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Abstract— Frequency-domain analysis is applied to a geometry 
of the original IPS buoy device concept. The analysis is 

particularly useful in the early development stages to establish 

the response of power take-off mechanism characteristic 

parameters to different frequencies of the wave spectrum. 

Optimal mechanical damping and spring coefficients are 

computed for some parameters restrictions. Absorbed power, 

capture width and other variables, such as relative displacement, 

are computed for regular waves and these optimal mechanical 

coefficients. 

A stochastic model is developed in order to evaluate the IPS buoy 

behaviour for irregular waves’ conditions. This allows defining 

probability density functions for parameters that characterize 

the device’s behaviour. Assuming that the overall system 

behaviour is linear and that the surface elevation for irregular 

waves may be regarded as a stochastic process with a Gaussian 

probability density function, the variables that define the system 

behaviour, such as bodies’ displacements and velocities, will also 

hold a Gaussian probability density function. The average power 

extraction is computed for different sea state conditions. 

Aiming to enhance the device’s hydrodynamic performance, a 

new non-axisymmetric IPS geometry is conceived. Using the 

stochastic modelling approach, the device’s behaviour is studied 

for several wave directions and compared to the axisymmetric 

configuration’s behaviour. 

 

Keywords— Frequency-domain model, stochastic model, IPS 
buoy, non-axisymmetric geometry 

I. INTRODUCTION 

Offshore wave energy devices enable the exploitation of 

higher wave energy resources in deep water sites. In many of 

the currently existing (or planned) offshore devices the energy 

extraction results from the oscillating movement of a single 

body reacting against a fixed frame of reference (the sea 

bottom or a bottom-fixed structure). The distance between the 

floating body and this fixed frame of reference may prove to 

be considerably large, so that alternative configurations should 

be considered in which the wave energy extraction occurs 

from the relative oscillating movement between two bodies 

with different hydrodynamic characteristics. The theoretical 
basis for the analysis of the hydrodynamics of such devices 

was established in [1]. 

It may be useful to adopt a configuration in which one of 

the bodies presents a considerably large inertia, so that it can 

be considered as a frame of reference in relation to which the 

other body moves. In this manner, the wave energy device’s 

characteristics are closer to the ones of a single-body device, 

avoiding not only the constrains reffered to [2] but also the 

more complex control problematic associated to two-body 

devices [3]. In the IPS buoy, a two-body wave energy device 

invented in 1978 by Sven A. Noren [4], the practical and 

economical problems that the construction of such a 

configuration may arise are ingenuously overcome. The IPS 

consists of a buoy rigidly connected to a fully submerged tube 

(acceleration tube), open at both ends, inside which a piston 

slides. The energy is converted from the relative motion 

between the floater-tube system and the piston, to the inertia 

of which the inertia of the water enclosed in the tube is added. 

In the present paper, frequency-domain analysis is applied 

to a specific geometry of the original IPS buoy device 

concept. Although frequency domain analysis does not allow 

considering non-linear configurations, which would be the 

most realistic scenario for the majority of wave power 

devices, it is particularly useful in the early development 

stages to establish the response of power take-off mechanism 

characteristic parameters to different frequencies of the wave 

power spectrum (e.g. [5]). Optimal mechanical damping and 

spring coefficients are computed for some parameters 

restrictions. Absorbed power, capture width and other 

variables, such as relative displacement, are computed for 

regular waves and these optimal mechanical coefficients. 

Stochastic models are being increasingly applied in wave 

energy devices’ development. Such models were initially 

established for OWC power plants [6]. A stochastic model is 

here developed in order to evaluate the IPS buoy behaviour 

for more realistic irregular waves’ conditions. In [7] a 

simplified stochastic approach was applied to the IPS wave 

energy converter bringing to light issues concerning inferior 

device’s performance in irregular waves. The stochastic 

modelling allows for defining probability density functions for 

relevant parameters that characterize the device’s behaviour. 

In fact, assuming that the overall system behaviour is linear 

and that the surface elevation for irregular waves may be 
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regarded as a stochastic process with a Gaussian probability 

density function, the variables that define the system 

behaviour, such as the displacements and velocities of the 

bodies, will also hold a Gaussian probability density function. 

The average power extraction is then computed for different 

sea state conditions. 

A variation of the original concept, the sloped IPS buoy, in 

which the buoy-tube system is set to oscillate at an angle 

intermediate between heave and surge directions, is studied in 

[8]. Starting from the mid 1990’s, numerical and physic 

models of this configuration have been studied in the 

University of Edinburgh ([9], [10]). Aiming to enhance the 

device’s hydrodynamic performance, an alternative non-

axisymmetric IPS geometry is conceived in the paper. Using 

the stochastic modelling approach, the device’s behaviour is 

studied for several wave directions and compared to the 

axisymmetric configuration’s behaviour. 

II. MATHEMATICAL FORMULATION 

In the modelling of the IPS buoy device the floater-tube set 

will be referred to as body 1 and the piston will be referred to 

as body 2. It will be assumed that both bodies have linear 

hydrodynamic behaviour. Two oscillating modes will be 

assumed for the system: a heave mode for body 1, z1, and a 

heave mode for body 2, z2. 

A. Frequency-Domain 

Frequency domain analysis does not allow considering non-

linear power take-off configurations. This, however, is the 

most realistic scenario for the majority of wave power devices. 

For the IPS buoy, in particular, a hydraulic circuit, as in [11], 

should be considered. This includes a cylinder, high-pressure 

and low-pressure gas accumulators and a hydraulic motor, as 

shown in Fig. 1 a). The relative motion between the two 

bodies induces the displacement of the piston inside the 

cylinder. A rectifying valve assures that the liquid always 

enters the high-pressure accumulator and leaves the low-

pressure accumulator, and not otherwise, whether the relative 

displacement between bodies is made downwards or upwards. 

The resulting pressure difference between the accumulators 

drives the hydraulic motor. 

 

 a) 

 

 b) 

 

Fig. 1  Schematic representation of the power take-off mechanism consisting 

of a hydraulic circuit a) with no spring and b) with an additional spring term 

 

It will be here assumed that the hydraulic circuit may be 

represented by a damping term. In the case in which a spring 

term is also considered, it is assumed that a parallel spring is 

added to the hydraulic circuit, as seen in Fig. 1 b). Assuming 

this last configuration, in which the spring and damping terms 

are proportional to the relative displacement and to the 

relative velocity between bodies, respectively, according to 

Newton’s second law the governing equations for the device 

are expressed in the frequency domain by 
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Here ω  is the angular frequency, iẑ  is the complex 

displacement amplitude for body i, iM  the mass of body i, 

iC  the hydrostatic restoring coefficient for body i, ijA  and 

ijB  the added mass and damping hydrodynamic coefficients, 

idF  the complex amplitude for the diffraction force on body i, 

and LK  and LD  the spring and damping coefficients of the 

power take-off equipment. 

Following [12], the time averaged power extracted from a 

wave with angular frequency ω  is given by 
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where iP  is the time averaged power for an incident regular 

wave with angular frequency ω  and complex elevation 

amplitude ( )ωÂ . ρ  is the water specific mass, g the 

acceleration of gravity, h the water depth and k is the wave 

number given by the positive root of the dispersion 

relationship ( )khk
g

tanh
2

=ω . 

B. Stochastic 

As in [6], let it be assumed that the sea surface elevation, 

( )tη , is a Gaussian random variable in a time interval T, given 

by 
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nnn iAA ϕ=  is a complex 

random variable ( )(nϕ  is a random variable uniformly 

distributed in the interval [ [π2,0 ). Let it equally be assumed 
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{ }E  represents the expected value. 

Assuming that the sea state can be represented by a discrete 

power spectrum, the variance of the sea surface elevation is, 

according to [6], defined by 
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For a continuous power spectrum the variance of the sea 

surface elevation is given by 
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in which ( )ωηS  is the spectral density defined in ] [+∞∞− , . 

Thus, in the limiting case ∞→T  it will be ωω d→0  and 
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Transfer functions, )( 01 ωnHG  and )( 02 ωnHG , relating 

the amplitude of the incident wave nÂ  to the displacement 

amplitudes for body 1 and for body 2, may be obtained from 

equations (1) and (2), so that 

( ) ( ) nAnHGnz ˆˆ 0101 ωω =           (8) 

and 

( ) ( ) nAnHGnz ˆˆ 0202 ωω = .         (9) 

Thus, assuming that (5) holds, the vertical displacements for 

both bodies are given by 
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It should be stressed that, like η , z1 and z2 are Gaussian 

random variables, with variances 

{ } ( )∑
+∞

−∞=

==
n

nz nHGzzE
22

01
*
11

2

1
σωσ           (12) 

and 

{ } ( )∑
+∞

−∞=

==
n

nz nHGzzE
22

02
*
22

2

2
σωσ .         (13) 

If a continuous power spectrum is to be assumed, the 

variances are given by 

( ) ( )∫
+∞

∞−

= ωωωσ η dHGSz

2

1
2

1
            (14) 

and 

( ) ( )∫
+∞

∞−

= ωωωσ η dHGSz

2

2
2

2
.           (15) 

For the load force Lf  given by 
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knowing that ( ) ( ){ } 0ˆˆˆˆ
'2121 =−−

nn
E ξξξξ  for 'nn≠  and basing on 

equations (10) and (11), the variance is 
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where ( ) .00 LLL DinKnZ ωω +=  In the limiting case of a 

continuous power spectrum this expression turns into 
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The average absorbed power is obtained from 
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where iz&  is the vertical velocity of body i and, in the limiting 

case of a sea state represented by a continuous power 

spectrum, 
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III. NUMERICAL RESULTS 

A. Frequency-Domain – Regular Waves 

An axisymmetric geometry of the IPS buoy device, 

corresponding to the original concept, was initially considered. 

Fig. 2 presents the panel grid describing the wetted surface of 

this geometry. The piston (body 2) is enclosed in the 

acceleration tube. 

 



 

  

Fig. 1  Three perspectives of the panel grid describing the wetted surface of 

the IPS buoy axisymmetric geometry 

 

For this geometry, using WAMIT©, hydrodynamic 

diffraction and radiation coefficients were obtained for a set of 

441 wave frequencies in the range of 0.15 rad/s to 2.0977 

rad/s. An 80m water depth was assumed. 

In an initial linear configuration adopted for the power 

take-off equipment it is assumed that it can be simulated 

solely by a damping term ( 0=LK ). The optimal LD  value 

which maximizes the absorbed power (hence the capture 

width cλ ) was computed for each frequency ω  (wave period 

T). 

Results refer to 1m amplitude incident regular waves. To 

avoid unrealistic solutions (body oscillation amplitudes not 

small compared with body dimensions) falling out of the 

scope of linear hydrodynamic theory, some restrictions were 

considered with respect to the amplitude of the heave motion 

of body 1 and the amplitude of the relative heave motion 

between the two bodies, 12 ˆˆ zz − . In all the cases it is assumed 

that the absolute displacement amplitude for body 1 cannot 

exceed 8m. It is also considered that the amplitude for the 

relative displacement between body 1 and body 2 cannot 

exceed 6 and 8m. Thus the case “6_8” means that the 

amplitude for the relative displacement cannot exceed 6m and 

the amplitude for the absolute displacement of body 1 cannot 

be greater than 8m. 

Figure 3 presents the dimensionless absorbed power, 

defined by max
* PPP = , in which P  is given by Eq. (3) and 

maxP  is the theoretical maximum limit for the time-averaged 

power that an axisymmetric heaving wave energy converter 

can absorb from regular waves with frequency ω  and 

amplitude wA , )4/( 323
max ωρ wAgP =  [12]. The two curves 

correspond to different displacement amplitude restrictions, 

meaning that, as above mentioned, the first number in the 

caption refers to the maximum relative vertical displacement 

(6m and 8m) and the second to the maximum absolute vertical 

displacement for body 1 (8m in the two scenarios). Bearing in 

mind that the averaged absorbed power is given by Eq. (3), 

the first *P  peak (around s5.11=T ), which corresponds to 

resonance, should be related to higher relative vertical 

displacement amplitudes (Fig. 5) and the second (around 

s5.14=T ) to higher optimal LD  values (Fig. 4). In the first 

peak approximately 73% of maxP  is reached for 8m maximum 

1ẑ  ( kW.51071=P , .4m23=cλ ). In the second, P  represents 

approximately 33% of maxP  ( kW.30611=P , m.216=cλ ) (Fig. 

3). The value of the absorbed power depends on the maximum 

relative vertical displacement amplitude only in the vicinity of 

s5.11=T  - to higher maximum 12 ˆˆ zz −  values correspond 

higher P  values (Figures 3 and 5). It is in this wave period 

range that the highest 12 ˆˆ zz −  values occur, being limited 

according to the imposed restrictions (Fig. 5). LD  is highly 

sensitive to wave period, ranging, for 8m maximum 1ẑ , 

between a value of  kNs/m.349=LD  for s2.11=T  and a value 

of kNs/m8932.3=LD  in the vicinity of the second *P  peak 

(Fig. 4). Note that in this power take-off configuration P  is 

optimized, for each wave period, as a function of LD , the 

value of which should simultaneously ensure the effectiveness 

of the restrictions imposed on the bodies’ displacement 

amplitudes. 
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Fig. 3  Dimensionless time averaged absorbed power for 6m and 8m 

maximum displacement amplitude between body 1 and body 2 (for a 1m 

amplitude incident regular wave) and 8m maximum absolute displacement 
amplitude for body 1, assuming the power take-off mechanism simulated by a 

damping term (in the two displacement amplitude restrictions captions X_Y 

means (in meters) X = maximum 12
ˆˆ zz − , Y = maximum 1ẑ ) 
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Fig. 4  Mechanical damping coefficient for 6m and 8m maximum 

displacement amplitude between body 1 and body 2 (for a 1m amplitude 

incident regular wave) and 8m maximum absolute displacement amplitude for 

body 1, assuming the power take-off mechanism simulated by a damping term 

(in the two displacement amplitude restrictions captions X_Y means (in meters) 

X = maximum 12
ˆˆ zz − , Y = maximum 1ẑ ) 
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Fig. 5  Relative vertical displacement amplitude, restricted to 6m and 8m, for 

a 8m maximum absolute displacement amplitude for body 1 (for a 1m 

amplitude incident regular wave), assuming the power take-off mechanism 

simulated by a damping term (in the two displacement amplitude restrictions 

captions X_Y means (in meters) X = maximum 12
ˆˆ zz − , Y = maximum 1ẑ ) 

 

The second linear configuration assumes power take-off 

(PTO) equipment simulated by both damping and spring terms. 

In this case optimal mechanical damping LD  and spring LK  

coefficients which maximize the absorbed power (hence the 

capture width cλ ) are obtained for each frequency ω  (wave 

period T). Restrictions are now imposed only to the amplitude 

of the relative heave motion between the two bodies, namely 

6m and 8m maximum 12 ˆˆ zz − . 

From the observation of Fig. 6, which plots the 

dimensionless time averaged absorbed power, it is inferred 

that reactive phase control ( 0≠LK ) significantly improves 

device’s performance for a wide range of wave periods ( P   

goes up to kW527.33  for s15=T  - m.551=cλ ). It should be 

noted, however, that results presented for this PTO 

configuration consider no absolute displacement amplitude 

restrictions. For the wave periods T in which the respective 

restrictions to 12 ˆˆ zz −  are not active (Fig. 9), absorbed power 

values reach maxP  (Fig. 6). Outside this range of periods, *P  

values for 8m maximum 12 ˆˆ zz −  are higher than *P  values 

for 6m maximum 12 ˆˆ zz −  (Fig. 6). 

 

0

0.2

0.4

0.6

0.8

1

5 10 15 20

P
 *

T (s)

8

6

 

Fig. 6  Dimensionless time averaged absorbed power for 6m and 8m 

maximum relative vertical displacement amplitudes (for a 1m amplitude 

incident regular wave), assuming the power take-off mechanism simulated by 

both damping and spring terms 
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Fig. 7  Mechanical damping coefficient for 6m and 8m maximum relative 

vertical displacement amplitudes (for a 1m amplitude incident regular wave), 

assuming the power take-off mechanism simulated by both damping and 

spring terms 

 

The maximum mechanical damping coefficient 

kNs/m42814.5=LD  (nearly 5 times superior to maximum 

LD  in the previous configuration - Fig. 4) corresponds to 

s5.14=T  (Fig. 7). In the same wave period the amplitude of 

the relative heave motion and the mechanical spring 

coefficient present minimum values m9.0ˆˆ 12 =−zz  (Fig. 9) and 

kN/m-15619.3=LK  (Fig. 8). Maximum value 

kN/m10680.3=mK  is reached in adjacent wave period 

s7.14=T  (Fig. 8). In this PTO configuration the imposition of 

restrictions to 12 ˆˆ zz −  is determined by adequate values of 



both LD  and LK . The admissible domain of values for LD  is, 

in this scenario, [ ] )kNs/m(5.42814,149∈LD  for 8m 

maximum 12 ˆˆ zz − . As for the mechanical spring, negative 

stiffness values are only interesting from a conceptual point of 

view. Bearing that in mind, admissible values are here 

comprehended in the interval [ ] )kN/m(3.10680,0∈LK . 
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Fig. 8  Mechanical spring coefficient for 6m and 8m maximum relative 

vertical displacement amplitudes (for a 1m amplitude incident regular wave), 

assuming the power take-off mechanism simulated by both damping and 

spring terms 
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Fig. 9  Relative vertical displacement amplitude, restricted to 6m and 8m, for 

a 1m amplitude incident regular wave, assuming the power take-off 

mechanism simulated by both damping and spring terms 

B. Stochastic Model 

In reality sea waves are random and irregular, therefore 

more suitable to a stochastic modelling. This does not allow 

for the planning of control strategies but should provide a 

more realistic assessment of the device’s performance in real 

conditions, without the need to resort to the complexity of a 

time domain analysis. 

Stochastic modelling is initially applied to the geometry 

represented in Fig. 2. The same set of hydrodynamic 

diffraction and radiation coefficients used for regular waves 

was considered. Following the theoretical modelling in section 

II, incident waves are now described by a frequency spectrum. 

The adopted Pierson-Moskowitz formulation (see [13]), 

expressed in terms of the sea state’s significant wave height 

sH  and energy period eT , is 

( )4-4
e

5-4
e

2
s 1054exp263)( −− −= ωωωη TTHS .        (21) 

The same two PTO linear configurations considered for 

regular waves are considered: 1) simulated solely by a 

damping term ( 0=LK ); 2) simulated by both damping and 

spring terms. The values of LK  and LD  that maximize the 

averaged absorbed power given by Eq. (19) are obtained for 

each sea state. Fig. 10 presents for the two PTO configurations 

the absorbed power P  (above) and the dimensionless 

absorbed power max
* PPP =  (below). Here P  is given by Eq. 

(19) and the maximum power extractable from a sea state 

represented by the spectral distribution )(ωηS  by a heaving 

axisymmetric body is ∫
∞

− ==
0

323
3

max 5.149)(
4

es THdS
g

P ωωω
ρ

η  

(see [7]). Sea states with m2=sH  and eT  ranging from 7 to 

16s are considered. For a PTO mechanism simulated by a 

damping term the device performs better in a sea state with 

m2=sH  and s9=eT  (although the highest dimensional value 

kW.679=P  occurs to s11=eT  - m.43=cλ ) (Fig. 10, black 

diamonds). Nevertheless only about 15% of maxP  is reached. 

This represents a significant performance decay comparing to 

what is observed in regular waves (Fig. 3), a problematic 

widely discussed in recent works (see [3]). The improvements 

achieved by adding a spring to the PTO mechanism prove to 

be generally marginal (highest dimensional value kW.384=P  

occurs to s11=eT  - m.63=cλ ) (Fig. 10, red squares). In fact, 

only for sea states with s7=eT  and s8=eT  *P  values are 

clearly higher in the second PTO configuration 

(approximately 2 times higher for s7=eT ). 

Figures 11 and 12 present the dimensionless optimal 

mechanical damping and spring coefficients, 
*

LD  and 
*

LK . 

These are obtained from )(/ 5.11
*

TBDD LL =  and 

gSKK LL ρ/*= , in which kNs/m4.73)( 5.11 =TB  is body 1’s 

hydrodynamic damping coefficient for s5.11=T  and 

kN/m1334.2=gSρ  (S is the cross sectional area of body 1). 

Minimum (negative) 
*

LK  values occur for sea states with s13=eT  

and s14=eT  (Fig. 12) ( kN/m3.1337kN/m4.847 ≤≤− LK ). In 

these same energy periods the most significant differences 

between 
*

LD  values for the two PTO configurations are 

observed - 
*

LD   values for the first configuration ( 0=LK , 

kNs/m8.6057kNs/m202 ≤≤ LD ) are considerably higher 

than the values for the second configuration  ( 0≠LK , 

kNs/m2.4923kNs/m7.126 ≤≤ LD ) (Fig. 11). In general the 

highest 
*

LD  values refer to the energy periods in which ||
*

LK  



values are higher. Naturally, the lower the ||
*

LK  value, the 

less significant is the difference between 
*

LD  values for the 

two PTO configurations (the limiting case being 0||
* =LK ). 
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Fig. 10  Time averaged absorbed power (above) and dimensionless time 

averaged absorbed power (below) for m2=sH  and s167−=eT , assuming the 

power take-off mechanism simulated by a damping term and assuming the 

power take-off mechanism simulated by both damping and spring terms 
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Fig. 11  Dimensionless mechanical damping coefficient for m2=sH  and 

s167−=eT , assuming the power take-off mechanism simulated by a damping 

term and assuming the power take-off mechanism simulated by both damping 

and spring terms 
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Fig. 12  Dimensionless mechanical spring coefficient for m2=sH  and 

s167−=eT , assuming the power take-off mechanism simulated by damping 

and spring terms 
 

Some variations of the original IPS concept have been 

proposed. Notable are the cases of the modified version 

introduced by the inventor to limit the stroke of the piston 

[14], Aquabuoy, which combines IPS buoy concept with hose 

pump technology [15], and the sloped IPS buoy [8]. 

According to [16], two-dimensional symmetric systems 

oscillating in a single mode radiate similar waves in opposite 

directions, so that no more than 50% of the incident energy 

can be absorbed. Absorption levels superior to 50% may 

essentially be achieved in two ways: i) by considering two-

dimensional symmetric systems oscillating in a combination 

of either surge and heave or pitch and heave; ii) by 

considering two-dimensional systems with non-symmetric 

radiating characteristics. The latter is the case of Salter’s 

Duck, a pitch oscillator, which has revealed in tests absorbed 

power levels superior to 80% of the incident power [17].   

With a view to improving the device’s hydrodynamic 

performance, an alternative configuration for the IPS buoy is 

here proposed, in which an element connecting the floater to 

the tube is introduced to break its symmetry. Panel grid 

describing the wetted surface of this non-axisymmetric 

geometry is presented in Fig. 13. 

As in the previous case, hydrodynamic diffraction and 

radiation coefficients for a set of 441 wave frequencies in the 

range 0.15-2.0977 rad/s (and different incidence directions, in 

the present case) were obtained for this geometry, using 

WAMIT©. Again an 80m water depth was assumed. The 

same two linear configurations are here adopted for the power 

take-off equipment: 1) simulated solely by a damping term 

( 0=LK ); 2) simulated by both damping and spring terms. 

Results are presented for sea states with m2=sH , eT  

ranging from 7 to 16s and incidence direction of 0º, 45º and 

90º  (it is assumed that 0º corresponds to surge direction). Fig. 

14 shows the time averaged absorbed power for a PTO 

mechanism simulated by a damping term. The pattern of the 

curves for the different incidence directions is fairly similar. 

In the three cases the highest P  value occurs for s11=eT . 

Except for s13=eT , absorbed power levels for a 0º direction 



are higher ( kW.079)s11( ==eTP , m.43=cλ ). Nevertheless, 

differences between these and P  levels for 45º and 90º 

directions are inferior to 5%, which proves the reduced 

device’s response in relation to incident direction. In relation 

to the axisymmetric IPS configuration, no significant changes 

in performance are observed for this linear damper PTO 

configuration (with no spring): the highest absorbed power 

value in the present case, kW.079)s11( ==eTP  for 0º direction, 

is inferior in about 1% to the highest for the axisymmetric 

configuration ( kW.679)s11( ==eTP ). 

 

  

Fig. 13  Two perspectives of the panel grid describing the wetted surface of 

the IPS buoy non-axisymmetric geometry 
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Fig. 14  Time averaged absorbed power for m2=sH , s167−=eT  and 0º, 45º 

and 90º incidence direction, assuming the power take-off mechanism 

simulated by a damping term 
 

When it comes to the second PTO configuration (simulated 

by damping and spring terms), the device’s performance 

shows a greater dependence from the direction of incidence 

(Fig. 15), in particular for sea states with lower wave energy 

period ( s9≤eT ). The relative difference between the P  value 

for 0º and the P  value for 90º is about 8% for s9=eT  and 

27% for s7=eT . However, for the wave energy periods in 

which the higher P  levels occur the relative differences are 

inferior to 5%. The highest absorbed power level in this case 

kW.581)s12( ==eTP  ( m.13=cλ ) (for 0º incidence direction), 

corresponds to approximately 97% of the highest value 

obtained for the axisymmetric configuration 

( kW.384)s11( ==eTP ). 
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Fig. 15  Time averaged absorbed power for m2=sH , s167−=eT  and 0º, 45º 

and 90º incidence direction, assuming the power take-off mechanism 

simulated by damping and spring terms 
 

Figures 16 to 18 present the dimensionless optimal 

mechanical damping and spring coefficients, 
*

LD  and 
*

LK , 

for the two considered PTO configurations. Again 

)(/ 5.11
*

TBDD LL =  and gSKK LL ρ/*= , with the 

hydrodynamic damping coefficient of body 1 for s5.11=T  

kNs/m34.2)( 5.11 =TB  and, as in the axisymmetric geometry’s 

case (the cross sectional area of body 1, S, is the same), 

kN/m1334.2=gSρ . The curves referring to the two PTO 

configurations in the non-axisymmetric IPS version (Figures 

16 to 18) generally present significant similarities with the 

curves in the axisymmetric version (Figures 11 and 12). 

However, note that, for a sea state with s13=eT  and a 0º 

incidence direction, the non-axisymmetric IPS assuming a 

PTO mechanism with no spring behaves differently from what 

is observed for the other directions and from what is 

observed for the axisymmetric version. In fact, 
*

LD   

( kNs/m5.5986kNs/m7.215 ≤≤ LD  for 0º direction) presents, 

for this wave energy period and direction, a value 

considerably lower than the ones verified for 45º and 90º (Fig. 

16) and the one verified for the axisymmetric version (Fig. 

11). However, P  levels for s13=eT  are similar 

( kW.771)s13( ==eTP  for the axisymmetric version), which 

means that, taking into consideration that the absorbed power 



is obtained from Eq. (19), a higher ( ) 212 )( tztz && −  mean value 

corresponds to 0º direction. These behaviour fluctuations 

should be related to the positioning of the symmetry breaking 

element in relation to the incoming wave field. 
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Fig. 16  Dimensionless mechanical damping coefficient for m2=sH , 

s167−=eT  and 0º, 45º and 90º incidence direction, assuming the power take-

off mechanism simulated by a damping term 
 

As far as the second PTO configuration is concerned 

( 0≠LK ), the similarity between the 
*

LD  and 
*

LK  curves for 

the different considered directions is notorious (Figures 17 

and 18). The same argumentation is valid when comparing 

these with the respective curves for the axisymmetric IPS 

version (Figures 11 and 12). Maximum value 

kNs/m4975.0=LD , for s15=eT  and 0º direction, is 

comparable to the maximum obtained for the axisymmetric 

IPS, kNs/m4923.2=LD , also for s15=eT . Maximum values 

for 45º and 90º directions are superior to this in 2% and 5%, 

respectively ( kNs/m4975kNs/m131 ≤≤ LD  for 0º direction). 
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Fig. 17  Dimensionless mechanical damping coefficient for m2=sH , 

s167−=eT  and 0º, 45º and 90º incidence direction, assuming the power take-

off mechanism simulated by damping and spring terms 
 

For a 0º incidence direction, the spring coefficient varies 

between minimum value kN/m-759.5)s14( ==eL TK  and 

maximum kN/m1327.4)s16( ==eL TK . Although the minimum 

value is superior to the one obtained for the axisymmetric IPS 

( kN/m-847.4)s14( ==eL TK ) in about 12%, the maximum is 

similar ( kN/m1337.3)s16( ==eL TK ). The difference between 

these and the values obtained for the remaining directions is 

negligible. 
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Fig. 18  Dimensionless mechanical spring coefficient for m2=sH , s167−=eT  

and 0º, 45º and 90º incidence direction, assuming the power take-off 

mechanism simulated by damping and spring terms 

IV. CONCLUSIONS 

Initially, frequency-domain analysis was applied to the IPS 

buoy device in its original axisymmetric configuration. Two 

oscillating modes were considered, namely heave mode for 

body 1 and heave mode for body 2. In the simulation of the 

power take-off mechanism two linear configurations were 

adopted: simulated solely by a damping term and simulated by 

both damping and spring terms. In each case, the respective 

optimal mechanical coefficients are obtained. In order to 

avoid unrealistic solutions falling out of the scope of linear 

hydrodynamic theory, some restrictions were imposed to the 

amplitude of the heave motion of body 1 and to the amplitude 

of the relative heave motion between the two bodies. 

Absorbed power results for the first PTO configuration (no 

spring) revealed two distinct peaks. The restrictions imposed 

to displacements’ amplitudes proved to limit energy 

absorption, so that the theoretical maximum limit is not 

reached. This condition changes when a spring term is added 

to the PTO mechanism (reactive phase control), in which case 

the theoretical maximum is obtained for several wave periods. 

In any of the two considered PTO configurations the 

mechanical coefficients proved to be highly sensitive to wave 

period. The significantly poorer device performance observed 

in irregular waves (stochastic model) should be related to this 

circumstance.   

With a view to enhancing the device’s hydrodynamic 

performance (particularly having in mind the low absorbed 

power levels in irregular waves), a new non-axisymmetric IPS 

geometry was proposed. The stochastic model developed to 



evaluate the axisymmetric version’s performance in irregular 

waves was applied to this alternative configuration. Different 

wave directions were considered. The two linear PTO 

configurations and the two oscillating modes previously 

considered were assumed here. It was concluded that, in any 

of the PTO configurations, absorbed power levels obtained for 

the different wave directions converge with higher energy 

period values. In fact, as should be expected, for higher 

wavelengths the device’s behaviour is closer to the 

characteristics of a point absorber. However, the differences 

between the results obtained for the different directions are 

generally negligible. Additionally, the comparison between 

these and the results for the traditional axisymmetric 

configuration revealed no significant differences. 
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