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Abstract— Most floating oscillating-body wave energy 

converters that have been proposed and developed so far are 
two-body systems where the power is extracted from the relative 
translational motion between the two bodies. As any floating 
device, floating point absorbers are subject to drift forces due to 
waves, currents and wind, and therefore need to be kept in place 
by a proper mooring system. The mooring cables can be 
approximately modelled as catenary lines in a quasi-static 
analysis. The use of a time-domain analysis allows for nonlinear 
mooring forces of slack chain cables to be considered. Numerical 
results for motion, mooring tensions and absorbed power are 
presented for a two body system consisting of a hemispherical 
floater and a submerged body and slack bottom moorings, for 
regular and irregular waves. Comparisons are given with the 
unmoored two-body heaving system, the moored heaving two-
body system and with the simplified one body linear PTO model. 
Results show the possibility of occurrence of low-frequency 
horizontal oscillations of large amplitude, and non linear 
motions, even for regular waves. Some differences are seen in 
comparison with the simplified one body model and with the 
heave two-body system. The moorings were found not to affect 
very significantly the power absorbed. 
 
Keywords — Wave energy; Wave power; Arrays; Moorings; 
Point absorbers. 

I. INTRODUCTION 
Floating point absorbers are a wide class of wave energy 

converters (WECs), developed initially in the late 1970s, for 
offshore deployment. They are oscillating bodies with small 
horizontal dimensions in comparison with the wavelength and 
their rated power ranges from tens to hundreds of kW. 
Examples of some devices, that reached the stage of prototype 
tested in the sea, are IPS buoy [1], Aquabuoy [2], Wavebob 
[3] and PowerBuoy [4]. 

In the numerical modelling of these devices, the 
assumption of a single-body WEC whose power take-off 
system (PTO) is activated by its heave motion is usually 
adopted to reduce the complexity of the theoretical and 
numerical modelling. In reality, most floating oscillating-body 
wave energy converters that have been proposed and 
developed so far are in fact two-body systems.  

Devices like the IPS buoy, consisting of a floater rigidly 
connected to a long submerged vertical acceleration tube open 
at both ends within which a piston can slide, can be modelled 

as a two-body oscillating body converter, where the power is 
extracted from the relative translational motion between the 
two bodies. The dynamics of a two-body heaving wave energy 
converter has been theoretically analyzed in detail by Falnes 
[5] and numerically by several authors [6]-[8]. 

Also, as any floating device, floating point absorbers are 
subject to drift forces due to waves, currents and wind, and 
therefore need to be kept in place by a proper mooring system. 
Although similarities can be found between the energy 
converters and floating platforms, WECs mooring design have 
some important differences, since the mooring connections 
may significantly modify the energy absorption by the 
converter by interacting with its oscillations [9]. 

Different options exist for a mooring design and 
configuration. They can either be single slack chain catenary 
cables or taut synthetic mooring lines and can also have 
additional intermediary sinkers or floaters. Slack chain 
catenary lines rely on their weight to provide the necessary 
horizontal restoring force and, although they induce some 
vertically downward force, they allow for systems with a 
lower stiffness than the ones with taut synthetic lines. 

The mooring, especially the slack-mooring, of (individual) 
floating wave energy converters has been addressed in the last 
few years by several authors (e.g. [9]-[14]). Fitzgerald and 
Bergdahl [13] studied in detail the effect of the mooring 
connections upon the performance of a wave energy 
converter, by linearizing the mooring forces about the static 
condition, which conveniently allows a frequency-domain 
analysis to be applied. 

In the present paper we use a time-domain, rather than a 
frequency domain, analysis, which allows nonlinear mooring 
forces of slack chain cables to be considered. The mooring 
cables are approximately modelled as catenary lines in a 
quasi-static analysis [9]. This simplified approach is 
applicable if we consider waves, body displacements and time 
steps to be small, as it is done here. This means that, in the 
relationship between mooring forces and body position, 
dynamic effects (namely cable inertia and viscous drag forces) 
are ignored but not the cable (submerged) weight per unit 
length. 

Numerical results for motion, mooring tensions and PTO 
absorbed power, are presented for a two body system 
consisting of a hemispherical floater, a submerged body and 
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slack bottom moorings, in regular and irregular waves. 
Comparisons are also given with the unmoored two-body 
heaving system, the moored heaving two-body system and 
with the simplified one body linear PTO model. 

Variations in mean surface level due to tides and drifting 
forces due to currents and wind are ignored, which is 
acceptable if considering small wave amplitudes as done here. 
Taking into account the spherical shape of the buoys and 
assuming the mooring lines and the PTO to be attached to the 
centres of the bodies, it can be considered that the only 
significant modes of oscillation are heave and surge. 

 

II. MATHEMATICAL MODEL 
We consider a hemispherical floater, moored to the bottom 

by catenary lines, as shown in plane view in Fig. 1. In the 
absence of waves, we assume that the centre of the floater lies 
on the free-surface plane, a vertical distance H  from the 
bottom of the sea, and an initial horizontal distance L+L0  
from the anchor point on the bottom, where 0L  is the length 
of the cable that initially lays on the seabed and L  is the 
horizontal length of the hanging part of the cable, from the 
touchdown point to the converter. In Fig.1 an identical 
mooring line is on the right hand side of the converter. The 
mooring lines are in the vertical plane containing the direction 
of propagation of the incoming waves (x-positive direction). 
The two bodies have initially a vertical distance D  between 
their centres. 

 
Fig. 1  Plane view representation of the slack chain moored two-body system. 

In this analysis the slack mooring cables approximately 
modelled as catenary lines, are assumed inelastic and their 
dynamic effects (namely cable inertia and viscous drag forces) 
are ignored but not the submerged cable weight per unit length 
W , which depends on the cable material used (chain, wire, 
fibre) (see [9]). The classical catenary equations [15] apply, 
which can be written as 
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Here, X  and Z  are the horizontal and vertical coordinates of 
the cable point with respect to the lowest point of the catenary 
(where the cable departs from the bottom); α , β  and γ  are 
constants determined from boundary conditions; s  is the 
length of the catenary-shaped part of the cable; T  is the 
tension force on the cable, and HT  and VT  its horizontal and 
vertical components; W  is the cable weight (minus buoyancy 
force) per unit length.  

The boundary conditions at the point of seabed contact are 
0/0,0,0, =dXdZ=Z=X=s  and at the floater L=X  and 

H=Z .  From these boundary conditions it is possible to 
calculate, for the initial equilibrium position, the initial 
horizontal cable tension HT (which is the same at every point 
along the cable) and following that VT  and T . It is also 
possible to calculate the hanging cable length s , which in turn 
allows to calculate the necessary mooring cable length Ts  to 
be used, 0LssT += . 

As for the submerged body, of radius of Ba  and density 

Bρ , its mass is 

 B
3

BB ρπa=m 3
4 , (5) 

which means that, if it is more dense or less dense than water, 
it will exert, respectively, a downwards or upwards force 0F  
on the floater 
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3
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4
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Since, in calm sea, the centre of the hemispherical floater 
(of radius a ) is supposed to lie on the free-surface plane, and 
considering the two mooring lines as in Fig.1, its  mass m  
must be 
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Note that, since the buoy centre is assumed to lie on the free-
surface horizontal plane in static conditions, the mass m  of 
the moored buoy slightly varies with the system considered. 

 
A. Time Domain Analysis 

The buoy and bodies acted upon by the waves and mooring 
lines are made to oscillate in heave and horizontally. The 
displacements of their centres from their mean positions are 
defined by the coordinates )z,(x jj  with Fj =  for the 

floater, and Bj = for the submerged body and where x  is the 
horizontal coordinate, and z  is a vertical coordinate pointing 
upwards (see Fig.1).  

The dynamic equations for the floater are then 
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Here, uA∞  z)x,=(u  are the limiting values of the added 

masses )(ωuA  for ∞=ω . For a hemispherical floater, it is 

2/μ=A z∞  and μ=A x 0.2732∞ , where 3/2 3ρπaμ =  (see 

[16]). dxf  and dzf  are the horizontal ( x ) and vertical ( z ) 
components of the wave excitation force on the buoys (see 
[5]). Finally, 2πa=S . 

The convolution integrals in Eqs. (8-9) represent the 
memory effect on the radiation forces. Their kernels can be 
written as 
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They decay rapidly and may be neglected after a few tens of 
seconds, which means the infinite interval of integration in 
Eqs. (8-9) may be replaced by a finite one in the numerical 
calculations (a 30s interval was adopted as sufficient). The 
integral-differential equations (8-9) were numerically 
integrated from given initial values of  x , z , x&  and z& , with 
an integration time step of 0.05 s. 

)(ωuB  z)x,=(u  are the frequency-dependent 
hydrodynamic coefficients of radiation damping concerning 
the horizontal (subscript x ) and heave (subscript z ) 
oscillation modes of the spherical buoys. 

For the assumption of a single-body WEC whose PTO is 
activated by the floater heave motion, the force applied would 
simply be FFPTO zCKzf

Z
&−−=  and 0=XPTOf . In the case of 

the two-body system, the force applied by the power take-off 
system (PTO) is proportional to the relative velocity between 
the two bodies. 

We denote by )(tlD +  the cable length between the centres 
of the two bodies and easily find 

 DxxzzDl BFBF −−+−+= 22 )()( .  (11) 

The angle α of the cable with the vertical direction is given 
by )()(sin lDxx BF +−=α . Assuming a linear spring of 
stiffness K and a (linear) damper force, we may write 

dtdlCKlfPTO −−= . (The spring and damper are mounted 
in parallel.) The vertical force is αcosPTOPTO ff

Z
=  and the 

horizontal force provided by the cable is 
αsin)(sign PTOBFPTO fxxf

X
−= . 

The forces exerted by the mooring cables on the floater 
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+−  (12) 
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are calculated based on the time varying values of the mooring 
forces vX,F and vZ,F  on each cable, the one on the left Av =  

and the one on the right Bv =  side of the floater, and which 
are calculated, considering the cable length s  defined for the 
static position, and the position of the floater at the previous 
instant of time, approximation which can be seen as valid 
since we consider a small time step. Similar catenary 
equations as before apply 

 βα +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

±
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
WF
xD

W
F

=z+H
vX,

jvX,
j /

cosh , (14) 

 γα +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

±
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
WF
xD

W
F

=s
vX,

jvX,

/
sinh . (15) 

The plus or minus sign is to be chosen according to whether 
the cable considered is on the right or on the left side of the 
floater. Finally, VT  is, as already mentioned, the initial 
vertical cable tension applied at the buoy, at equilibrium 
position. 

The submerged body is subject to the force exerted by the 
PTO, its own weight, the buoyancy force and the 
hydrodynamic forces on it. Dynamic equations, similar to the 
ones for the floater, apply 
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The kernels of the convolution integrals BuL  z)x,=(u  are 
calculated as before, considering )(ωBuB  z)x,=(u  as the 
hydrodynamic coefficients of radiation damping of the 
submerged body. dBxf  and dBzf  are the horizontal and 
vertical components of the wave excitation force on the body. 
Here we consider that the effects of the wave radiation and 
diffraction induced by the buoy upon the body are negligible. 
For the added mass Bu∞A  z)x,=(u , we take the added mass 
of an accelerating sphere in an unbounded fluid (see e.g. [5]) 

3
BBx 3/2 a)(=A=A Bz ρπ . 

 

III. NUMERICAL RESULTS 
We set 1025=ρ kg.m-3 (sea water density) and 

2ms9.8 −=g . The submerged body is a sphere of density 

0b ρ=ρ  (which means that 00 =F ) and radius 5=aB m. 
The body submergence is assumed to be sufficient for the 
excitation force and the radiation damping on it to be 
neglected, i.e. we set 0Bx =B=B Bz  and 0Bxd =f=f Bzd .  

In all cases for which results are shown here, it is 
7.5=a m, 02=D m, 60=H m, L=L ×0.800  and 
06=L m. This results in a bottom-mooring cable of length 



75.135=sT m. A value for the submerged cable weight of 
1520=W N/m was used, adequate for example for a 

90=d mm thick chain cable (see [9]). 
The values used for W , L  and 0L must be defined when 

designing the mooring system of (a specific) device for a 
given location accounting for the water depth and the 
expected maximum horizontal load at the site. The calculation 
done here are not for a specific site, but the mooring design 
values used here account for a maximum horizontal load of 
about 200 kN and a maximum horizontal motion of 12 m, 
which were both verified to be respected. 

As for the PTO, we define 5.7511.0 =gS=K ρ kN/m and 
251.1=C kN/(m/s). The adopted value of C  is obtained 

from B=C , and is the one that allows maximum wave 
energy absorption by an isolated unmoored hemispherical 
heaving buoy, at resonance frequency defined by resonance 
condition (see e.g. [17]) 
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A. Regular waves 

For regular waves the excitation force components are 
assumed to be simple-harmonic functions of time and so we 
may write { } =zdxd ff ,  { }( )ti

zdxd eFF ω,Re , where the 

complex amplitudes xdF  and zdF  are proportional to the 

amplitude wA  of the incident wave. The moduli of dxF  and 

dzF  may be written as { } { }wzwxzdxd AAFF ΓΓ= ,, , where 

)(ωxΓ  and )(ωzΓ  are (real positive) excitation force 
coefficients. 

Deep water was assumed for the hydrodynamic coefficients 
of added mass, radiation damping and excitation force. The 
frequency dependent numerical values were obtained with the 
aid of the boundary element code WAMIT, for the radiation 
damping coefficients )(ωBu  and the absolute value )(ωuΓ  
and phase ( ))()(arg ωω xdzd FF  of the excitation forces 
coefficients, for the floating hemispheres, oscillating 
horizontally and vertically ( zh,=u ). 

Numerical results are presented in Figs 2 to 8 for regular 
waves of 1=wA m and 8=T s. Comparisons are shown for 
identical floaters (with the same parameters except where 
otherwise stated), for the unmoored two-body heaving system, 
the moored heaving two-body system and with the simplified 
one-body linear PTO model. 

Fig. 2 shows the heave and surge motion, of both the floater 
and the submerged body, for regular waves. It can be seen that 
the floater has large surge amplitude of motion and a heave 
motion with amplitude close to the wave amplitude. The 
heave motion of the submerged body has an amplitude which 
is higher than the one from surge and which is also higher 

than the amplitude heave motion of the floater. All motions 
except the floaters heave clearly present non linear or non 
simple harmonic oscillations. 

 

 
Fig. 2  Heave and surge motion, of both the floater and the submerged body, 
in regular waves m1=wA  and s8=T . 

 
Fig. 3  Load applied to the moving floater. On top, the vertical 

ZPTOf  (solid 

red line) and the horizontal load 
XPTOf  (dashed blue line) from the PTO. 

Below, the vertical 
ZMOOf  (solid red line) and horizontal 

XMOOf  (dashed 

blue line) loads from the mooring cables, in regular waves m1=wA  and 

s8=T . 

Fig. 3 shows, on the top, the load applied to the moving 
floater, the vertical 

ZPTOf  (solid red line) and horizontal load 

XPTOf  (dashed blue line) by the PTO, and, below, the vertical 

ZMOOf  (solid red line) and horizontal 
XMOOf  (dashed blue 



line) loads from the mooring cables. It can be seen that the 
vertical load from the PTO is larger than the horizontal load 
(as expected) and similar behaviour occurs for the mooring 
loads. The non linear nature of the forces can be clearly seen, 
especially for the horizontal components, but also for the 
vertical mooring load. 
 

 
Fig. 4  On top, variation in the distance between the two bodies ( l  and 

dtdl ) and, below, the power extracted PTOP  from this motion, for regular 

waves m1=wA  and s8=T . 

Fig. 4 shows, on top, the variation in the distance between 
the two bodies ( l  and also dtdl ) and, below, the power 
extracted from this motion PTOP . It can be seen that the cable 
length variation is almost harmonic but the horizontal motion 
introduces some slight non linear oscillation, which in the end 
affects, even if only slightly, the absorbed power. 

TABLE I 
SYSTEM PARAMETERS VARIATION INFLUENCE IN PERFORMANCE 

 Maxx  avgPTOP )(  avgMOOf )(  

 %15−  %15+  %15−  %15+  %15−  %15+  

D  1.00 1.00 1.00 1.00 1.00 1.00

Bρ  0.97 1.02 1.18 0.85 1.00 1.00 
a  0.90 1.05 0.49 1.87 0.98 1.01 
C  0.99 1.00 0.88 1.12 1.00 1.00 

K  0.99 1.01 0.95 1.05 1.00 1.00 

L  0.72 1.35 1.00 1.00 1.32 0.83 
d  1.16 0.88 1.00 1.00 0.74 1.30 

wA  0.86 1.14 0.72 1.32 0.99 1.01 

T  0.95 1.02 0.94 1.13 0.99 1.00 

Table 1 indicates what influence does a variation of 15% of 
the system parameters, has on the performance, in terms of 
maximum surge motion, average power absorbed and average 
mooring load. The values are a coefficient with regard with 
the case results presented previously: 02=D m, ρ=ρb , 

5=aB m, 7.5=a m, 5.7511.0 =gS=K ρ kN/m, 
251.1=C kN/(m/s), 60=H m, L=L ×0.800 , 06=L m. 

90=d mm, 1=wA m and 8=T s. When one of the 
parameters is varied the remaining are maintained. 

It can be seen that the parameters which appear to have a 
greater influence are the floater radius (on the power 
absorbed), the damping coefficient (also on power), the 
distance between the touchdown point and the floater and the 
thickness of the chain cable (both on the surge motion and the 
mooring forces) and finally the wave height and period (both 
mostly on the surge motion and the power absorbed).  

Some comparisons are also made with other systems, with 
the moored heaving two-body system (where we considerer 
only vertical motion and have simply 0=

Fdxf ), the 

unmoored two-body heaving system (where we have 0=
Fdxf  

and 0=MOOf and 0=VT ) and with the simplified one body 
moored linear PTO model (where we have 

FFPTO zCKzf &−−= ). 
 
 

 
Fig. 5  Comparison between the moored two-body system with only heave 
motion (solid red line) and with heave and surge motion (dashed blue line), in 
terms of corresponding PTO motion (top), mooring loads (middle) and 
absorbed power (bottom), for regular waves m1=wA  and s8=T . 



 
 

Fig. 5 shows the comparison between the moored two-body 
system with only heave motion (solid red line) and the one 
with heave and surge motion (dashed blue line), in terms of 
corresponding PTO motion - z   for the first case and dtdl  
for the second (on the top), of the total mooring load on the 
converter (on the middle) and of the absorbed power (bottom). 
It can be seen that in terms of corresponding PTO motion and 
power absorbed the difference is very slight and there are only 
significant differences in the mooring load, as could be 
expected. 

Fig. 6 shows the comparison of the heave motion (on top), 
and of the absorbed power (bottom), between the moored 
(solid red line) and the unmoored (dashed blue line) two-body 
heaving PTO system. It can be seen that there is only also a 
slight difference in motion and absorbed power when 
introducing the moorings. 

Fig. 7 shows the comparison between the moored two-body 
system (solid red line) and the moored one-body system 
(dashed blue line), in terms of heave motion (top right), surge 
motion (top left), absorbed power (below right) and total 
mooring load on the converter (below left). It can be seen that 
there are only slight differences in term of motion and some 
differences in terms of mooring loads, but significant 
differences in terms of absorbed power. 
 

 
Fig. 6  Comparison of the heave motion (on top), and of the absorbed power 
(below), between the moored (solid red line) and the unmoored (dashed blue 
line) two-body PTO system, for regular waves m1=wA  and s8=T . 

 
Fig 7  Comparison between the moored two-body system (solid red line) and the moored one-body system (dashed blue line), in terms of heave motion (top 
right), surge motion (top left), absorbed power (below right) and  mooring loads (below left) , for regular waves m1=wA  and s8=T . 



 
Fig 8  Comparison between the unmoored and moored and one-body and two-body system  absorbed power, for regular waves m1=wA  and s8=T . 

 
Fig. 8 shows the comparison between the power absorbed 

by the unmoored and moored and the one-body and the two-
body system. These figure gives an idea of the impact of 
considering a one-body or a two-body system, either 
unmoored or moored and also, of the impact of the mooring 
system either in a one-body or a two-body system. Differences 
can be seen between the different cases. It can be seen that 
there is some difference between considering a one-body 
system or a two-body system and that that difference is not 
influenced by whether the system is moored or not. It can also 
be seen that the mooring system has a small impact on the 
power absorption process, but that this influence may be more 
significant when considering a two-body rather than a one-
body system. It should however be noticed that when we 
consider moorings we are in fact also taking into account the 
influence of the horizontal motions. 

 

B. Irregular waves 

Real irregular waves may be represented, in a fairly good 
approximation, as a superposition of regular waves, by 
defining a spectrum. Since our wave energy converter is 
axisymmetric and insensitive to wave direction, it is 
reasonable to assume the spectrum to be one-dimensional. We 

adopt the Pierson-Moskowitz spectral distribution, defined by 
(SI units, [18]) 
 )1054exp(263)( 44542 −−−− −= ωωως ees TTHS , (19) 
where sH  is the significant wave height and eT  is the energy 
period.  

To obtain time-series of the water surface elevation at a 
point due to irregular waves representative of a particular sea 
state, various simulation methods can be applied. A 
commonly used method, assumes that a random Gaussian 
process can be obtained by the sum of a large number of N 
sinusoidal components with phases randomly generated and 
deterministic amplitudes derived from the density spectrum. 

For time-series calculations, the spectral distribution is then 
discretized as the sum of a large number N  of regular waves 
of frequency ωωω Δ+= nn 0 , where 0ω  is the lowest 
frequency considered ( ωω Δ0  should be an irrational number 
in order to ensure the non-periodicity in the time-series), ωΔ  
is a small frequency interval, 1,,2,1,0 −= Nn K , and the 
spectrum is supposed not to contain a significant amount of 
energy outside the frequency range ≤≤ωω0  

ωω Δ−+ )1(0 N . The (deterministic) amplitude of the wave 

component of order n  is ( ) 21)(2 ωως Δ= nnw SA .  



The excitation force may be written as 
 { }∑ +=

n

ti
nudnwud

nneFAtf )()(Re)( φωω  (22) 

).,( zhu =  In the simulations we adopted 

605.00 +=ω rad/s, 01.0=Δω rad/s and 200=N . The 
phase nφ  of each component was chosen as a random real 
number in the interval )2,0( π .Results are plotted in Figs. 9-
12, for irregular waves of 2=H s m, 8=Te s. The parameters 
for the floater, moorings and PTO, are as defined for regulars 
waves. 

Fig. 9 shows the heave and surge motion, of both the floater 
and the submerged body, for irregular waves. It can be seen 
that the floater surge oscillations are still higher than the 
remaining and that the heave motion from the submerged 
body is still higher than the one of the floater. 

As in Fig.3, but for irregular waves, Fig. 10 shows, on the 
top, the load applied to the moving floater, the vertical 

ZPTOf  

(solid red line) and horizontal load 
XPTOf  (dashed blue line) 

from the PTO, and below, the vertical 
ZMOOf  (solid red line) 

and horizontal 
XMOOf  (dashed blue line) loads from the 

mooring cables. It can be seen that PTO vertical load is quite 
larger than the horizontal one, which presents only a very 
slight variation. The loads from the moorings appear to have a 
smaller amplitude variation. 

Fig. 11 shows, on top, the variation in the distance between 
the two bodies ( l  and dtdl ) and, below, the power extracted 

PTOP  from this motion, as in Fig.4 but this time for irregular 
waves. The power output is as could be expected for irregular 
waves.  

 

 
Fig. 9  Heave and surge motion, of both the floater and the submerged body, 
for irregular waves m2=sH  and s8=eT . 

 
Fig. 10  Load applied to the moving floater, on top the vertical load (solid red 
line) and horizontal load  (dashed blue line) from the PTO and below, the 
vertical load (solid red line) and the horizontal load (dashed blue line) from 
the mooring cables, for irregular waves m2=sH  and s8=eT . 

Finally, Fig. 12 shows the comparison between the power 
absorbed by the unmoored and moored and the one-body and 
the two-body system, for irregular waves. Similar differences 
as for regular waves can be seen, differences between the one-
body and the two-body system, and a somewhat higher impact 
of the moorings in power absorption for the two-body than for 
the one-body system. 

 

 
Fig. 11  On top, the variation in the distance between the two bodies ( l  and 

dtdl ) and, below, the power extracted PTOP  from this motion, for irregular 

waves m2=sH  and s8=eT . 



 

 
Fig 12  Comparison between the unmoored and moored and one-body and two-body system  absorbed power, for irregular waves m2=sH  and s8=eT . 

IV. CONCLUSIONS 
 A theoretical analysis was presented for the wave-induced 
heave and surge oscillations of a slack moored wave energy 
converter with a two body system consisting of hemispherical 
floater and submerged body and slack bottom moorings, for 
regular and irregular waves.  
 A time-domain analysis was used to take into account the 
nonlinear effects introduced by the mooring forces. The 
analysis focus on the amplitude of the motion of the converter, 
the load demands of the moorings and the power absorbed. 
 Curves were presented for certain given parameters and 
some comments were made on the behavior of the system. It 
is seen that the mooring cables introduce nonlinearities 
especially in the horizontal motion and horizontal mooring 
forces, but since we consider two modes of motion, this 
nonlinear behavior affects, even if only slightly, the absorbed 
power. 
 A brief analysis was made on the influence of the systems 
parameters through a 15% variation of their values. The 
impact of this variation on the maximum horizontal motion, 
power absorbed and mooring forces was analyzed. Some of 
the results may come as no surprise, but the magnitude of the 
influence should be taken into account. 
 Comparisons are also given with the unmoored two-body 
heaving system, the moored heaving two-body system and 
with the simplified one body linear PTO model. Some 

differences may be seen, mainly in terms of mooring loads 
and also power absorbed, when comparing the moored 
heaving two-body system with the simplified one body linear 
PTO model. 
 Although slack chain catenary lines rely on their weight to 
provide the necessary horizontal restoring force and although 
they induce some vertically downward force, they were found 
not to affect very significantly the power absorbed. 
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