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ABSTRACT 
Floating point absorbers devices are a large class of wave 

energy converters for deployment offshore, typically in water 
depths between 40 and 100m. As floating oil and gas platforms, 
the devices are subject to drift forces due to waves, currents and 
wind, and therefore have to be kept in place by a proper 
mooring system. 

Although similarities can be found between the energy 
converting systems and floating platforms, the mooring design 
requirements will have some important differences between 
them, one of them associated to the fact that, in the case of a 
wave energy converter, the mooring connections may 
significantly modify its energy absorption properties by 
interacting with its oscillations. It is therefore important to 
examine what might be the more suitable mooring design for 
wave energy devices, according to the converters 
specifications. 

When defining a mooring system for a device, several 
initial parameters have to be established, such as cable material 
and thickness, distance to the mooring point on the bottom, and 
which can influence the device performance in terms of motion, 
power output and survivability.  

Different parameters, for which acceptable intervals can be 
established, will represent different power absorptions, 
displacements from equilibrium position, load demands on the 
moorings and of course also different costs.  

The work presented here analyzes what might be, for wave 
energy converter floating point absorber, the optimal mooring 
configuration parameters, respecting certain pre-established 
acceptable intervals and using a time-domain model that takes 
into account the non-linearities introduced by the mooring 
system.  

Numerical results for the mooring forces demands and also 
motions and absorbed power, are presented for two different 

mooring configurations for a system consisting of a 
hemispherical buoy in regular waves and assuming a liner PTO. 
 
NOMENCLATURE 
a  radius of floater 

fa  radius of submerged floater in case II 
A  added mass 

wA  wave amplitude 
B  radiation damping coefficient 
C  damping coefficient of PTO 

df  diffraction or excitation force 
g  acceleration of gravity 

1h  vertical distance of the submerged floater to the 
bottom in static conditions 

H  water depth 
l  length of  the mooring cable sections 

0L  length of the bottom-mooring cable laying on the 
bottom in static conditions 

1L  distance between the contact point at the seabed 
and the buoy centre (for case I) or the submerged 
floater centre (for case II) 

2L  distance between the submerged floater centre 
and centre of the buoy in case II 

m  mass of buoy 
fm  mass of submerged floater 

avgP  time-averaged power 

t  time 
fv  volume of the submerged floater 
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zx,  displacements from mean position of body 
centres (buoy and submerged floater) (Fig. 1) 

Maxx  maximum horizontal displacement 
ρ  density 

 
Subscripts 
B  buoy 

RHSLHS ,  cable on the left and right hand side of the 
buoy 

f  floater 
zx,  directions of x, z axes 

 

INTRODUCTION 
Among the wide variety of floating wave energy devices, 

point absorbers have been object of special development effort 
since the late 1970s. They are oscillating bodies whose 
horizontal dimensions are small in comparison with the 
representative wavelength. Examples of devices are the IPS 
buoy [1], Aquabuoy [2], Wavebob [3] and PowerBuoy [4]. 
Their rated power ranges typically from tens to hundreds of 
kW.  

Floating point absorbers, as any floating object, are subject 
to drift forces due to waves, currents and wind, and so they 
have to be kept on station by moorings. However, their mooring 
design has an important requirement, since, for a wave energy 
converter, the mooring connections may interact with its 
oscillations, which might significantly modify its energy 
absorption properties. It is therefore important to explore what 
might be the most suitable mooring design according to the 
converter and location placement specifications.  

When defining a mooring system for a device, several 
initial parameters have to be established, such as cable material 
and thickness, distance to the mooring anchor on the bottom, 
and so on. Different configurations will represent different 
displacements from the equilibrium position for the converter, 
load demands on the moorings and power absorbed.  

In the work presented here we investigate in some detail 
the influence that some of the mooring system parameters can 
have on the performance of the converters, specifically in terms 
of power absorbed and horizontal displacement. 

 

MATHEMATICAL MODEL 
A wide range of different options exist when designing a 

mooring system, but two main classes can be defined: slack 
chain and taut synthetic lines. Slack chain lines rely on their 
weight to provide the necessary horizontal restoring force and, 
although they induce some vertically downward force, they 
allow for systems with a lower stiffness than the ones with taut 
synthetic lines. In this work we will considerer the mooring 
system of a floating point absorber with slack chains lines. 
 We consider a hemispherical buoy, moored to the bottom 
by catenary lines, as shown in plan view in Fig. 1, for two 

different configurations, a single cable (case I – blue line) and a 
cable with an intermediary submerged floater (case II – green 
lines). Cables in a symmetric configuration are placed to the 
right-hand side of the buoy. 

 

 
Figure 1 – Plane view of the mooring configurations, a single cable 
(case I – blue line) and a cable with a intermediary submerged 
floater (case II – green lines). 

In this analysis the slack mooring cables are approximately 
modelled as catenary lines in a quasi-static analysis. Also, 
although it may introduce some imprecision in the model, in 
order to have it somewhat simplified, the cables are assumed 
inelastic and their dynamic effects (namely cable inertia and 
viscous drag forces) are ignored; but not the submerged cable 
weight per unit length W , which depends on the cable material 
used (chain, wire, fibre) and its construction [5].  

In this way the classical catenary equations [6] apply, 
which can be written as 
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Here, D  and Z  are the horizontal and vertical coordinates of 
the cable point with respect to the lowest point of the catenary 
(where the cable departs from the bottom); α , β  and γ  are 
constants which are determined from boundary conditions; s  is 
the length of the catenary-shaped part of the cable; T  is the 
tension force at the cable point, and HT  and VT  its horizontal 
and vertical components. Finally W  is the submerged cable 
weight (cable weight minus buoyancy force) per unit length.  

The boundary conditions at the point of seabed contact are 
0/0,0,0, =dDdZ=Z=D=s  and at the buoy H=Z  

and 1L=D  (for case I) or 2L=D  (for case II). In case II, at 
the submerged floater, the boundary conditions are such that 

1L=D , 1h=Z  and 

H

f
+

T
P

=
dD
dZ

dD
dZ −

−  (5) 

where fP  is a force upwards (since the submerged body is less 
dense than water) that is equal to the difference between the 
floater weight and its buoyancy force 

)gρ(ρv=gρvgm=P fffff 00 −−  (6) 
From these boundary conditions it is possible to calculate, 

for the initial equilibrium position, the initial horizontal cable 
tension HT  (which is equal for all points of the cable) and, 
from this, VT  and T  for any specific point in the cable. 

It is also possible to calculate the floater radius (in case II) 
and the hanging cable length s , which in turn allows to 
calculate the cable length l  of each section ( 0Lsl +=  for the 
cable connected to the anchor point on the bottom and sl=  for 
the hanging cable in case II). It is also easy to calculate the 
initial horizontal and vertical mooring tensions applied to the 
floater in case II, HR and VR , respectively. 

Since, in calm sea, the centre of the hemispherical buoy (of 
radius a ) is supposed to lie on the free-surface plane, the buoy 
mass m  must be 

V
3 T

g
ρπa=m 21

3
2

−  (7) 

Note that, since the buoy centre is assumed to lie on the free-
surface horizontal plane in static conditions, the mass m  of the 
moored buoy slightly varies with the mooring configuration 
parameters for case I and II, since it is dependent on VT . 

 
TIME DOMAIN ANALYSIS 

The buoy and the submerged floater, acted upon by the 
waves and mooring lines, are made to oscillate in heave and 
horizontally. The displacements of their centre from their mean 
position is defined by the coordinates )z,(x jj  with Bj =  for 

the buoy and fj = for the submerged floater, where x  is the 

horizontal coordinate (pointing to the right), and z  is a vertical 
coordinate pointing upwards. 

The dynamic equations for the buoy are then 
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Here, uA∞  z)x,=(u  are the limiting values of the added 

masses )(ωuA  for ∞=ω . For a hemispherical floater, it is 

2/μ=A z∞  and μ=A x 0.2732∞ , where 3/2 3ρπaμ =  (see 

[7]). dxf  and dzf  are the horizontal ( x ) and vertical ( z ) 
components of the wave excitation force on the buoys (see [8]).  

The power take-off system (PTO) of the floating converter 
is assumed to consist of a simple linear damper activated by the 
buoy heaving motion. The vertical force it produces on the 
buoy is BzC&− . Finally, 2πa=S . 

The convolution integrals in Eqs. (8-9) represent the 
memory effect in the radiation forces. Their kernels can be 
written as 
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They decay rapidly and may be neglected after a few tens of 
seconds, which means the infinite interval of integration in Eqs. 
(8-9) may be replaced by a finite one in the numerical 
calculations (a 20s interval was adopted as sufficient). The 
integral-differential equations (8-9) were numerically integrated 
from given initial values of  x , z , x&  and z& , with an 
integration time step of 0.05 s.  

)(ωuB  z)x,=(u  are the frequency-dependent 
hydrodynamic coefficients of radiation damping concerning the 
horizontal (subscript x ) and heave (subscript z ) oscillation 
modes of the spherical buoy. 

VT  is, as already mentioned, the initial vertical cable 
tension applied to the converter, at equilibrium position. The 
time varying values of the mooring forces vX,T and vZ,T  on 
each cable, on the left-hand side ( LHSv = ) and right-hand side 
( RHSv = ) of the converter, are calculated based on the 
position of the buoy ( TF =  and Bj = ) at each instant of time, 
and considering the cable lengths l  defined for the static 
position. For case II, it is necessary to take into account also the 
submerged floater ( fj = ) and the tension forces ( RF = ) 
applied to it. In both cases, similar catenary equations as before 
for the equilibrium position apply 
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The plus or minus sign is used according to the cable 
considered is on the right or left side of the buoy. 

The submerged floater is subject to the pulling forces of 
the mooring lines connected to it, its own weight, the buoyancy 
force and the hydrodynamic forces on it. For this case, similar 
dynamic equations to the ones of the buoy apply 
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The kernels of the convolution integrals fuL  z)x,=(u  are 

calculated as before, considering )(ωfuB  z)x,=(u  as the 
hydrodynamic coefficients of radiation damping of the floater. 

fxdf  and fzdf  are the horizontal and vertical components of 
the wave excitation force on the floater.  
 In this case, the effects of the wave radiation and 
diffraction induced by the buoy upon the floaters were 
neglected. For the added mass fuA∞  z)x,=(u , we take the 
added mass of an accelerating sphere in an unbounded fluid 
(see e.g. [9]) 33/2 ffzfx a)(=A=A ρπ . 

 

NUMERICAL RESULTS 
We set 1025=ρ kg.m-3 (sea water density) and 

2ms9.8 −=g . The submerged floater is a sphere of density 
50f =ρ kg.m-3. The floaters submergence is assumed to be 

sufficient for the excitation force and the radiation damping on 
them to be neglected, i.e. we set 0=B=B fzfx  and 

0=f=f fzdfxd .  
In all cases for which results are shown here (except where 

clearly stated otherwise), it is 7.5=a m, 10 0.65 L=L ×  for 
case I and 20 0.65 L=L ×  for case II, 501 =L m, 802 =L m, 

451 =h m and 251.1=C kN/(m/s). A value for the submerged 
cable weight of 1520=W N/m was used, adequate for example 
for a 90mm thick chain cable (see [5]). The adopted value of 

251.1=C kN/(m/s) is obtained from defining B=C , and is 
the one that allows maximum wave energy absorption by an 
isolated unmoored hemispherical heaving buoy, at resonance 
frequency (see e.g. [8]). 

In regular waves the excitation force components are 
assumed to be simple-harmonic functions of time and so we 
may write { }=f,f dzdx  { }( )ti

zdxd eFF ω,Re , where the complex 

amplitudes dxF  and dzF  are proportional to the amplitude wA  
of the incident wave. The moduli of dxF  and dzF  may be 
written as | | | |{ } { }wzwxdzdx AΓ,AΓ=F,F , where )(ωxΓ  and 

)(ωzΓ  are (real positive) excitation force coefficients. 
Deep water was assumed for the hydrodynamic 

coefficients of added mass, radiation damping and excitation 
force. The frequency dependent numerical values for the 
spherical buoy  were obtained with the aid of the boundary 
element code WAMIT, for the radiation damping coefficients 

)(ωBu  and the absolute value )(ωuΓ  and phase 
( ))()(arg ωω xdzd FF  of the excitation forces coefficients, for 

the floating hemispheres, oscillating horizontally and vertically 
( zx,=u ). 

Here we perform an initial investigation, on the influence 
of the mooring system parameters, { }WL ,1  for case I and 
{ }211 ,, LhL  for case II. This was done, on the one hand, on the 
average power by the converter avgP  and, on the other hand, on 

the maximum horizontal displacement Maxx , which in turn can 
be related to the tension demands placed on the buoy and can 
affect the system survivability. We take into account different 
water depths H . 

Some numerical results are illustrated in Figs. 2 and 3 for 
case I and in Figs. 4 to 6 for case II, for regular waves of 

1=Aw m and 10=T s. 
 

 
Figure 2 – For case I, influence of the horizontal distance between 
the buoy and the anchor point L1 , in terms of average power Pavg 
(straight line) and maximum surge displacement xMax (dashed 
line), for different water depths H and W=1520N/m. 
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Figure 3 – For case I, influence of the cable submerged weight W 
in terms of average power Pavg (straight line) and maximum surge 
displacement xMax (dashed line) for different water depths H and 
L1=70m. 

 

For case I, it can be seen that the mooring parameters 
affect the system performance, even if only to some extent. 
This influence is better observed in the maximum horizontal 
displacement (dashed line) than in the absorbed power (straight 
line). For the power absorbed, the dependence appears to be 
linearly proportional, but the same cannot be said of the 
horizontal displacement, with a non linear variation both with 
the mooring parameters and the water depth.  

For case II, it can be seen that, unlike in case I, the 
dependency of the power absorbed on the mooring parameters 
and water depth appears to be non linear. Also, the mooring 
parameters in this case seem to have a stronger influence on the 
performance of the system. The mooring configuration of case 
II seems to indicate that a bigger amount of power absorption is 
possible to be achieved and with a smaller horizontal 
displacement, although perhaps at the cost of longer cable. 

 

 
Figure 4 – For case II, influence of the horizontal distance between 
the buoy and the submerged floater  L1 , in terms of average power 
Pavg (straight line) and maximum surge displacement xMax, (dashed 
line) for different water depths H and for W=1520N/m , L2=80m 
and h1=45m. 

 

 
Figure 5 – For case II, influence of the submerged floater vertical 
distance to bottom h1 , in terms of average power Pavg (straight 
line) and maximum surge displacement xMax (dashed line), for 
different water depths H and for W=1520N/m , L1=50m and 
L2=80m. 
 

 

 
Figure 6 – For case II, influence of the horizontal distance between 
the buoy and the anchor point L2 , in terms of average power Pavg 
(straight line) and maximum surge displacement xMax (dashed 
line), for different water depths H and for W=1520N/m , L1=50m 
and h1=45m. 

 
This initial analysis with different discrete values of the 

parameters gave some indication of their influence for the 
different water depths H  considered. The next step was to 
analyze, for a given water depth, which group of mooring 
parameters appears to be better both for maximizing the power 
absorbed and minimizing the horizontal displacement of the 
converter. The results of this analysis can be observed in Figs. 7 
and 8 for case I and in Figs. 9 to 11 for case II, again for regular 
waves of 1=Aw m and 10=T s. 

It can be seen that, as indicated in Figs. 2 and 3, for case I, 
there is an approximately linear dependency on the power 
absorbed with the mooring parameters considered. The 
maximum power absorption appears to be achieved for smaller 
distances to the anchor point and lighter chain cables and with 
these values still allowing for smaller maximum horizontal 
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displacements. As could be expected, a light chain introduces a 
smaller vertically downwards force on the buoy and therefore 
allows for larger vertical displacement and as a result higher 
power absorption. Also the non linear dependency of the 
horizontal displacement is clearly seen. 

 

 
Figure 7 – For case I, influence of the horizontal distance between 
the buoy and the anchor point L1 and the cable submerged weight 
W on the average absorbed power Pavg, for H=80m. 
 

 
Figure 8 – For case I, influence of the horizontal distance between 
the buoy and the anchor point L1 and the cable submerged weight 
W on the maximum horizontal displacement xMax, for H=80m. 

 
 For case II, the non linear dependency of the power 
absorbed and the horizontal displacement on all the mooring 
parameters can be clearly seen. These results give some 
suggestions on which might be the best group of mooring 
parameters to both maximize power and minimize 
displacement. For the submerged floater, and for the intervals 
considered, a higher vertical distance from the bottom h1, a 
smaller distance to the mooring point L1 and a bigger distance 
to the buoy, seem to be more suitable for higher power 
absorption and smaller horizontal displacement.  It can also be 

seen that some pairs or group of parameters are not adequate 
since they yielded invalid or unstable results (the areas in the 
graphs which are in white). 
 

 
Figure 9 - For case II, influence of the horizontal distance between 
the anchor point and the submerged floater L1 and of its vertical 
distance to the bottom h1, on the average absorbed power Pavg and 
on the maximum horizontal displacement xMax, for H=80m and 
L2=80m. 
 

 
Figure 10 – For case II, influence of the horizontal distance 
between the anchor point and the submerged floater L1 and the 
anchor point and the buoy L2, on the average absorbed power Pavg 
and on the maximum horizontal displacement xMax, for H=80m 
and h1=45m. 

 

 
Figure 11 – For case II, influence of the horizontal distance 
between the anchor point and the buoy L2 and its vertical distance 
to the bottom h1, on the average absorbed power Pavg and on the 
maximum horizontal displacement xMax, for H=80m and L1=50m. 

  
CONCLUSIONS 

A theoretical analysis of the influence of the mooring 
system parameters on the power absorbed and horizontal 
oscillations of a slack moored wave energy converter was 
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presented. Two different cases are analyzed of slack chain 
mooring lines, with and without an additional submerged 
floater. A time-domain analysis was applied to examine the 
effects of the mooring lines on the system performance. 

Numerical results were obtained for a hemispherical buoy 
whose PTO consists of a linear spring and a linear damper. The 
analysis focused on the amplitude of the horizontal motion and 
power absorbed by the converter, for the two mooring 
configurations considered. 

Slack chain catenary lines rely on their weight to provide 
the necessary horizontal restoring force and, although they 
induce some vertically downward force, they were found not to 
affect very significantly the power absorption in the proposed 
configurations. 

An initial analysis revealed that the system behaviour was 
influenced by the mooring parameters although only to a 
limited extent. In case I, concerning a single mooring line, for 
the power absorbed the dependence appears to be of linear 
proportionality, but the same cannot be said of the horizontal 
displacement. In case II, concerning the mooring lines with 
submerged floater, the dependencies are clearly non linear. 

Further analysis indicated which group of mooring 
parameters appears to be better for both maximizing the power 
absorbed and minimizing the horizontal displacement. 

The initial analysis presented here, which focused on some 
of the mooring parameters and was done only for regular 
waves, is to be extended to irregular waves. It would also be 
interesting to look for a direct relationship between what might 
be the optimal mooring parameters and the floater radius and 
the local water depth. A further step could be to resort to an 
optimization algorithm program that would define, for the 
systems considered, the optimal group of parameters that would 
either maximize the power absorbed or minimize the horizontal 
displacement or even both. 
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