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Abstract— Fuel cell based power generation systems are expected 
to become more widespread in the near future. Stationary fuel 
cells may be used as an uninterruptible or back-up power supply, 
or to supply micro-grids. In particular, proton exchange 
membrane fuel cells (PEMFC) are an attractive technology due 
to its high energy density, rigid and simple structure, low 
operating temperature and fast start-up characteristics. 

The power quality assessment of fuel cells as a viable power 
sources requires a good understanding of the fuel cell 
performance characteristics. This paper presents two novel data-
driven methodologies for the identification of the main steady 
state (polarization curve) and the dynamic (impedance response) 
characteristics for fuel-cells allowing the development of rapid, 
accurate and empirical models based on the experimental data. 
M-NMF is a modified non-negative matrix factorization 
technique developed for the analysis of polarization curve data 
that allows to identify the three main contributions for the fuel-
cell power degradation, while for impedance spectroscopy data, 
this paper proposes the use of fractional order transfer functions 
(FC-FOTC) to describe the main dynamic modes present in the 
fuel-cell.  

A brief description of these two approaches is presented, together 
with the analysis of a real experimental dataset obtained from a 
12W open cathode PEMFC stack to illustrate their potential and 
scope. While the former is instrumental for the deconvolution of 
the fuel cell polarization curves into its major components, the 
latter enables the estimation of the parameters related to the 
inherent transport and kinetic phenomena, thus opening the way, 
in both cases, for the interpretation of the effect of the operating 
conditions on the relative dominance and magnitude of these 
components and phenomena. 

Fuel-cells performance; Data-driven modeling; Power quality.  

I.  INTRODUCTION   
Polymer electrolyte membrane fuel cells (PEMFC) are 

regarded as a viable fuel cell technology alternative with 
extensive applications, such as stationary power plants and 
portable power sources. A PEMFC comprises anodic and 
cathodic regions and a polymer membrane electrolyte.  

The characterization of the fuel cells steady-state 
performance is often accomplished by the use of polarization 
curves, which depict the fuel cell overall losses against the fuel 
cell current intensity, under given operation conditions [1]. 
Their interpretation is usually performed with the help of 
models, which are instrumental in extracting meaningful 
information about cell performance. However the simplest 
empirical models do not explicitly take into account the cell 
spatial dimensions and are based on direct fit of polarization 
experimental data to non-linear polynomial expressions [2], 
aiming at the modelling of the three major over-potential 
effects present in the fuel cell, i.e. activation, ohmic and 
concentration losses [3].  

In addition, accurate dynamic models for the PEMFC 
electrical behaviour allow the development of efficient 
controllers for a quick load-following response, ensuring fuel 
economy and enhanced PEMFC lifetime. 

Analyses employing mathematical factorization techniques, 
such as the proposed M-NMF, are commonly designated as 
exploratory data analyses (EDA) or data mining, and aim at the 
identification of significant patterns on given data-sets prior to 
the application of other more sophisticated data analysis 
techniques [4]. EDA are already used in electrochemistry and 
successful applications are described in the Brown and Bear 
review [5]. In a more recent review, Ni and Kokot [6] showed 
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that such well established techniques as polarography and 
voltammetry can also benefit significantly from their 
application.  

On the other hand, data on dominant process dynamics 
present in the PEMFC such as interfacial reaction kinetics, 
electrolyte conductance, oxygen diffusion and  membrane 
water balance [7,8], are commonly acquired through the 
application of  Electrochemical Impedance Spectroscopy (EIS) 
techniques. Impedance variations versus frequency of the AC 
source [9] are thus obtained, which are normally represented in 
a Bode or Nyquist plot and correspond to the frequency 
response analysis of the PEMFC at given potential and 
operating conditions.   

Frequency response data is usually modeled by adjusting a 
transfer function (TF) model to the observed input-output 
behavior. In such cases EIS data are commonly modeled by 
dynamic models based on transient equivalent electric circuits 
consisting of resistor and capacitor elements, where the 
electrode-electrolyte interface is represented by the Randles 
equivalent circuit [10]. A more accurate description of such 
phenomena is possible by introducing fractional-order 
elements, a.k.a. fractance energy storage device [11], which 
provided the motivation for the proposed FC-FOTF modeling 
approach. 

Although fractional calculus is not new, its application to 
real world problems is very recent. A specific property of 
fractional derivatives, which makes them suitable for 
representing some physical and electrochemical phenomena, is 
that they do not depend only on the local properties of the 
function. It has been therefore successfully applied to capacitor 
theory [12], inhomogeneous porous materials [13], fractional 
order diffusion [14] and electrode-electrolyte interfaces [15]. A 
common practice to improve accuracy in the development of 
these models, which was applied in the development of the 
proposed FC-FOTF, is the use of modified dynamic elements, 
such as constant phase or the Warburg diffusional element [16]. 

These two approaches can find application in the design of 
power conditioning units (PCU) for the development of fuel 
cell stacks which require to be integrated in a power grid. Thus, 
the M-NMF data factorization technique apart from 
constituting a monitoring tool, also allows to compute 
performance losses and adjust actual fuel cell feed streams to 
meet power requirements. The FC-FOTF, on the other hand, 
can be used to predict the impact of the PCU ripple current on 
the power output reduction and, thus, furthering both an 
improved PCU design and power quality. 

II. MODELING APPROACHES 

A. M-NMF Outline: Polarization curve data (steady-state) 
 

Data factorization methods are mathematical methods that 
aim at finding common patterns on given data-sets and 
reorganizing information therein contained according to such 
patterns. One of the most common methods is the principal 
component analysis (PCA), which computes the optimal base 
set that can be used to approximate high-dimensional data in a 
least squares sense [4]. Another widely used technique is the 
independent component analysis (ICA) which also aims at 

finding a basis, but where the projected data statistical 
dependence is minimized [17]. ICA and PCA are two similar 
EDA techniques in the sense that both aim at extracting 
common patterns observed from a given data-set, but which 
differ in the base vectors properties. Unlike PCA, ICA base 
vectors are neither orthogonal nor ranked.  

For some applications, these techniques lead to new entities 
and structures that are difficult to interpret in terms of physical 
meaning. To address this issue, several researchers suggest that 
the search for a representative basis should be more confined. 
Thus, new data factorization methods such as non-negative 
matrix factorization (NMF) were developed to facilitate a rapid 
qualitative and quantitative data analysis and interpretation 
[18,19]. 

Specifically, this work proposes a new NMF, M-NMF, to 
extract base vectors with physical meaning and relevant for the 
analysis and interpretation of polarization curve data-sets, not 
requiring the pre-specification of equation models [20]. 

Taking into account the following mathematical properties 
observed in the literature [2,3]: i) over-potential losses are 
divided only in three components and are all positive; ii) 
activation over-potential is modeled as an increasing concave 
function of the current; iii) concentration over-potential is 
modeled as an increasing convex function of the current; iv) 
ohmic over-potential has an increasing linear dependence of the 
current; the M-NMF is described by the following nonlinear 
optimization problem formulation: 
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where W is the three dimensional rank basis matrix composed 
by the wj,v elements, G is composed by the gj,v elements and 
represents the sub-gradients of the matrix of W, and H is the 
three dimensional coefficients matrix. The n-by-m data-set 
matrix X is constructed by the column-wise concatenation of 
the different polarization curves E(i): 
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where the i0=0 to in-1 are the n values for the current intensity 
common to all polarization curves and sorted by increasing 
order. 



 
Figure 1: Modified random sampling consensus algorithm to the 
convergence performance of the Levenberg-Marquardt method. 

1) Numeric method for solving the nonlinear optimization 
 
The numerical method used to solve this problem is based 
upon the alternating least squares method, i.e. it alternately 
fixes one matrix and improves the other: 
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where f represents the objective function. The procedure is 
called the "block coordinate descent" method, where 
sequentially one block of variables is minimized under the 
respective constraints while the remaining variables are fixed. 
For this particular case, there are only two block variables (W 
and H) and, hence, when one variable block is fixed, the 
resultant constrained penalized least square sub-problem 
admits one single unique solution.  
The convergence of the proposed algorithm is not a trivial 
result. However, for the case of two blocks any limit point of 
the sequence {Wk, Hk} generated by the algorithm is a 
stationary point of the original optimization problem. 
 

B. FC-FOTF Outline: Impedance spectroscopy data 
(dynamic response) 

 
FC-FOTC represents a new model formulation based on 

FOTF, i.e. a generalization of FOTF for modelling PEMFC 
impedance data, consisting of a parameterization through the 
use of a modal form composed by elementary fractional order 
terms of 1st and 2nd kind and an identification method to 
estimate the model parameters based on a nonlinear least 
squares optimization method. 

The fractional order differential equation for a given 
system, using the Laplace transform, can be represented by 

 through a modal form based on a partial fraction 
expansion, composed by transfer functions of first and second 
kind: 

        (6) 

where ,  represents the number of terms of first and second 
kind, respectively;  is the k-th fractional order,  is the k-
th gain,  in which  is the k-th cut-off frequency 
[12]. For the second kind terms, two additional parameters 
will be used:  is related with the pole time-constant of the k-
th element and  that can be considered as a pseudo-damping 
constant (similar to second-order systems but without the same 
meaning) [13]. 
 

1) Identification of the model parameters 
 

The main goal in system identification is to estimate the 
(real valued) model parameters: 

 

for the FOTF model (6) with a given number of terms  and , 
respectively, of 1st and 2nd kind from a discrete set of measured 
frequency response data for . The 
parameters are estimated by minimizing the following 
quadratic error: 

        (7) 

i.e. the difference between the measured frequency response 
data and the model estimates,  is the frequency value,  the 
number of data points and  is the complex conjugate 
transpose of . The Levenberg-Marquardt (LM) method is 
commonly used in this kind of optimization problems though it 
does not warrant good estimates for the model parameters. In 
particular, the existence of multiple minima due to the non-
convexity of G and the possibility of outliers in the 
experimental data-set increases the risk of poor parameter 
estimates by the direct application of the method.  

To minimize this risk, a new optimization strategy based on 
the LM method is proposed. This strategy can be seen as an 
extension of the random sample consensus algorithm 
(RANSAC) for nonlinear least squares. Broadly speaking, this 
strategy can cope with: a) data-sets contaminated with outliers, 
since it determines which samples are inliers and hence 
consistent with the model (consensus subset); and  b) multiple 
minima by applying the LM method from multiple randomly 
selected starting points and to multiple (statistical) variations of 
the objective function. 

Fig. 1 presents an outline of the proposed strategy. The 
algorithm starts by randomly picking a subset of the data (step 
1), with a cardinality as small as possible to minimize the risk 
of selecting outliers, but high enough to allow the solution of 
the LM inner linear system. 

 

In step (2), the model parameters are estimated by using the 
LM method with the parameters initiated randomly. Then, the 
errors are evaluated based on the estimated parameters and 



Figure 2: The M-NMF basis vectors (W) as functi
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III. RESULTS AND DISCUSSIO

This section presents the main results from
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TABLE I.  EXPERIMENTAL DESIGN FLOW-RA
CORRESPONDING AIR TO H2 FEED RATIO. 

 Air [L min-1] 
 3.5 4.6 5.8 8

H2 [Lmin-1] Feed Ratio 
0.2 17.6 23.2 28.8 4
0.3 11.7 15.4 19.2 2
0.4 8.7 11.6 14.4 2
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Figure 4: Bode plot showing the magnitude and phase
experimental values (dotted) and the model estimati

 

B. Analysis of impedance data 
Fig. 4 presents the results obtained with 

composed by two terms (p=1, q=1), being not
agreement achieved for the low frequency rang

The parameter identification shows that th
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TABLE II.  ESTIMATED MODEL PARAMETERS FOR TH
CURVES. 

       
a 0.99 1.00 5.61E-3 0.64 5.13 0.14 
b 0.71 0.94 7.89E-3 0.52 2.77 0.19 
b 1.05 1.38 7.16E-3 0.60 5.31 0.18 

 

The results analysis shows that the p
formulation can be used to estimate good qu
from experimental impedance data. 
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