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    Abstract 

The extensive exploitation of the offshore wave 

energy resource may require the deployment of 

dense arrays of point absorbers, the distance 

between elements being possibly tens of meters. In 

such cases, it may be more convenient and 

economical that only elements in the periphery of the 

array are directly slack-moored to the sea bottom, 

while the other elements are prevented from drifting 

and colliding by connections to adjacent elements. 

Previous work was done in a base configuration of 

three floating point absorbers located at the grid 

points of an equilateral triangular, with a solid 

weight located at the centre of the triangle, which 

was extended to more complex equilateral triangular 

grid arrays. The study was based on frequency 

domain analysis which requires, not only the power 

take-off system (PTO) to be linear, but also linear 

mooring forces, which is quite unrealistic as a model 

of slack moorings.  

In the present paper those restrictions are 

removed by using a time-domain, rather than a 

frequency domain, analysis, which allows nonlinear 

mooring forces to be considered. The mooring cables 

are approximately modelled as catenary lines in a 

quasi-static analysis. The results show very different 

behaviour for the horizontal and vertical motions of 

the floating converters, namely the possibility of 

occurrence of low-frequency horizontal oscillations 

of large amplitude. Even in the case of incident 

regular waves, such horizontal motions were found 

to be non-periodic, a behaviour that is typical of 

nonlinear systems. 

Keywords: Arrays, Catenary, Moorings, Point absorbers, 

Wave energy. 

                                                 
 

1.  Introduction 

Free floating devices are a large class of wave energy 

converters (WECs) for deployment offshore, typically 

in water depths between 40 and 100m. As in the case of 

floating oil and gas platforms, such devices are subject 

to drift forces due to waves, currents and wind, and so 

they have to be kept on station by moorings (early 

contributions to the mooring design of wave energy 

converters can be found in [1,2]). Although similarities 

can be found with such applications, the mooring design 

will have some important differences, one of them 

associated to the fact that, in the case of a wave energy 

converter, the mooring connections may significantly 

modify its energy absorption properties by interacting 

with its oscillations [3]. 

Among the wide variety of floating wave energy 

devices, point absorbers have been object of special 

development effort since the late 1970s. They are 

oscillating bodies whose horizontal dimensions are 

small in comparison with the representative wavelength. 

Examples of devices are the IPS buoy [4], Aquabuoy 

[5], Wavebob [6] and PowerBuoy [7]. Their rated power 

ranges typically from tens to hundreds of kW.  

The extensive exploitation of the offshore wave 

energy resource may require the deployment of dense 

arrays of absorbers, the distance between elements in 

the array being possibly tens of meters [8].  

However, little attention seems to have been devoted 

in the published literature to the mooring design of free-

floating point absorbers in dense arrays. This may be 

explained by the present stage of development of the 

technology (focusing on single prototypes) and/or by 

the restricted availability of such information. 

In such cases, it may be more convenient that only 

elements in the periphery of the array are directly slack-

moored to the sea bottom, while the other elements of 

the array are prevented from drifting and colliding by 

connections to adjacent elements.  
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Such a system was studied in [9], with a base 

configuration of three floating point absorbers located at 

the grid points of an equilateral triangle, with a solid 

weight located at the centre (whose function is to pull 

the floaters towards each other and keep the inter-body 

moorings lines under tension). This was extended to 

more complex equilateral triangular grid arrays. In [9], 

the study was based on frequency domain analysis 

which requires, not only the power take-off system 

(PTO) to be linear, but also linear mooring forces, 

which is quite unrealistic as a model of slack moorings.  

In the present paper those restrictions are removed by 

using a time-domain, rather than a frequency domain, 

analysis, which allows nonlinear mooring forces to be 

considered. The mooring cables are approximately 

modelled as catenary lines in a quasi-static analysis. 

This means that, in the relationship between mooring 

forces and body position, dynamic effects (namely cable 

inertia and viscous drag forces) are ignored but not the 

cable weight per unit length. The PTO is assumed to be 

a linear damper activated by the buoy heaving motion.  

Most floating oscillating-body wave energy 

converters that have been proposed and developed so far 

are in fact two-body systems, in which the PTO is 

activated by the relative motion between bodies. The 

assumption of a single-body WEC whose PTO is 

activated by the heave motion was adopted here to keep 

the complexity of the theoretical and numerical 

modelling within manageable limits, while (as claimed 

in [10]) providing a qualitative measure for comparison 

between the situations with and without mooring. 

 Equations for the time domain analysis are presented 

for an array of three point absorbers, which can then be 

extended to build up a mathematical model for more 

complex equilateral triangular grid arrays in which the 

floaters are located at the grid points of an equilateral 

triangular grid. Numerical results, for motions and 

absorbed power, are presented for arrays of three and 

seven hemispherical buoys, with slack bottom moorings 

and inter-body connections and a linear power take-off, 

both for regular and irregular waves. Comparisons are 

given with the unmoored and independently-moored 

buoy situations. 

Variations in mean surface level due to tides and 

drifting forces due to currents and wind are ignored. The 

PTO consists of a linear damper whose force is assumed 

proportional to the heave velocity. Taking into account 

the spherical shape of the buoys and assuming the 

mooring lines and the PTOs to be attached to the centres 

of the bodies, it follows that the only significant modes 

of oscillation are heave, surge and sway.  

2. Mathematical Model 

We consider three identical hemispherical buoys, 1, 2 

and 3, in an equiangular triangular configuration, as 

shown in plan view in Fig. 1. The moorings consists of 

a slack system of three mooring lines 1, 2 and 3 

connecting buoys 1, 2 and 3 to the sea bottom 

respectively, and three lines 1-4, 2-4 and 3-4 connecting 

the buoys to a centrally placed weight 4 (a body much 

denser than water) whose role is to pull the buoys 

towards the centre of the triangle. 

 

Figure 1: Plan view, in calm-sea static conditions, of the 

equilateral triangular 3-buoys array. Wave direction makes an 

angle θ  with the x-axes. 

All six lines are supposed to be attached to the 

centres of the bodies. In a plan view and in calm water, 

the centres of the buoys are located at the vertices of a 

triangle and the six connecting lines (three bottom-

mooring lines and three inter-body mooring lines) are 

aligned with the bisectors of the triangle (Fig. 1). The 

direction of propagation of the incident waves makes an 

angle θ  with the x-axes, as shown in Fig. 1.  

 
Figure 2: Side view, in calm-sea static conditions, of the 

mooring arrangement between bottom, buoys and body. 

In the absence of waves, we assume that the centres 

of buoys lie on the free-surface plane, a vertical distance 

H  from the bottom of the sea, and a horizontal distance 

RL  from the centre of the triangle and a distance 

3RL  apart from each other. The buoys are considered 

to be at an initial horizontal distance FLL +0  from the 

anchor point on the bottom, where 0L  is the length of 

the cable that initially lays on the seabed and FL  is the 

horizontal length of the hanging (catenary) part of the 

cable (see Fig. 2). The centre of body 4 is at distance h  

below the free surface. 

The mooring cables are approximately modelled as 

catenary lines, are assumed inelastic and their dynamic 

effects (namely cable inertia and viscous drag forces) 

are ignored but not the submerged cable weight per unit 

length W , which depends on the cable material used 

(like chain, wire, fibre) and its construction ([3]). 

The classical catenary equations ([11]) may be 

written as 
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Here, D  and Z  are the horizontal and vertical 

coordinates of the cable point with respect to the lowest 

point of the catenary (where the cable departs from the 

bottom); α , β  and γ  are constants determined from 

the boundary conditions; s is the length of the catenary-

shaped part of the cable; T  is the tension force on the 

cable, and HT  and VT  its horizontal and vertical 

components; W  is the cable weight (minus buoyancy 

force) per unit length. The tension HT (the same at 

every point along the cable) is the main unknown and it 

(or the ratio WTH ) is sometimes referred to as the 

catenary parameter ([3]). 

In this scenario, in the initial equilibrium position and 

for the bottom-mooring cable, we considerer FT = , 

HH FT = , VV FT = , FWW = , Fαα = , Fββ = , 

Fγγ = . The boundary conditions at the point of seabed 

contact are  

0,0,0,0 ==== dDdZZDs , (5) 

which means that the unknown constants in the 

equations are  

0,,0 =−== FFHFF WF γβα . (6) 

The boundary conditions at the buoy would then be 

FLD =  and HZ = , which, together with FW , make 

possible to calculate the initial horizontal cable tension 

HF  by resolving the following non-linear equation with 

an appropriate root-finding algorithm 
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Once the value of HF  is known, it is easy to 

calculate the remaining parameters such as VF , F  and 

the hanging cable length Fs . The bottom-mooring cable 

total length would then be 0Lsl FF += . 

The angle Fθ  (with the horizontal plane) of the 

cable at the buoy attachment point can be easily found 

by considering 

FFHF =φcos . (8) 

Since the horizontal tension force HF  is assumed to 

be the same at every point of the (bottom-mooring) 

cable, then, for the static situation (absence of waves), it 

is also equal to the horizontal tension force in the inter-

body mooring cable HH FR = . 

The calculations for the inter-body mooring cable, 

connecting the buoys and the submerged body 4 

(weight) are based on the same catenary equations (1-4), 

by considering RT = , HH RT = , VV RT = , RWW = , 

Rαα = , Rββ = , Rγγ = . We take into account that 

HH FR = , that body 4 (weight) is at (horizontal) 

distance RL  from the buoy and at a depth h  (from the 

undisturbed free surface). We further consider the 

previous boundary conditions (5) at the buoy. The 

conditions at body 4 is such that  

HR

P

dD

dZ

dD

dZ 4=−
−+

, (9) 

where 4P  is a force downwards (since the body is more 

dense than water) that is equal to the difference between 

the body weight and its buoyancy force 

gvgvgmP )( 0440444 ρρρ −=−= . (10) 

For given body density 4ρ , the volume 4v  of body 4  

(and consequently body radius 4a ) can be determined 

as functions of RL  and h . 

Then it is also possible to calculate the value of 

RR sl = , R  and VR  and, as before, Rφ  the angle to 

the horizontal made by the inter-body cable at the buoy 

RRHR =φcos . (11) 

Since, in calm sea, the centres of the hemispherical 

buoys (of radius a) are supposed to lie on the free-

surface plane, the buoy mass m must be 

)R+(F
g

ρπa=m VV

1

3

2 3 − . (12) 

This equation expresses that the vertical component of 

the resultant force on the motionless buoy is zero. Note 

that, since the buoy centre is assumed to lie on the free-

surface horizontal plane in static conditions, the mass m 

of a moored buoy slightly varies with the mooring 

parameters, as shown by Eq. (12). 

The calculated equilibrium values can be extended to 

the three buoys, by defining the pulling force vectors 

1F , 2F  and 3F  for the bottom-mooring lines, the 

corresponding angles F1φ , F2φ  and F3φ , the tension 

force vectors 1R  (line 1-4), 2R  (line 2-4) and 3R  (line 

(3-4), and the corresponding angles R1φ , R2φ  and 

R3φ . In the absence of waves, it is then 

F=F=F=F 321 ,  FF3F2F1 φφφφ ===  and 21 R=R  

R=R= 3 , RR3R2R1 φφφφ === . Considering the 

triangular formation, the projections of lines 1-4, 2-4 

and 3-4 on the horizontal plane make, with the x-

direction, angles 321 πϕ = , 322 πϕ −=  and 03 =ϕ . 

In the absence of wave, we have, for 3 to1=j , 
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for the bottom-moorings, and 
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+

+

),sin(

),cos(

,

,

πϕ

πϕ

jHjY

jHjX

R=R

R=R
 (14) 

for the inter-body moorings. 
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3. Time-domain analysis 

The dynamics of floating bodies in waves with 

nonlinear mooring systems were theoretically studied in 

connection with moored ships and offshore platforms 

without wave energy absorption.  Analyses can be 

found of the influence of the mooring lines in the 

horizontal motion (for e.g. [12]), of the nonlinear 

dynamics of moored vessels (e.g. [13]). No work on 

such effects on wave-energy-absorbing floating systems 

seems to have been published. The nonlinear effects are 

in general much more significant in the case of slack 

moorings (with catenary mooring lines, the case 

analysed here) than for tightly moored floaters. If 

nonlinearities are to be taken into account, then a time-

domain (rather a frequency-domain) analysis is to be 

employed. This approach was first applied to ships in 

wavy seas [14] and later extended to oscillating-body 

energy converters [15].  

The buoys and body 4, acted upon by the waves and 

mooring lines, are made to oscillate in heave and 

horizontally. The displacements of their centres from 

their mean positions are defined by coordinates 

)z,y,(x jjj  ( 4 to1=j ) ( jx  and jy  are horizontal 

coordinates, and jz  is a vertical coordinate pointing 

upwards) (Fig. 1). In this case, the dynamic equations 

are, for each buoy 3,2,1=j , 

,cos
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, jXhd

j

t

hjh
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dtxtLtxAm

−=

−++ ∫ ∞−
∞

θ

ττ &&&&
 (15) 
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t
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.
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, VjZjzd
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t

zjjz

FFzCf
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∞
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Here, uA∞  ),( zhu =  are the limiting values of the 

added masses )(ωuA  for ∞=ω . For a hemispherical 

floater, it is 2µ=∞ zA  and µ2732.0=∞ hA , where 

32 3ρπµ a=  (see [16]). hdf  and zdf  are the 

horizontal )(h  and vertical )(z  components of the wave 

excitation force on the buoys (see [17]). The PTO of 

each floating converter is assumed to consist of a simple 

linear damper activated by the buoy heaving motion. 

The vertical force it produces on the buoy is 

)=(jzC j 3  to1&− . Finally, 2aS π= . 

The convolution integrals in Eqs. (15-17) represent 

the memory effect in the radiation forces. Their kernels 

can be written as 

),(sin
)(2

)( zhudt
B

tL
t

u
u == ∫ ∞−

ωω
ω

ω

π
. (18) 

They decay rapidly and may be neglected after a few 

tens of seconds, which means the infinite interval of 

integration in Eqs. (15-17) may be replaced by a finite 

one in the numerical calculations (a 20s interval was 

adopted as sufficient). The integral-differential 

equations (15-17) were numerically integrated from 

given initial values of  x,  z, x&  and z& , with an 

integration time step of 0.05 s. 

)(ωuB  ),( zhu =  are the frequency-dependent 

hydrodynamic coefficients of radiation damping 

concerning the horizontal (subscript h ) and heave 

(subscript z ) oscillation modes of the spherical buoys. 

The time varying values of the bottom-mooring 

forces jXF , , jYF , , jZF ,  on each cable, 3 to1=j , are 

calculated based on the position of each buoy, 

considering the cable length Fl  defined for the static 

position and the previous catenary equations 

DsldLL FFjF +−=++ )(0 , (19) 













 +









=+

FjH

j

F

jH
j

WF

dD

W

F
zZ

,

,
cosh , (20) 













 +











=

FjH

j

F

jH
F

WF

dD

W

F
s

,

,
sinh . (21) 

Here jd  is the horizontal displacement from the 

equilibrium position (with components  jx  and jy ). 

Once jHF ,  has been calculated, it is easy to calculate 

also jZjV FF ,, =  and jF , and the values of jXF ,  and 

jYF ,  for each buoy, by considering the angles between 

the projection of the mooring lines and the x-direction. 

Body 4 is subject to the pulling forces of lines 1-4, 2-

4 and 3-4, its own weight, the buoyancy force and the 

hydrodynamic forces on it. Similar dynamic equations 

apply 
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The kernels of the convolution integrals uL4  

),( zhu =  are calculated as before, considering )(4 ωuB  

),( zhu =  as the hydrodynamic coefficients of radiation 

damping of body 4. d4hf  and d4zf  are the horizontal 

and vertical components of the wave excitation force on 

body 4. In this case, the effects of the wave radiation 

and diffraction induced by buoys 1-3 upon body 4 were 

neglected. For the added mass of body 4, uA 4∞  
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),( zhu = , we take the added mass of an accelerating 

sphere in an unbounded fluid (see e.g. [16]) 
3
44z4h 3/2 a)ρρ(=A=A . 

The time varying values of the inter-body mooring 

forces jXR ,4 , jYR ,4 , jZR ,4  on each cable 3 to1=j  

are calculated in a similar way as for the bottom-

mooring, considering the boundary conditions and 

taking into account the values of 4P  and Rl  defined for 

the equilibrium position. 

4. Numerical results for a three-buoy array 

We set -3mkg1025=ρ  (sea water density) and 

2ms9.8 −=g . Body 4 is a sphere of density 

-3
4 mkg2500=ρ  (typical of concrete). The 

submergence of body 4 is assumed to be sufficient for 

the excitation force and the radiation damping on it to 

be neglected, i.e. we set 04z4h =B=B  and 

0=f=f d4zd4h .  

In all cases for which results are shown here, it is, 

5.7=a m, 60=H m, FL=L ×65.00 , 06=LF m, 

03=LR m, 20=h m and 251.1=C kN/(m/s). A value 

for the submerged cable weight of 

1520=WW RF = N/m was used, adequate for example 

for a 90mm thick chain cable (see [3]). This results in a 

body of radius 0.734 ≈a m, a bottom-mooring cable of 

length 75.140=lF m and an inter-body mooring cable 

of length .7563=lR m. 

The adopted value of 251.1=C kN/(m/s) is obtained 

from B=C , and is the one that allows maximum wave 

energy absorption by an isolated unmoored 

hemispherical heaving buoy, at resonance frequency 

defined by resonance condition (see e.g. [17]) 

2/1
)

−










ρgS

A(ω+m
=ω . (25) 

4.1. Regular waves 

For regular waves the excitation force components 

are assumed to be simple-harmonic functions of time 

and so we may write { }=zdxd ff ,  { }( )ti
zdxd eFF

ω
,Re , 

where the complex amplitudes xdF  and zdF  are 

proportional to the amplitude wA  of the incident wave. 

The moduli of dxF  and dzF  may be written as 

{ } { }wzwxzdxd AAFF ΓΓ= ,, , where )(ωxΓ  and )(ωzΓ  

are (real positive) excitation force coefficients. 

Deep water was assumed for the hydrodynamic 

coefficients of added mass, radiation damping and 

excitation force. The frequency dependent numerical 

values were obtained with the aid of the boundary 

element code WAMIT, for the radiation damping 

coefficients )(ωBu  and the absolute value )(ωuΓ  and 

phase ( ))()(arg ωω xdzd FF  of the excitation forces 

coefficients, for the floating hemispheres, oscillating 

horizontally and vertically ( zh,=u ). 

The power performance of the three wave energy 

converters 1, 2 and 3 can be defined by a dimensionless 

power absorption coefficient defined as max
*

/ PP=P jj  

)=(j 3 to1 , where maxP  is the theoretical maximum 

limit of the (time-averaged) power that an axisymmetric 

heaving wave energy converter can absorb from regular 

waves of frequency ω  and amplitude wA , and is 

known to be (see [17]) )(ρAg=P w
323

max 4ω/  

(corresponding to capture width 2π/λ ). 

Numerical results are presented in Figs 3 to 6 for 

regular waves of 1=wA m, 10=T s. and 0=θ . 

Comparisons are shown with buoys of the same size 

(with identical values of a , H , 0L , FL , FW  and C  

as for the triple buoys), individually spread-moored by 

two cables (in the vertical plane of the incident wave 

direction) as well as unmoored. 

 
Figure 3: Surge (x) oscillations for individually-moored buoys 

in regular waves of 1=wA m, 10=T s. 

Fig. 3 shows the surge oscillations for buoys 1 to 3, 

for the individually-moored buoys. As expected, the 

time series for buoys 1-2 and buoy 3 are not identical, 

due to their different locations. Since it is 0=θ , 

obviously the surge oscillations of buoy 1 and 2 are 

identical. It may be seen that the surge oscillations 

exhibit a markedly non-simple-harmonic time-pattern, 

composed of the wave frequency (0.1 Hz) oscillation 

superimposed on a low frequency (about 0.018 Hz) 

oscillation (which can be related to the system natural 

oscillation frequency), which is obviously a nonlinear 

effect, not visible, for the same wave conditions, in the 

frequency-domain analysis [9]. 

Fig. 4 shows the heave, surge, sway oscillations for 

buoys 1 to 3, for the inter-body moored array. Like the 

individually-moored buoys, the non linear surge 

oscillations are visible and reveal an (even lower) low 

frequency. The sway oscillations also reveal non linear 

behaviour (buoys 1 and 2) caused by the angle of the 

bottom-mooring with the y-direction. The surge and 

sway oscillations (significantly) exceed those of the 

heave oscillations and are higher than those predicted by 

the frequency-domain analysis [9]. 

Fig. 5 shows the heave 4z , surge 4x and sway 4y  

oscillations for body 4. The surge (and also the heave) 

oscillation reveal a highly nonlinear behaviour that 

results from the different nonlinear oscillations of the 

three buoys to which the body is attached. 
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Figure 4: Heave ( z ), surge ( x ) and sway ( y ) oscillations 

for the inter-body moored buoys in regular waves of 

1=wA m, 10=T s. 

 

Figure 5: Heave ( 4z ), surge ( 4x ) and sway ( 4y ) oscillations 

for body 4 in regular waves of 1=wA m, 10=T s. 

 
Figure 6: On top: instantaneous dimensionless power 

absorbed by the three-buoy array with inter-body moorings 

(red solid line) and by each buoy of the array. Below: ratios 

between the power absorbed by the triple buoy set and by an 

identical set in the unmoored and independently moored 

situations. 

Fig. 6 shows, on top, the time-varying power 

absorbed separately by each buoy, and the total power. 

As expected, the combination of three converters 

produces a smoothing effect on power, which would be 

even more evident in the case of an array with a larger 

number of elements. The power produced is not 

significantly affected by the nonlinear oscillations since 

it is considered that the PTO only extracts power from 

the heave oscillations. At the bottom, Fig. 6 also shows 

the ratio between the power absorbed by the triple buoy 

set and by an identical set in the unmoored and 

independently moored situations. The inter-body 

moored configuration appears less favourable than the 

unmoored configuration ( 1* <q ), but is slightly better 

than the individually-moored configuration ( 1* >q ). 

4.2. Irregular waves 

Real irregular waves may be represented, in a fairly 

good approximation, as a superposition of regular 

waves, by defining a spectrum. Since our wave energy 

converter is axisymmetric and insensitive to wave 

direction, it is reasonable to assume the spectrum to be 

one-dimensional. We adopt the Pierson-Moskowitz 

spectral distribution, defined by (SI units, [18]) 

)1054exp(263)(
44542 −−−− −= ωωως ees TTHS , (26) 

where sH  is the significant wave height and eT  is the 

energy period. For linear systems, the time-averaged 

power output in irregular waves is 

ωωω ς dSPTHP es )()(2),(
0

1irr ∫
∞

= , (27) 

where )(1 ωP  is the power absorbed by the floater from 

regular waves of frequency ω  and unit amplitude. In 

dimensionless form, we write, for irregular waves, 

irrmax,irr
*
irr PPP = , where 

32

0

3
3

irrmax, 5.149)(
2

es THdS
g

P == ∫
∞

− ωωω
ρ

ς  (28) 

(SI units) is the maximum (time-averaged) power that 

can be extracted by an axisymmetric body oscillating in 

heave in a sea state represented by the spectral 

distribution )(ωςS .  

To obtain time-series of the water surface elevation at 

a point due to irregular waves representative of a 

particular sea state, various simulation methods can be 

applied. A commonly used method, assumes that a 

random Gaussian process can be obtained by the sum of 

a large number of N sinusoidal components with phases 

randomly generated and deterministic amplitudes 

derived from the density spectrum. 

For time-series calculations, the spectral distribution 

is then discretized as the sum of a large number N  of 

regular waves of frequency ωωω ∆+= nn 0 , where 0ω  

is the lowest frequency considered ( ωω ∆0  should be 

an irrational number in order to ensure the non-

periodicity in the time-series), ω∆  is a small frequency 

interval, 1,,2,1,0 −= Nn K , and the spectrum is 

supposed not to contain a significant amount of energy 

outside the frequency range ≤≤ ωω0  ωω ∆−+ )1(0 N . 

The (deterministic) amplitude of the wave component of 

order n  is ( ) 21
)(2 ωως ∆= nnw SA .  

The excitation force may be written as 

{ }∑ ∑ +==
n n

ti
nudnwudud

nn
n

eFAtftf
)(

)(Re)()(
φωω  (29) 
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).,( zhu =  In the simulations we adopted 

605.00 +=ω rad/s, 01.0=∆ω rad/s and 200=N . 

The phase nφ  of each component was chosen as a 

random real number in the interval )2,0( π . 

Results are plotted in Figs. 7-8, for irregular waves of 

2=H s m, 10=Te s, 0=θ , for 5.7=a m, 60=H m, 

FL=L ×65.00 , 06=LF m, 03=LR m, 20=h m, 

1520=WW RF = N/m and 251.1=C kN/(m/s). 

Fig. 7 shows the heave, surge and sway oscillations 

for buoys 1 to 3 in irregular waves. It can be seen that 

the system low frequency oscillation in sway and surge 

are still present and that their amplitude has not 

significantly changed. 

 
Figure 7: Heave, surge and sway oscillations for the inter-

body moored buoys .Irregular waves of 2=sH m, 10=eT s. 

 

Figure 8: Comparison between the dimensionless power 

absorbed by the three buoys in array with inter-body moorings 

for different angles of incidence θ . 

 
Individually -moored /  

Unmoored 

Inter-body moored /  

Unmoored 

θ  º0  °30  °60  º0  º0  °30  

1,irrq  0.954 0. 954 0. 955 0.964 0.964 0.965 

2,irrq  0.954 0. 955 0. 955 0.966 0.965 0.965 

3,irrq  0.954 0. 955 0. 955 0.966 0.963 0.965 

Array 0.954 0.955 0.955 0.965 0.964 0.965 

Table 1: Ratios of the time-averaged powers absorbed by the 

three-buoy array in irregular waves, for different 

configurations and values of the angle of incidence θ . 

Fig. 8 shows that, as expected, the instantaneous 

values of the array dimensionless total power *
irrP  is 

significantly affected by the wave angle of incidence θ , 

although not its time-averaged value. 

Table 1 shows the ratios between the time-averaged 

powers absorbed by the three buoys in the inter-body 

moored and in the individually-moored versus the 

unmoored configuration. It can be seen that, also for 

irregular waves, the inter-body moored configuration 

seems more favourable in terms of average power than 

the individually-moored configuration ( 1* >q ). 

5. Complex triangular-grid arrays 

The equations derived before can be used without 

major difficulty to build up a mathematical model for  

more complex arrays consisting of buoys placed at the 

grid points of an equilateral triangular grid, with the 

weights located at the centres of the triangular cells. 

Each buoy is attached to 6 weights, if it is located inside 

the array, or to 1, 2, 3 or 4 weights if it is located at the 

periphery of the array. The array is spread-moored to 

the sea bed through its peripheric buoys, in such way 

that, in calm water, the whole assembly conforms to the 

specified pattern. 

 
Figure 9: Seven-buoy array. 

Results are presented in Figs. 10 and 11 for an array 

of seven (numbered 1 to 7) hemispherical point 

absorbers located at the vertices and the centre of a 

regular hexagon, and six (8 to 13) weights (Fig. 9). The 

numerical results are for regular waves of 1=wA m and 

10=T s, with 5.7=a m, 60=H m, FL=L ×65.00 , 

06=LF m, 03=LR m, 35=h m, 1520=WW RF = N/m 

and 251.1=C kN/(m/s). In this scenario, in the static 

position, the bottom-mooring horizontal force at each 

buoy is balanced by connections to two weights, 

resulting in a body radius 63.08 =a m and an inter-body 

mooring cable length 48=lR m . 

Fig. 10 shows the surge and sway oscillations for the 

seven buoys, for an wave angle of incidence of 0=θ . 

Due to symmetry, the results are identical (of opposite 

sign for sway) for pairs of buoys 1-2, 3-5, 6-7 (and also 

pairs of weights 9-10, 11-12), but not between different 

pairs due to different locations and mooring effects. It 

can be seen the nonlinear motions for the different 

buoys. 

Fig. 11 shows again that the total absorbed power is 

significantly affected by wave angle of incidence ( 0=θ  

and 30º) in terms of instantaneous values, but is almost 

insensitive in terms of time-averaged values. The 

smoothing effect on the array total power is visible. 
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Figure 10: Surge and sway oscillations for the inter-body 

moored seven buoys. Regular waves of 1=wA m, 10=T s. 

 
Figure 11: Instantaneous dimensionless power  absorbed by 

the seven-buoy array with inter-body moorings (red solid line) 

and by each buoy of the array. 

Conclusions 

The results presented here illustrate the behaviour 

and power performance of triangular-grid arrays of 

identical wave energy converters, absorbing energy in 

the heaving mode from regular and irregular waves, 

spread-moored to the bottom through the bordering 

elements and inter-connected by lines kept under 

tension by weights.  

The performance was found to be significantly 

affected by the presence of the mooring system. 

A time-domain analysis was applied to investigate 

the nonlinear effects of the mooring forces in waves of 

moderate amplitude, effects that are not taken into 

account in the frequency domain analysis. The 

nonlinearities were found to affect much more markedly 

the horizontal oscillations: even in regular waves, they 

exhibit significantly non-simple-harmonic time-

variations. This nonlinear behaviour derives from the 

nonlinear function of the cable tension and can be 

related to the system’s natural oscillation frequency. 
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