that the 
objective function is composed of two terms, i.e. 
the sum of a weighted error function with an addi-
tional term that relates the high-frequency imped-
ance with the infinite frequency resistance. The 
presence of this additional term is relevant to mini-
mize the DRT contribution to the resistance at very 
low relaxation times (high-frequencies). The num-
ber of variables in the optimization problem is equal 

to     , i.e.   ,  , and, for each mode:     ,   . 

The problem was formulated using the CASaDi 
modelling framework [9] and the IPOPT interior 
point nonlinear solver [10]. It is a non-convex opti-
mization problem and hence it converges to an 
optimal solution, which might not be the global.  

 

3.3 Validation and error analysis 

The degree of approximation to the impedance 
data is controlled by the number of terms in equa-
tion (5), i.e. the number of modes   and the num-
ber of basis in each mode   . The goal is to have a 
representation as accurate as possible of the im-
pedance data, for the determination of the associ-
ated DRT. The quality of this operation can be vali-
dated by performing the reverse operation, i.e. re-
constructing the impedance spectra using the DRT. 
This can be achieved numerically by solving Eq. 1 
using the following two steps procedure: first com-
pute the DRT for a given set of relaxation times 
and then integrate Eq. 1 for each frequency   . The 
integration must be computed with a high level of 
accuracy to ensure that any differences between 
the experimental impedance values and the recon-
structed impedance are only due to the DRT func-
tion. As such, the number of integration points was 
set to 10000. 

The determination of the DRT estimate variance 
is performed using the residual bootstrap tech-
nique. Broadly speaking, it allows to compute the 
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variance of the DRT directly by resampling the EIS 
errors. The possible dependency of the error with 
the frequency is taken into account by limiting the 
sampling procedure to a limited neighbourhood 
around the frequency of interest. The number of 
bootstrap estimates was fixed to 50. 

4 Results and discussion 

Fig. 1 shows the two Nyquist plots for different 

sets of conditions, i.e. changes in the air flow-rate 

(top) and current (bottom). Each curve set com-

prises the experimental data (cross) and each one 

of the EIS curves calculated from the 50 DRT boot-

strap estimates (dotted), where high color satura-

tion stands for the regions with a high point density. 

Broadly speaking, both pictures display the closest 

agreement between reconstructed EIS and data 

that is possible to achieve with the proposed ap-

proach. Further, it allows to picture the reconstruct-

ed EIS confidence regions and find out the fre-

quency range where the estimate is weaker. For 

instance, this is clear for the 4.6 and 8.0 Lmin
-1

 

cases (top), and is the direct effect of the high vari-

ability present in the data (low-frequency range). 

The proposed approach can be used to assess 

which experimental data points comply with the 

Krammers-Kronig relations, since any EIS calculat-

ed from a DRT automatically follows these rela-

tions, see eq. 1. Thus, a good agreement between 

the experimental data and the reconstructed EIS 

shows that DRT provides a valid representation for 

the data. Moreover, it will be possible to detect 

anomalous data points by examining the confi-

dence regions in the Nyquist plot. 

 Fig. 2 and 3, displays the DRT for the three 

different levels of current and air flow-rates. Each 

curve set shows the 50 estimated DRT from the 

bootstrap procedure. In general, each curve can be 

interpreted as the superposition of different single 

peak constructs, because of the linearity of Eq. 1. 

Thus, each peak location is linked to a dominant 

relaxation time found in the data, and its area 

related to the process polarization resistance. As a 

result, the direct comparison of the DRT allows to 

analyze the EIS gathered for different experimental 

conditions. Both figures show the confidence 

regions for each case. As expected, they highlight 

that DRT uncertainty is high for larger values of 

relaxation times. In particular, the cases of 4.6 

Lmin
-1

 and 8.0 Lmin
-1

 (Fig. 2) reflect the impact of 

the high variability associated with low frequency 

data. Note that mainly the DRT low-frequency 

components show a marked influence by the 

experimental data. For instance, in the 1.0 A case, 

the DRT presents a high variability region for large 

relaxation times that is not clear from the Nyquist 

plot (bottom) and, hence, in this range results 

should be interpreted with care.  

Nyquist plots predominantly evidenced a typical 

cathode response while DRT exhibits deconvolu-

tion of various mass transfer limited processes that 

can be adjudicated to the cathode as well as the 

 

 

Fig. 1. Nyquist plot of the hydrogen fuel-cell EIS showing: the air flow effect for 2.4, 4.6 and 8.0 Lmin
-1

 (up); and, the 

current effect for 0.35, 0.5 and 1.0 A (bottom). The cross represents the experimental data and the dots display the 

EIS computed from the DRT bootstraps. The dots have been plotted with a transparency level to highlight the accu-

mulation of points on a given region – the more saturated the color is the higher probability. 
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anode. Membrane resistance is lowered with in-

creased oxygen flow and increased current due to 

an increase in hydration by water formation. In 

genral, decrease in air supply causes an increase 

in the total resistance, more evident for the lower 

flow rate. 

 

 
Fig. 2. DRT displays the air-flow effect upon the dynamic 

characteristics of the hydrogen fuel-cell. Each curve 

represents the DRT of a specific bootstrap. 

 

 
Fig. 3. DRT shows the effect of the current upon the 

dynamic characteristics of the hydrogen fuel-cell. Each 

curve represents the DRT of a specific bootstrap. 

 

DRT analysis enabled the identification of limit-

ing diffusion processes related to the presence of 

water in the porous media. Values of Deff, the effec-

tive diffusivity, estimated from the DRT peak loca-

tions, were assigned to the catalyst layers-CL (wa-

ter from the gas phase) and to the presence of 

water in the GDL/CL. 

Low frequency inductive loops in impedance 

spectra are assumed to be associated with the 

adsorption of oxygen reduction reaction intermedi-

aries. DRT related relaxation times takes negative 

values more evident in the low frequency bounda-

ry. This will be further discussed in terms of the 

response of physical processes occurring in the 

cell, since the analysis of errors in this work indi-

cates that the low frequency region data is com-

plyant with the Kramers-Kronig relations. 

5 Conclusions 

This paper proposes a novel method for the de-
termination of the distribution of relaxation times 
directly from impedance spectroscopy data without 
the need to pre-specify an equivalent electric circuit 
impedance model. The reconstruction of the EIS 
spectrum from the DRT function allows validating 
both, i.e. the compliance of the EIS data with the 
Kramers-Kronig relations and the accurateness of 
the DRT representation. 
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