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Abstract— In this work we examined the performance of two
evolutionary algorithms, a genetic algorithm (GA) and particle
swarm optimization (PSO), in the estimation of the parameters
of a model for the growth kinetics of the yeast Debaryomyces
hansenii. Fitting the model’s predictions simultaneously to three
replicates of the same experiment, we used the variability among
replicates as a criterion to evaluate the optimization result. The
performance of the two algorithms was tested using 12 distinct
settings for their operating parameters and running each of
them 20 times. For the GA, the crossover fraction, crossover
function and magnitude of mutation throughout the run of the
algorithm were tested; for the PSO, we tested swarms with 3
different types of convergence behavior - convergent with and
without oscillations and divergent - and also varied the relative
weights of the local and global acceleration constants. The best
objective function values were obtained when the PSO fell in
the zone of convergence with oscillations or zigzagging, and had
a local acceleration larger than the global acceleration.

I. INTRODUCTION

The mathematical modeling of microbial growth kinetics
[1] is a subject of the uttermost importance, both as an
exercise in basic microbiology and in terms of its potential
industrial applications, as a method for improving the yields
of biotechnological processes at large, for example in the
context of biorefineries.

The large number of parameters and the nonlinearity of the
differential equations describing these models pose serious
challenges when it comes to fitting them to experimental
data. The resulting nonlinear optimization problem must be
solved iteratively, and the employment of classical nonlinear
optimization techniques, such as the Levenberg-Marquardt
algorithm [2], has limited success, especially when there are
many parameters, the search space for each of them is vast,
and there isn’t a good initial estimate for their values. A much
valuable alternative approach for solving this problem is to
use heuristics or metaheuristics to perform the optimization,
as opposed to fully deterministic algorithms [3][4].

Among the many metaheuristic methods available for solv-
ing complex optimization problems such as this, are the two
evolutionary algorithms examined in this work: the genetic
algorithm (GA) and particle swarm optimization (PSO). They
are said to be population-based or ensemble search methods
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because they operate on a pool of candidate solutions for
the problem, instead of on a single solution, and iteratively
update it through the application of a number of heuristics.

In recent years, both the GA and the PSO, as well as
hybrid algorithms combining the two, have been applied
to parameter estimation problems, in the context of kinetic
models of microorganisms and plants [5][6][7], metabolic
models [8], models of chemical reactions [9][10], and models
of biological reactors [11]. A fairly recent and exhaustive is
that by Drager et al [8], in which the performance of eight
different optimization strategies (including the GA and the
PSO, as well as other metaheuristics) was compared when
estimating the parameters of complex metabolic models for
C. glutamicum. Mathematically, our model closely resembles
some of the ones studied by Drager, highly non-linear and
with a comparable number of parameters; however, the
phenomena modeled in [8] refers to a well-characterized
metabolic pathway, one for which all relevant chemical
reactions are known. On the other hand, ours is more
of a physiological model, in which we model the overall
macroscopic effects deriving from the myriad of microscopic
phenomena occuring inside cells. Such a model has the
advantage of requiring only measurements that are relatively
simple and cheap, as compared to the more sophisticated
techniques used for single-cell measurements. Furthermore,
the fact that there are three replicates of an experiment carried
out under the same experimental conditions will allow us to:

1) optimize for a more representative behavior of the
organism, thus avoiding over-fitting of the model to
a very specific set of experimental data, and

2) compare the value of the objective function at the end
of the optimization to the variability of the experimen-
tal data, which is a more natural criterion with which
to evaluate the optimization result.

In summary, what we propose and examine in this work
is a strategy for selecting the most appropriate metaheuristic,
out of two widely used evolutionary algorithms, for estimat-
ing the parameters of a mathematically complex physiologi-
cal model of the yeast Debaryomyces hansenii (D. hansenii).
The remainder of the paper is organized as follows:

• In section II, Preliminaries, background information on
the problem is provided, including the experimental
data used, the mathematical formulation of the model,
the definition of the optimization problem, and a brief
summary of the optimization algorithms and the imple-
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mentation used.
• In section III, Strategy for GA and PSO Performance,

the methodology used to compare the performance of
the two algorithms is described.

• In section IV, Results and Discussion, the results of the
simulations are presented and discussed.

• Finally, section V, Conclusions, summarizes the main
achievements of this work.

II. PRELIMINARIES

A. Experimental Settings and Data Collected

The experimental data used in this work consists of
fermentation profiles of the yeast D. hansenii, obtained by
Duarte et al. [12]. The substrates provided to the yeast
were glucose, xylose and arabinose, and the cultures were
carried out aerobically in batch mode for a total of 168
h. Samples were taken at ten different time instants and
the concentrations of the substrates, extracellular metabolic
products (ethanol, glycerol, xylitol and arabitol) and biomass
dry weight were measured. The data set we used is composed
of three experimental replicates of the reference assay (that
is, the experiments labeled B1E1, B2E1 and B2E2 in [12]).

B. The Kinetic Model

It is beyond the scope of this work to discuss the adequacy
of a given model for D. hansenii growth kinetics. Previous
work, done by one of the authors on her Master’s thesis [13],
explored nine different models for D. hansenii physiology, all
biologically reasonable, but each implementing a number of
plausible approximations, seeking to reduce the complexity
of the problem. We chose for this work the model from which
all others were subsequently derived and show on Fig. 1 the
network of reactions (arrows) and inhibitions (dash-dotted
lines) that our model considers.

Fig. 1: Graphical representation of the kinetic model.

This network is mathematically formulated as a system of
ordinary differential equations (ODEs), describing the rate of
change of the concentration of all eight species in the model.
Each rate is written as a sum of negative and positive terms,
accounting for the reactions in which the species participates,
respectively, as a substrate or a product. More specifically,
for a species Sm , m = 1, . . . , 8, we have the following ODE:

dSm

dt
=


−

∑

i

µi +
∑

j

∑

k

Yj,k µj


X

i ∈ C, j ∈ F, k = 1, . . . , n

where µi = µi(t) is the specific rate of reaction i at time
instant t, X = X(t) is biomass concentration, Yj,k is the
yield of branch k of reaction j, C is the set of all the
reactions in which Sm is consumed, and F is the set of all
the reactions in which Sm is formed. If a branched reaction j
has n branches, it means that n products are formed from one
substrate, all at the same specific rate µj , but with different
yields, Yj,k , k = 1, . . . , n. In our model this happens only
in reaction 6, which branches into 6.1 and 6.2; reactions 1,
2 and 3, on the other hand, represent the formation of three
products form the same substrate, but at different specific
rates, µ1, µ2 and µ3, as well as yields. For non-branched
reactions, i.e. if n = 1, Yj,1 is simply written Yj .

The specific rate µi of a reaction i in which substrate S
is consumed has the hyperbolic form of the classic Monod
equation:

µi = µmax,i
S

S + KS
(1)

where S = S(t) is substrate concentration, µmax,i is the
maximum specific rate of the reaction, and KS is its half-
saturation constant, whose inverse is a measure of the affinity
of the microorganism for substrate S. Given the network on
Fig. 1 we built the system of ODEs for this model following
the steps presented next:

i) For each of the reactions Rj in the model, j = 1, . . . , 8,
a specific rate, µj , with the hyperbolic form of the
Monod equation (1), was defined:

µj = µmax,j
S

S + KS,j

ii) If Rj had only one product (solid arrows in Fig. 1),
then a single yield parameter, Yj , corresponding to the
ratio between the amount of product formed and the
amount of substrate consumed, was defined:

Yj =
∣∣∣∣
dP

dS

∣∣∣∣
Rj

,

whereas if Rj had n > 1 products (as e.g. reaction R5

in Fig. 1), then n yield parameters, Yj,k , k = 1, . . . , n,
were defined:

Yj,k =
∣∣∣∣
dPk

dS

∣∣∣∣
Rj

iii) If Rj was inhibited by a particular species, I , then its
specific rate became:

µj = µmax,j
S

S + KS,j

KI

KI + I

where I is the concentration of the inhibitor and
parameter KI quantifies the strength of the inhibition.



The resulting system of ODEs has a total of 8 equa-
tions and 31 parameters (9 maximum specific rates, 9 half-
saturation constants, 10 yield coefficients and 3 inhibition
constants), and describes the rate of change of the con-
centrations of each species throughout the duration of the
experiment.

C. Parameter Estimation as an Optimization Problem

The objective function for this problem, whose value is to
be minimized by the optimization algorithms, is given by:

FO(θ̂) =
10∑

i=1

8∑

j=1

3∑

k=1

(
yijk − f

(
ti, yijk, . . . , θ̂

))2

+

+ Φ + Ψ, θ̂ ∈ D

(2)

where yijk is the experimental concentration of species k
at time instant j, in replicate i, and f is the corresponding
model prediction, obtained via numerical integration of the
models’s system of ODEs, using estimate θ̂ for the vector
of parameters θ, and a set of initial conditions given by
the initial concentrations in replicate i. D is the range of
allowed values for the parameters, establishing the bounds of
the problem’s search domain. All the parameters are required
to be non-negative but, in order to avoid divisions by zeros
we instead set their lower bounds to a value 10−7; the upper
bounds were set to biological plausible values, by literature
inspection [12][14] and, in the case of some of the yield
coefficients, stoichiometric restrictions.

The terms Φ and Ψ in equation (2) are penalizations for
the violation of the problem’s constraints. In particular, Φ
penalizes the prediction of negative concentrations, according
to:

Φ =
10∑

i=1

8∑

j=1

3∑

k=1

φ(yijk)

with φ(yijk) =

{
106 × y2

ijk if yijk < 0,

0 if yijk ≥ 0.

In this way, the penalization for negative concentrations is
proportional to the square of the value of the concentration,
meaning that small negative concentrations are acceptable,
since they could be the product of integration errors, but
larger ones are not allowed. As for the Ψ term, it penalizes
the violation of the linear constraint enforcing that the sum
of the yield coefficients of the two branches of reaction 6,
Y6,1 and Y6,2, must not be higher than the maximum of the
two upper bounds of Y6,1 and Y6,2. When this constraint
is violated Ψ = 106, otherwise Ψ = 0. The factor of 106

in the penalization terms was chosen so that a violation of
either of the corresponding constraints would yield objective
function values more than three orders of magnitude higher
than those considered acceptable (see the discussion in the
next section).

The integration of the system of ODEs was accomplished
with a numerical solver employing a variable step size

(ode15s[15], available in MATLABr), so as to effectively
deal with the stiffness of the problem.

D. Analysis of Experimental Variability

The goal of performing an analysis of experimental vari-
ability is to establish a criterion against which to compare
the result of the optimization, that is, the value of the
objective function found at the last iteration by the opti-
mization algorithms. Such a criterion is especially relevant
in this problem due to the high variability characteristic of
biological systems. Being a measure of experimental data
variability, this criterion should also be comparable to the
measure being minimized during the optimization, that is,
to the output of equation (2). As such, we decided to make
this criterion equal to the sum of distinct squared pairwise
differences [16] between corresponding times and species in
the N = 3 experimental replicates in the data set, henceforth
designated SSPD:

SSPD =
10∑

i=1

8∑

j=1

N=3∑

k=1

N=3∑

l=2
l 6=k

(
xijk − xijl

)2

(3)

where xijk is the concentration measured, at time instant i,
for species j, in replicate k.

The SSPD provides an estimate of the variability of
a data set and therefore constitutes a valuable measure
of comparison of the optimization’s results. However, it
should be more informative to obtain a distribution for the
SSPD, showing its own expected variability. This should
be more accurate than evaluating objective function values
in terms of their relative deviation from the single SSPD
value obtained using equation (3), since without variability
information a small percentage deviation may correspond to
a large absolute one, and vice-versa. Also, since both of the
optimization algorithms are stochastic, and will thus arrive
at different solutions in different runs, it would be possible
to compare the overall variability of the objective function
values with the varibility of the experimental SSPD.

Typically, in order to do so, one would have to obtain many
comparable sets of replicates and compute their correspond-
ing SSPD, obtaining its distribution. Since additional sets
are not available, this distribution was computed, in a very
simple and reasonably accurate fashion, by using a technique
called bootstrapping [17].

Bootstrapping is a non-parametric, computer-intensive,
resamplig procedure used for statistical inference. It treats
the original data sample as if it were the population, and
uses it to generate a number of bootstrap samples, resamplig
with replacement. Since the SSPD value of the original data
set is the sum of all 240 distinct squared pairwise differences
between replicates, the SSPD value of the bootstrap samples
was obtained by randomly picking, with replacement, 240
such differences from the pool of original differences, and
summing them up. Repeating this procedure 105 times yields
105 bootstrap samples, from which a histogram may be built
and a mean value and standard deviation computed. These



results are discussed in section IV, where we compare them
to the objective function values achieved by the GA and PSO.

E. The Optimization Algorithms

1) The Genetic Algorithm: Genetic algorithms
[18][19][20] were first proposed by John Holland in
1975 [21], and belong to a class of evolutionary algorithms
which additionally includes evolutionary programming,
evolution strategies and genetic programming.

In the GA, the pool of candidate solutions is a population
of individuals, which the algorithm evolves over the course of
its iterations (or generations). At each iteration, some of the
individuals are selected for reproduction, according to their
fitness. The simplest versions of the GA apply two heuristics
to obtain the next offspring - crossover and mutation -
which are inspired by the genetic phenomena with the same
designation. In crossover, portions of two individuals are
swapped between them, while in mutation, one or several
of the genes of an individual are slightly altered.

The GA, like many other metaheuristics, possesses a
number of operating parameters on which its performance
greatly depends. These parameters include the number of
individuals or size of the population, the crossover and
mutation probabilities, the specific mutation and crossover
operators used, and the method of selection [19]. The optimal
values for these operating parameters are generally problem
dependent and need to be tuned [22] in order to obtain
maximum performance for the algorithm.

2) Particle Swarm Optimization: Particle swarm opti-
mization [23][24][25] is also an evolutionary algorithm,
firstly proposed by Kennedy and Eberhart in 1995 [26] and
inspired by the natural phenomena of bird flocking. In the
PSO, the pool of candidate solutions is a swarm of particles,
with each particle being characterized by a position and a
velocity. In the classic version of the PSO, the directions
and magnitudes of these velocities are updated, at each
iteration, according to equation ((4); the new positions are
then computed using the updated velocities, according to
equation (5):

vk+1
i = φkvk

i +α1

[
γ1i

(
pi − xk

i

)]
+α2

[
γ2i

(
pg − xk

i

)]
(4)

xk
i + 1 = xk

i + vk+1
i (5)

where xk
i and vk

i are the position and velocity of particle i at
iteration k, respectively, φk is the inertia weight at iteration
k, α1 and α2 are acceleration constants, γ1i and γ2i are
uniform random numbers on the interval [0, 1] and pi and
pg are particle’s i and the swarm’s best positions, found up
to iteration k, respectively.

The operating parameters of the PSO are the inertia
weight φk, the local acceleration constant α1 and the global
acceleration constant α2. The values of these parameters need
to be tuned relative to the optimization problem, since the
convergence behavior of the algorithm is greatly affected by
them.

III. STRATEGY FOR GA AND PSO PERFORMANCE
COMPARISON

The strategy followed for comparing the performance
of the two algorithms comprised the tuning of their most
relevant operating parameters, since the values of these
parameters crucially affects their performance. We formed,
for each algorithm, 12 different sets of operating parameters,
and ran each tuning case 20 times, departing from the same
initial pool of candidate solutions (one for the GA and
another for the PSO). In regard to the number of tuning
cases tested, it is important to notice that each run of an
algorithm takes about 5.5 hours to complete and it would
be impractical to test many more cases; instead, we focused
on what we considered the most important parameters and
chose the values more commonly reported in the literature
for the others.

In order to allow direct comparison of each algorihm’s
tuning results, their stopping criterion was set at a fixed
number of 105 objective function evaluations, since the FO

evaluation is the dominant component in the time complexity
of the algorithms, due to numerical integration. Because the
two algorithms use pools of candidate solutions with different
sizes, this resulted in a different number of iterations for each
of them. This was also the reason why we used different
initial populations for each algorithm.

The tuning experiments were evaluated using three differ-
ent criteria [27]:

• Best and mean FO value found at the last iteration,
• Proportion of runs reaching the error criterion (mean

SSPD),
• Number of iterations to the criterion.

This performance comparison is therefore about the value
of the objective function achieved by each algorithm and
the corresponding convergence behavior, and not about the
values found for the parameters of the model, which shall
not be discussed in this work. In the next two sections we
describe in more detail the settings of these experiments,
separating the parameters that were kept fixed in all tuning
cases from the ones that were actually tuned.

A. Fixed Settings

Table I shows the settings common to both algorithm
which were not subject to tuning: type of problem repre-
sentation, number of individuals in the population, length
of each individual, and number of iterations allowed to the
algorithm.

TABLE I: Fixed Settings

Setting GA PSO

Representation Real Real
Length of Individuals 31 31

No. of Individuals 150 31
No. of Iterations 667 3226



TABLE II: Settings for the Tuning Experiments

(a) GA Tuning Settings

Case
σ Decrease Crossover Crossover

Mode Function Fraction
1 M1 SinglePoint 0.3
2 M1 SinglePoint 0.6
3 M1 SinglePoint 0.9
4 M1 Heuristic 0.3
5 M1 Heuristic 0.6
6 M1 Heuristic 0.9
7 M2 SinglePoint 0.3
8 M2 SinglePoint 0.6
9 M2 SinglePoint 0.9
10 M2 Heuristic 0.3
11 M2 Heuristic 0.6
12 M2 Heuristic 0.9

(b) PSO Tuning Settings

Case φinitial φfinal
Epoch of

α α1
α

mvφinitial

1 0.9 0.4 N/8 4 1/4 104

2 0.9 0.4 N/8 4 3/4 104

3 0.9 0.4 N/8 4 1/2 104

4 0.9 0.4 7N/8 4 1/4 104

5 0.9 0.4 7N/8 4 3/4 104

6 0.9 0.4 7N/8 4 1/2 104

7 0.2 0.2 1 0.2 3/4 104

8 0.2 0.2 1 0.2 1/2 104

9 1 1 1 4 3/4 104

10 1 1 1 4 1/2 104

11 1 1 1 4 3/4 0.4
12 1 1 1 4 1/2 0.4

For both algorithms, we chose to code each individual as
a vector of real numbers, directly corresponding to vector
θ in (2), as it was the most straightforward representation
for a parameter estimation problem. This seems a rather
natural in the case of the PSO, which was originally created
with that representation in mind, but it’s not as natural
in the case of the GA, for which the classic approach is
to represent individuals as bit strings; however, real-coded
genetic algorithms have also been studied and are very
commonly used in these kinds of problems [28][29][30].

Given the real representation used, the length of each indi-
vidual in the population, i.e. the dimension of the problem,
should necessarily be 31, the number of parameters to be
estimated.

Given the 105 allowed FO evaluations for each algorithm,
and the size of their pool of candidate solutions, the allowed
number of iterations was computed by dividing the former
by the latter, yielding the values in Table I.

Additionally, both algorithms enforce the search domain
bounds by creating an initial population uniformily dis-
tributed within those bounds, and including safeguards - the
GA on the crossover and mutations operators and the PSO on
the position update equation (5) -, which make any candidate
solution that violates a bound to take the value of that bound.

The next two subsections examine the choice of population
size as well as other particular aspects of each algorithm,
including their implementation.

1) Genetic Algorithm: We used the genetic algorithm im-
plementation available in the MATLABr Genetic Algorithm
and Direct Search ToolboxTM to run the simulations in this
work.

For the selection process, rank-based fitness scaling (im-
plemented by function fitscalingrank) was used, fol-
lowed by roulette wheel sampling of the parents. Each new
offspring of the GA is composed of one elite child (the best
individual from the previous generation), plus a fraction cf

of individuals formed by crossover, with the remaining being
the product of mutation.

As for the population size, they usually range from 50 to
200 [31]. A reasonable rule for determining a lower bound

for the population size is that there must be at least as
many individuals as there are parameters. Since we have 31
parameters and larger populations are usually favored [32],
we chose a population size of 150 individuals, about 5 times
the number of parameters to be estimated.

2) Particle Swarm Optimization: The implementation of
the PSO used in this work was that developed by Brain
Birge [33] for MATLABr, in the PSOt Toolbox, with minor
alterations.

In what concerns the swarm size, it has been experimen-
tally found that the performance of the PSO is practically
insensitive to it, provided that it falls in the range of 20 to 160
particles [34]. The most popular empirical study, by Carlisle
and Dozier [35], suggests that a swarm of around 30 particles
results in the optimal tradeoff between algorithm perfor-
mance and computational cost. Since the set of benchmark
functions used to obtain this result included problems with
a similar dimension, this suggestion was readily embraced
and we made the swarm size equal to the dimension of the
problem.

B. Tuning

1) Genetic Algorithm: The tuning procedure explored the
effect of two different crossover functions, three different
crossover fractions, and two different schemes of decrease
for the standard deviation σ of the Gaussian mutation func-
tion [36]. The crossover functions tested were the classi-
cal single point crossover and Wright’s heuristic crossover,
as implemented, respectively, by MATLABr functions
crossoversinglepoint and crossoverheuristic. The
latter function numerically combines two parents to produce
a child that lies in the line defined by them, closer to the
fittest parent and in the direction away from the parent with
lowest fitness. The crossover fractions, cf , tested were 0.3,
0.6 and 0.9, and the decrease of σ throughout the run of the
GA was, for the cases labeled M1, given by equation (6),
and for the cases labeled M2 given by equation (7).

σk = σ1

(
1− shrink

k

N

)
, k = 1, . . . , N (6)



σk =





σ1

(
1− shrink

k

N

)
if 1 < k ≤ N

2
,

σN
2

if k >
N

2
.

(7)

with k being the generation index, N the total number of
generations, and shrink a parameter that was set to 1. In
scheme M1, σ decreases all the way to zero at the end of
the run, while in scheme M2 it decreases only until halfway
through the run, and remains constant thereafter. The GA
tuning cases are summarized in Table II(a).

2) Particle Swarm Optimization: The tuning design was
based on the analysis of the convergence behavior of the
PSO algorithm made by Trelea [37]. In this analysis, three
different types of behavior are predicted, depending on the
values of the inertia weight and on the sum of the acceleration
constants, α = α1 + α2:
• convergence with oscillation or zigzagging,
• convergence without oscillation or zigzagging, and
• divergence.
Within some of these cases, the effects of different frac-

tions of local acceleration, α1/α, and of different schemes
of inertia weight decrease were explored. For the divergent
cases, it was tested if a lower mv would help in containing
the expected divergent behavior of the algorithm, while
taking advantage of the enhanced exploration capacity of
this type of behavior. The tuning cases are summarized in
Table II(b).

IV. RESULTS AND DISCUSSION

A. GA Tuning Experiments

The results for the tuning of the GA are shown in Ta-
ble III(a) below. The numbering of the cases in this table is
the same as in Table II(a).

Cases 7 to 12, for which σ decrease was given by (7),
performed, in general, much worse than cases 1 to 6, for
which σ decrease was given by (6). In fact, only when using
single point crossover with a crossover fraction of 0.9 did
10% of the runs satisfy the error criterion (mean SSPD). It
thus stands to reason that the increased interval of mutation,
developed with the aim of obviating premature convergence,
had, on the contrary, a negative effect on the algorithm’s
performance.

Cases 1, 4, 7 and 10, where the lowest crossover fraction
of 0.3 was used, were, in general, the poorest performers,
whereas cases 3, 6, 9 and 12, where a crossover fraction of
0.9 was used, were almost always the best performers. There-
fore, for this particular problem, the role of the crossover
operator is crucial for the performance of the GA, and a
high crossover fraction of 0.6 to 0.9 is preferable to a lower
one.

As for the crossover function, it was found that, for
the instances with the highest crossover fractions, 0.6 and
0.9, single point crossover always outperformed heuristic
crossover, in terms of best and mean objective function

values, while giving equal or better performance in terms
of percentage of runs reaching the criterion. For the lowest
crossover fraction, 0.3, heuristic crossover did better than
single point crossover, but none of the corresponding runs
ever reached the criterion. This result may simply be an
indication that the ability of heuristic crossover to use fitness
information became an advantage over single point crossover
when the population became highly heterogeneous due to the
disruptive effect of the high mutation range.

The best case was case 3, using single point crossover
with a crossover fraction of 0.9, and with σ decreasing all
the way to zero at the end of the run.

B. PSO Tuning Experiments

Table III(b) below summarizes the results obtained for the
tuning of the PSO, with case numbering corresponding to
that defined in Table II(b).

Cases 1 to 6, 7 and 8, and 9 to 12, grouping three distinct
swarm behaviors, clearly show three differentiated ranges of
values for best and mean FO value. Indeed, when the oper-
ating parameters made the swarm behavior fall in either the
divergent or the convergent without oscillation or zigzagging
categories, none of the runs reached the error criterion. On
the other hand, the convergent with oscillations or zigzagging
zone always produced at least one run satisfying the criterion,
and achieved much lower FO values.

The worst results were obtained for cases 7 and 8, with
convergent behavior without oscillation or zigzagging. This
was probably because the algorithm prematurely converged
to a local minimum and was not able to escape that area
of the search space, owing to its extremely low acceleration
constants.

Among the divergent cases, the results were better for the
cases where the maximum velocity was set lower (0.4 as
compared to 104), but they were still poor when compared
to cases 1 to 6. While lowering the value of the maximum
velocity might prove more effective in obtaining better
performances in this divergent zone, it could also limit the
swarm’s ability to escape local minima [38].

In general, and for all swarm behaviors, the best results
were found when the local acceleration α1 was larger than
the global acceleration α2, while the worst corresponded to
the opposite situation.

The best case was case 2, in which the algorithm has a
convergent behavior with oscillation or zigzagging. In this
case, the inertia weight reached its final lowest value earlier
in the run, and α1 was three times larger than α2.

C. Comparison of GA and PSO Results

The PSO results for cases 1 to 6 (see Table III(b)), refer-
ring to convergent behavior with oscillations or zigzagging,
were, in general, much better than the best GA results
(see first 4 columns of Table III(a)). The average number
of iterations to the criterion was, in some cases, higher
for the PSO than for the GA, but the amount of time
the algorithm took to compute them was not, owing to its



TABLE III: Tuning Results

(a) GA Tuning Results

Case Best Mean
% Reaching Iterations to

Criterion Criterion
1 1940.8 3241.1 0 −
2 1190.3 1845.4 15 592.33
3 1176.9 1653.6 50 545.4
4 1920 2579.1 0 −
5 1653.6 2322.1 0 −
6 1534.3 2598.9 5 650
7 2372.4 3004.9 0 −
8 1586.7 2243.8 0 −
9 1191.9 2043.4 10 395
10 2017.5 2884 0 −
11 1775.7 2609.7 0 −
12 1630.6 2429.1 0 −

(b) PSO Tuning Results

Case Best Mean
% Reaching Iterations to

Criterion Criterion
1 1064 1831.9 15 272
2 841.66 1411.1 60 839.5
3 1002.5 1862.6 20 195.5
4 1186.9 2498.6 5 1444
5 922.38 1574.6 40 1721.3
6 1186.9 1966 15 886
7 5572.3 10102 0 −
8 6277.1 10282 0 −
9 2306.8 2725 0 −
10 1975.7 2971.4 0 −
11 2076.4 2882.6 0 −
12 1590.7 3367 0 −

smaller population size and hence fewest FO evaluations per
iteration.

PSO tuning cases 7 and 8 were, on the other hand, much
worse than the worst GA results, whereas divergent cases
(9 to 12) were poor, but comparable to the GA’s poorest
results. This is what may be observed in Fig. 2, which shows
the SSPD histogram obtained via bootstrapping, with the
best and worst results from each algorithm superimposed.
For the sake of readability, we omitted the worst PSO case
(case 8, in the convergent without oscillations zone) and
instead included the worst case in the divergent zone (case
9). The mean value and standard deviation of the SSPD
were ŜSPD = 1192.6 and σSSPD = 367.3.
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Fig. 2: Histogram of experimental SSPD with representative
optimization results from the GA and PSO superimposed.

The overall conclusion of the tuning experiments was
that the PSO is more appropriate than the GA for solving
this problem, since, according to the criteria examined, and
for the best tuning settings, the former yielded significantly
better results than the latter. This conclusion agrees with the
results obtained by Drager et al [8], for the estimation of
parameters of similar models (metabolic models described by
systems of ODEs with a comparable number of parameters),

as they also favor the use of the PSO (albeit in a slightly
different variant) to the use of the GA (with settings similar
to the present ones). We think that this may derive from
the simpler, more straightforward manner in which the PSO
is formulated in relation to this kind of problem. Indeed,
not only the search domain of the problem is directly
transposable to the search domain of the algorithm, but the
operating parameters that control the balance of exploration
and exploitation, or global search ability and local search
ability are independent from each other, easy to interpret,
and with more predicteable effects.

V. CONCLUSIONS

The fitting of fermentation data to kinetic models of
microbial growth is a complex problem for which the usual
deterministic optimization algorithms, based on the deriva-
tives of the objective function, yield poor results. This work
tested two alternative parameter estimation strategies, using
population-based stochastic optimization algorithms, namely
particle swarm optimization (PSO) and a genetic algorithm
(GA). It was concluded that the PSO performed much better
than the GA. Furthermore, PSO tuning also revealed that the
operating parameters of the algorithm should be such that its
behavior is convergent with oscillations and/or zigzagging,
and local search ability is preferred over global search ability.
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