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Abstract 

In this work, the authors propose a microalga-based integrated system, where optimization 

of several energy vectors (biodiesel, bioethanol and bioH2) is highlighted under the 

concept of biorefinery (Project PTDC/AAC-AMB/100354/2008). This involves the 

integration of different processes such as oil and sugar extraction from microalgae for 

biodiesel and bioethanol production respectively, and bioH2 production from the whole 

and/or biomass leftovers. The extraction of high value added compounds, such as 

carotenoids, contributes to the economic viability of the overall process.   
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INTRODUCTION 

Algal biofuels may offer great potential in contributing to a nation’s renewable energy 

future, as well as helping to meet the 20% renewable biofuel energy in transport by 2020 

(CEC, 2008) and the energy independence and security. In a carbon-smart society, it is 

imperative to produce both food and fuel in a sustainable way, as they are intricately 

interconnected. Moreover, microalgae never compete with the food crops in terms of land 

and water, with the advantages of e.g. higher productivities and daily biomass harvesting 

(Gouveia, 2011). Algae oils can be a suitable feedstock for high-energy density renewable 

biofuels to power both light- and heavy-duty vehicles, as well as jet and marine engines. 

On the other hand, algae sugars can be a source for bioethanol production through 

saccarification and fermentation (Miranda et al., 2012a). In addition, biohydrogen (bioH2) 
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can also be obtained by fermentation of the whole microalgal biomass, or after the 

extraction of its oils (Ferreira et al., 2012). Furthermore, algae produce many valuable 

bioactive compounds which can substantially reduce the production costs and can feed 

various industries, such as food, feed, pharmaceuticals and cosmetics.  

The aim of this work was to evaluate the potential of a freshwater (Scenedesmus obliquus) 

and a marine (Nannochloropsis sp.) microalgae, as source of sugars and/or oils for the 

production of biofuels (biodiesel, bioethanol and bioH2), as well as added value 

compounds (pigments). Supercritical fluid extraction (SFE) was used to extract and 

separate lipids from pigments. Bioethanol was produced by different yeasts from 

microalgae sugar extracts, and bioH2, from the whole and leftovers (after oil extraction) 

biomass, by fermentation with Enterobacter aerogenes and Clostridium butyricum. 

 

METHODOLOGY 

Microalga production 

Scenedesmus obliquus (Sc) and Nannochloropsis sp. (Nanno) were used in this study. Sc 

was cultured in Bristol medium (Vonshak, 1986), firstly indoors, in 1 L glass bubble column 

reactors, with bubbling air, at 25ºC, low light (150 E.m-2.s-1). These cultures were scaled-

up to open raceway ponds of 300 L (2 m2) and then 4500 L capacity (48 m2), agitated by 

paddle-wheels at ~5 m/min, under natural light/dark cycles and temperature conditions. 

Nanno was grown in GPM medium (75% filtered seawater:25% deionized water) 

(Vonshak, 1986), in polyethylene bags (10 L) indoors, under the same conditions 

described for indoor Sc cultivation. Sc and Nanno cultures were grown for 55 and 40 days, 

respectively, in order to guarantee high sugar and lipid accumulation during the stationary 

phase (Miranda el al., 2012a,b; Nobre et al., submit.). The growth of the cultures was 

monitored through O.D.540nm and dry weight concentration (GF/C filter). The harvesting of 

the biomass was carried out by sedimentation followed by centrifugation (10000 

rpm/10min) and drying in an oven at 80ºC. Microalgal biomass proximate composition was 

determined in terms of moisture (gravimetry), total ashes (gravimetry), crude protein 

(Kjeldhal), crude fat (Soxhlet), according to A.O.A.C. methods (2006). Total sugar content 

was evaluated by the phenol–sulphuric method (Dubois et al., 1956) after acid hydrolysis. 
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Bioethanol production 

Sugar extracts were prepared by the addition of H2SO4 2N (1L to 500 g alga dw) to Sc 

dried biomass, and autoclaving for 30 min at 120ºC (Miranda et al., 2012a), and further 

detoxified by sulfate precipitation with Ca(OH)2 (107 g/L). Fermentation assays were 

performed in 1 L erlenmeyers containing 500 mL microalga hydrolysate which was 

inoculated with 300 mg/L of exponentially grown yeast. 3 different yeasts were tested: 

Kluyveromyces marxianus YPCC2671, Saccharomyces carlsbergensis ATCC6269 and 

Saccharomyces bayanus. The fermentation experiments were carried out at 30ºC in an 

orbital shaker (150 rpm). Ethanol concentration was determined by GC (Miranda et al., 

2012b). Ethanol concentration was determined by GC (Miranda et al., 2012b).  

 
Supercritical Fluid Extraction (SFE) of oil and pigments 

SFE experiments were carried out in a flow-type apparatus (Mendes et al., 1995) modified 

to include a co-solvent addition system. A 5 cm3 extraction vessel was used, which was 

filled with ~1.2 g Nanno biomass (dw) mixed with glass beads (3 mm Ø), put between two 

layers of glass wool. Extracts were collected with acetone. Quantification of total lipids was 

carried out gravimetrically, concentrating the collected solution under vacuum and drying 

the extract under nitrogen. Pigments (carotenoids) were identified and quantified by 

spectrophotometry and HPLC. The fatty acid composition of the extracted oil was 

accessed by GC (Lepage et al., 1986). SFE experiments were performed at 40ºC, 300 bar 

and CO2 flow-rate of 0.62 g/min, using Nanno biomass ground in a bead mill. The 

separation of the oil from the pigments was carried out through a fractionation strategy 

extracting the oil with pure supercritical CO2 (52.4 g/g alga dw) in a first step, and 

extracting the pigments with supercritical CO2 modified with ethanol 20% (w/w) (61.8 g/g 

alga dw) in a second stage. Nanno biomass leftovers were used to produce bioH2. 

 

Biohydrogen (bioH2) production 

Batch fermentation assays were performed in sealed serum bottles containing 

fermentation medium (Ferreira et al., 2012), with a gas to liquid ratio of 6:1 (v/v), and Sc or 

Nanno biomass as substrate. The fermentation medium was aseptically purged with 

bubbling N2 to eliminate O2, before inoculation with exponentially grown E. aerogenes at 

10% (v/v). The fermentation was carried out under orbital shaking (220 rpm), at 30°C, for 6 

h. For C. butyricum, Sc biomass was added to the individual serum bottles before the 
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anoxic distribution of the fermentation medium and sterilization. An overnight grown culture 

was inoculated at 1% (v/v) and the fermentation was conducted for 48 h at 37ºC, 150 rpm. 

BioH2 production assays comparing the use of dried and wet (75% moisture paste 

obtained before drying) Sc biomass were also carried out, for the concentrations which 

previously led to the highest H2 yields (2.5 g/L for E. aerogenes and 50 g/L or C. 

butyricum). BioH2 volumetric production was analyzed in the headspace by GC (Ferreira et 

al., 2012). 

 

 

RESULTS 

Sc presented 30.7% of sugars (Table 1) which can be fermented to ethanol (Figure 1a) in 

less than 10 h, being the highest ethanol concentration (11.7 g/L) obtained with K. 

marxianus yeast. Figure 1b shows the results obtained for fermentative bioH2 production 

by both bacteria from dried and wet Sc biomass. The highest bioH2 production yield (90 

mLH2/g alga dw) was registered for C. butyricum as fermentative bacteria and an initial 

concentration of dry microalgal biomass of 50 g/L, after 48 h (equilibrium time). However, 

E. aerogenes yielded 57.7 mLH2/g alga dw from wet Sc (2.5 g alga dw/L) after 6 h, which is 

advantageous from an energetic and economic point of view, taking into account a lower 

process time and the suppression of an intermediate drying step. 

Nanno composition is shown in Table 1, being evident the high lipid content (40.7%) The 

SFE strategy in two steps (supercritical CO2 for oils and CO2 with ethanol (20% w/w), for 

pigments) allowed the fractionation showed in Figure 2a. The first extract collected 33 

goil/100 g alga dw (78% oil recovery), and only 38 mgpigments/100 g alga dw. The fatty acid 

composition of this oil was similar to that obtained with the Soxhlet extraction. In the 

second extract, 12 goil/100g alga dw, as well as 53 mgpigments/100g alga dw were obtained, 

equivalent to the extraction of 50% of the total pigments remaining in the biomass. So, in 

the second extract it was possible to obtain an oil with a pigment concentration of 0.44 

gpigment/100goil, which contained 48.9% (w/w) of fatty acids, enriched in bioactive 

compounds (C20:5  5%). Moreover, the pigment composition of this oil showed the 

presence of astaxanthin, zeaxanthin/lutein, canthaxanthin and -carotene in a mixture 

corresponding to almost 50% of the total pigments, which would make it suitable for its use 

in the food/feed and/or nutraceutical industries. From the spent biomass after extraction 

the production of bioH2 by dark fermentation with E. aerogenes was attained, resulting in a 
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hydrogen production yield of 60.6 mL/g alga dw (Figure 2b), higher than the obtained with 

the whole biomass (48.0 mL/g alga dw), highlighting the benefits of a biorefinery concept. 

 

Table 1. Microalgae biomass proximate composition. 

Item Unit Scenedesmus obliquus* Nannochloropsis sp.* 

Total Minerals 
Crude Protein 
Crude Fat 
Total Sugars 

% dry weight 
% dry weight 
% dry weight 
% dry weight 

20.2 ± 0.5 
20.4 ± 0.02 
17.1 ± 0.2 
30.7 ± 0.8 

13.2 ± 1.2 
n.d. 

40.7 ± 2.3 
17.0 ± 0.2 

*average ± standard deviation; n.d. not determined 

a) b) 

Figure 1. Bioethanol (a) and BioH2 (b) production yields from Sc sugar extracts (500 g/L) and 
biomass fermentation (2.5 and 50 g/L), respectively. 

 

a) b) 

Figure 2. Oil and pigment extraction yield from SFE (a) and fermentative BioH2 production yields 
(with E. aerogenes) (b) from Nanno biomass. 

 

CONCLUSIONS 

In this work, Sc and Nanno sp. shown to be effective as a sustainable raw material for 

ethanol, oils, pigments and bioH2 production in a biorefinery context. Also, SFE proved to 
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be a green alternative method for microalgal lipids extraction (for biodiesel), allowing the 

fractionation of the pigments to valuable applications. Finally, the potential of Sc and spent 

Nanno biomass as feedstock for bioH2 production was also demonstrated. The proposed 

integrated system brought about important technological and economic improvements to 

the process of biofuels and high-added value compounds production from microalgae. 
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