
  

 

Effective Decomposition Algorithm for Multistage 
Batch Plant Scheduling 
Pedro M. Castro,a Iiro Harjunkoski,b Ignacio E. Grossmannc

aEnergy Systems Modeling and Optimization Unit, LNEG, 1649-038 Lisboa, Portugal 
bABB Corporate Research Center, Wallstadter Str. 59, 68526 Ladenburg, Germany 
cDept. Chemical Engineering, Carnegie Mellon University, Pittsburgh 15213, USA 

Abstract 
This paper presents a new algorithm for the scheduling of batch plants with a large 
number of orders and sequence-dependent changeovers. Such problems are either 
intractable or yield poor solutions with full-space approaches. We use decomposition on 
the entire set of orders and derive the complete schedule in several iterations. The key 
idea is to allow for partial rescheduling without altering the main decisions in terms of 
unit assignments and sequencing, so that the complexity is kept at a manageable level. It 
has been implemented with a unit-specific continuous-time model and tested for 
different decomposition settings. The results show that a real-life 50-order, 17-unit, 6-
stage problem can effectively be solved in roughly 6 minutes of computational time. 
 
Keywords: Optimization, Continuous-time, Sequence-dependent changeovers. 

1. Introduction 
The vast literature in the scheduling area highlights the successful application of 
optimization approaches to an extensive variety of challenging problems. This 
important achievement comes from the remarkable advances in modeling techniques, 
algorithmic methods and computer hardware that have been made in the last two 
decades. However, there is still a significant gap between theory and practice. New 
academic developments are mostly tested on relatively small problems whereas real-
world applications consist of hundreds of batches, dozens of equipments and long 
scheduling horizons. In order to make exact methods more attractive for real-world 
applications, efforts should be oriented towards the development of systematic 
techniques that allow maintaining the number of decisions at a reasonable level, even 
for large-scale problems. Although these techniques can no longer guarantee optimality, 
this may not be critical in practice due to: (i) very short time available to generate a 
solution; (ii) theoretical optimality can easily get lost due to the dynamic nature of 
industrial environments; (iii) implementing the schedule as such is often limited by the 
real process; (iv) only a subset of the actual scheduling goals are taken into account. 
In this paper, we address the short-term scheduling of multistage batch plants with 
sequence-dependent changeovers. A complex algorithm is proposed that can be 
parameterized for the fast and efficient solution of problems of varying size. The key 
idea is essentially the one proposed by Röslof et al. (2001) and further explored by 
Méndez and Cerdá (2003). The novel aspect is the use of a multiple time grid 
continuous-time model, where the solution process itself overcomes the difficulty in 
specifying the number of event points that will be different from grid to grid, instead of 
a model based on sequencing variables. The algorithm is validated through the solution 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório do LNEG

https://core.ac.uk/display/70657848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  P. Castro et al. 

of example problems of moderate size for which the optimal solution is known, in order 
to measure the optimality gap and difference in total computational effort. 

2. Problem Definition 
Given a multistage, multiproduct plant with processing stages k∈K, product orders i∈I 
and units m∈M, the goal is to determine the assignment of orders to units and the 
sequence of orders in each unit so as to minimize the makespan. Orders may be subject 
to release (ri) and due dates (di) that are enforced as hard constraints. The processing 
times are unit dependent (pi,m) and the duration of sequence-dependent changeovers are 
given by cli,i’,m. A particular unit can handle all orders belonging to set Im and is 
allocated to a single stage, with set Mk including those belonging to stage k. Set Ik gives 
the orders that are handled in stage k. Unlimited intermediate storage and wait policies 
(UIS/UW) are assumed, while transfer times between units are negligible. The process 
representation is given in Fig. 1 in the form of a Resource-Task Network. 

I1_M1
Duration=p1,1

I1_MM1
Duration=p1,M1

I1,K1

M1

MM1

.

.

.

Stage 1

I1_MM1+1
Duration=p1,M1+1

I1_MM1+M2
Duration=p1,M1+M2

I1,K2

MM1+1

.

.

.

Stage 2

MM1+M2

... I1,KK-1

 

I1_MM-MK+1
Duration=p1,M-MK+1

I1_MM
Duration=p1,M

I1,KK

MM-MK+1

.

.

.

Stage K

MM

 
Figure 1. Schematic of a multistage multiproduct plant 

3. Key Idea of Decomposition Approach 
Finding a schedule for a multistage plant with parallel units involves two decision 
levels: (i) assigning orders to units; (ii) sequencing orders on every unit. We follow this 
hierarchy to set different degrees of freedom for the orders. Those being considered for 
the first time can be assigned to all possible units and take any position in the sequence. 
In contrast, previously scheduled orders have significantly less freedom. While the 
timing of events is allowed to change, orders cannot be reassigned to other units. 
Furthermore, their relative position in the sequence remains unchanged. 
Let NOS be the number of orders to schedule per iteration. The higher the value, the 
fewer the iterations (set J) and the larger the feasible region up to that of the full-space 
model (NOS=|I|) so better solutions are likely to result. However, the resulting 
mathematical problems also become more complex and may become intractable, so 
there is an obvious tradeoff. 
The second decision concerns order-iteration assignments. We will use the increasing 
slack times heuristic (MST) that prioritizes orders with a smaller time span (Eq. 1). 

Iiprd
Kk

mi

Mm
Mm

ii

k
i

∈∀−− ∑
∈ ∈

∈
,minspanMST

i =  (1) 



Effective Decomposition Algorithm for Multistage Batch Plant Scheduling   

In the following we heavily rely on the concepts of multiple time grids and combined 
process and changeover tasks (Castro et al., 2006). More specifically, the execution of 
combined task (i,i’,m) comprises the processing time of order i plus the required 
changeover from i to i’ so that unit m is ready for order i’ to immediately follow. Also, 
bear in mind that postulating a single time slot per task is enough to ensure generality. 

M1

j=1

M2

M3

M4

j=2 j=3 j=4 Final

 
Figure 2. Illustration of decomposition algorithm for NOS=1. 

The scheduling algorithm is illustrated in Fig.2 for NOS=1. In the first iteration (j=1), all 
units get a single time slot to allow for the execution of tasks of type (i,i,m). From j=1 to 
2, idle units remain with a single time slot, whereas the remaining (M1 and M4) receive 
two more. This makes it possible to produce the new dark-grey order before or after the 
already assigned light-grey order. More specifically, the latter can only be executed in 
slot #2 with either combined task (light-grey, light-grey) or (light-grey, dark-grey). In 
general, we need to postulate NOS+1 additional slots for each previously assigned 
order. Depending on their relative positioning form the previous iteration (posi,m), such 
orders will be assigned to slot number posi,m×(NOS+1). 
Things become increasingly more complicated as we go through iterations. For j=3 and 
M4, we need (dark-grey, light-grey)-A, (dark-grey, medium-grey); (light-grey, medium-
grey) and (light-grey, light-grey)-B and, for the new order, (medium-grey, dark-grey)-C, 
(medium-grey, light-grey) and (medium-grey, medium-grey). It can be easily checked 
that all possible sequences with dark-grey before light-grey are accounted for. As an 
example (medium-grey)-(dark-grey)-(light-grey) is achieved with C in slot #1, A in slot 
#2 and B in slot #4. The procedure continues until the final schedule is obtained. It is 
important to highlight that there may be idle slots between orders or empty last slots and 
that no task extends past the duration of a slot. Although it looks like it, in M1 and M4 
the first light-grey box accounts for the black-(light-grey) changeover. 

4. Scheduling Algorithm 
The proposed algorithm comprises two parts. In the first, constructive scheduling, the 
goal is to find a good initial solution, which is improved afterwards by performing a 
local search. In this rescheduling part, a couple of orders are released from the schedule 
to try to find better unit assignments or sequencing. It can be viewed as repeating the 
last iteration of the constructive step several times, for different order candidates. 
Every iteration j starts with the selection of orders that are under consideration, Iact. As 
explained in section 3, the number of active time slots for unit m (T ) is a function on 
the number of orders previously assigned to it as well as NOS. As illustrated in Fig. 2, 
any previous order can be assigned to a single time slot, determined by its position in 

act
m

 



  P. Castro et al. 

 

lastm

1
,mt

the sequence. New orders can be assigned to any other slot, either before previous 
orders or after the last one. Such information is then used to generate sets Im,t (orders 
that in unit m can be executed in slot t) and Ii’,m,t (orders that can be assigned to slot t of 
unit m and be followed by order i’). Finally, the last slot is the sole element of T . 

5. Mathematical Formulation 
The underlying unit-specific continuous-time formulation is essentially CT4I proposed 
by Castro et al. (2006). The novelty is the introduction of slack variables S  to allow 
for due dates violation, an absolute necessity when decomposition algorithms are 
involved. These are penalized in the objective function (Eq. 2) through weight α=10, 
which essentially minimizes the makespan, MS. 4-index binary variables tmiiN ,,',

0
,mi

∑ ∑
∈ ∈

⋅+
||

1
,min

K activemMm Tt
mtSMS α

 
identify the execution of the combined tasks at time slot t, while continuous variables 
Ci,m,t keep track of unit states ( C  for the initial state). Timing variable Tt,m gives the 
time of event point t in time grid m, while the transfer time of order i in stage k is TDi,k. 

 (2) 

actmiacttmii

ii
Ii

tmiittmitmitmi TtMmIiNCCC
tmi

∈∈∈∀−++=

Ii
Ii

N

tmi
m

∑∑
∈
∈

,,'

'
≠

∈
−≠−=

−

,, 
1,,

,,',

'
'

1,,,'11,,1
0
,,,

MmC
mIi

mi ∈∀≤∑
∈

 10
,

 (3) 

 (4) 

actmmiim TtMmcl ∈∈∀+
Ii Ii

itmiimtTtTtmt pNTMST
m tmi

lastmlastm
×≥−+ ∑ ∑

∈ ∈
∈∉+ (

'
,,',,,1

,,'

,),',,  (5) 

actmkmi TtMmKk ∈∈∈∀
Ii Ii kkKk MMm

itmiimt prNT
m tmi

ik

+×≥ ∑ ∑ ∑
∈ ∈ <∈ ∈

min(
' ',' '

,,',,
,',

'I
,,)',  (6) 

actm
i I

tmii TtMmN
m tmi

∈∈∀
I i

mt
Ii Ii

miitmiimt HSubNT
m tmi

−++≤ ∑ ∑∑ ∑
∈ ∈

1(
'

1
,

'
,',,,',,

,,' ∈ ∈

,),',
,,'

 (7) 

tmactmk

IiIi
mitmiimtki

IiTtMmKk

HpNTTD
tmim

,

,'
,,,',,,

,,|,|
,',

∈∈∈≠∀

−+≥
ttTt IiIi

tmiiN
activem tmim',' ,'

',,', )1(
',',

− ∑ ∑∑
∈∈ ≥∈ ∈∈  (8) 

tmactmk IiTtMm ,,,,1 ∈∈∈≠
ttTt IiIi

tmiimtki kNHTTD
activem tmim',' ,'

',,',,1, )1(
',',

∀−+≤ ∑ ∑
≤∈ ∈∈

−  (9) 

kactki IiIiKkTD ∉∈∈∀− ,,1,kiTD =,  (10) 

kacttmi IIiKk I∈∈∀=
Mm Tt IiIi

iN
k actm tmim

∑ ∑ ∑
∈ ∈ ∈∈ ,',,'

,1,,',  (11) 

Equation 3 gives the resource balances over the equipment states. Notice in the third 
term on the right-hand side that combined tasks with a single order index (i,i,m) do not 
need to regenerate the equipment state since no order follows. Eq. 4 limits the initial 
states of units to a single order. The central timing constraint is given by Eq. 5. It 
ensures that the difference in time between two consecutive event points must be greater 
than the processing time of the order being executed plus the required changeover time 



Effective Decomposition Algorithm for Multistage Batch Plant Scheduling   

 

1
,mtS

for the following order. Eqs. 6-7 are the release and due date constraints, where slacks 
 allow for violation of the due dates (note that ubi,i’,m=f(di), see Castro and Novais, 

2009). These are needed for all pairs (slot, unit) and not just for those penalized in the 
objective function (Eq. 2). The transfer time of order i in stage k (e.g. in hours) must be 
greater than its ending time in stage k and lower than its starting time in k+1 (Eqs. 8-9). 
The transfer times of orders not involved in stage k are equal to those in the previous 
stage (Eq. 10). Finally, all orders need to be executed once on every stage (Eq. 11). 

6. Computational Results 
The performance of the scheduling algorithm is illustrated through the solution of ten 
example problems. P7-P13 are taken from Castro and co-workers (2006, 2009) and can 
be solved to global optimality by the full-space continuous-time formulation. Their 
purpose is to evaluate the quality of the solution returned by the algorithm. P16 is the 
challenging industrial problem, provided by a pharmaceutical batch plant, with P14-P15 
considering the first 30/40 orders to measure the effect of problem size on 
computational effort. The algorithm and underlying models were implemented in 
GAMS 23.2 with CPLEX 12.1 as the MILP solver. The termination criteria were a 
relative optimality tolerance=10-6 and maximum computational time per iteration=3600 
CPUs on the constructive part; 60 CPUs on the rescheduling part. The hardware was a 
HP laptop with an Intel Core2 Duo T9300 2.5 GHz processor running Windows Vista. 
The solutions obtained are listed in Table 1 for a total of 30 trials resulting from 
different choices of parameter NOS. All generated problems from the smaller instances 
were solved to optimality, so failure to find the global optimal solution is entirely due to 
the decomposition strategy. Interestingly, there was not a single successful (resulting in 
an optimal solution) run and solutions with due date violations were observed in 19% of 
the cases. Increasing the value of NOS leads to an average increase in solution quality, 
which comes as no surprise since one is working closer to full-space mode (NOS=|I|). 
The focus is really on difficult large-scale problems and on obtaining near optimal 
solutions fast. From the last columns, one can see that reasonably good solutions can be 
found in roughly 6 minutes of computational time. For NOS=2, P14 and P15 can still be 
solved in less than 1 hour but for P16 it is no longer possible to solve the problems 
generated in the last few iterations to optimality. As a consequence, solution quality 
degrades from NOS=2 to 3, contrary to what happens for most of the smaller instances. 
The major strength of the proposed algorithm is the ability to address problems 
systematically for a wide variety of settings. In particular, one can switch to a 
continuous-time model with general precedence sequencing variables. While a similar 
performance was observed, we did found a better solution for the most challenging 
problem (NOS=3) featuring a makespan=47.722 h, see Fig. 3. It is also important to 
highlight that the full-space version of the model could only find a makespan=36.121 h 
for P14 before running out of memory at 51,900 CPUs, a value 16% higher than the 
best solution found by the decomposition algorithm in considerably less time. 

7. Conclusions 
This paper has addressed the scheduling of large-scale multistage batch plants with 
sequence-dependent changeovers. A new decomposition algorithm was proposed to 
construct the full schedule in several iterations. The complete set of orders is handled 
sequentially according to the increasing slack times heuristic. Newly considered orders 
are given total freedom in terms of unit assignments and sequencing, while those 



  P. Castro et al. 

handled in previous iterations are allowed to change their starting times provided that 
their unit assignments and relative positions in the sequence are kept constant. By 
changing the number of orders tackled per iteration, the algorithm can effectively 
handle problems of different size in an efficient way and, hence, take the most of 
available computational resources. In particular, it successfully tacked an industrial 
scale problem in a few minutes of computational time. 

Table 1. Computational Statistics (Best Solution, Solution with Due Dates Violation) 
   Solution for NOS= CPUs for NOS= 

Problem (I,M,K) Optimum 1 2 3 1 2 3 
P7 (8,6,2) 542 591 595 558 3.89 2.26 4.10 
P8 (8,6,2) 584 664 611 587 3.78 2.38 2.27 
P9 (8,6,3) 915 1355 981 1166 3.93 2.34 13.0 
P10 (8,6,3) 914 970 938 938 3.79 3.22 4.91 
P11 (12,6,2) 233 261 245 261 5.86 4.01 12.9 
P12 (8,8,4) 265 374 507 275 4.12 7.42 27.2 
P13 (15,4,2) 273 314 328 309 7.54 5.50 21.1 
P14 (30,17,6) ? 33.424 31.018 31.934 40.9 1607 20540 
P15 (40,17,6) ? 42.056 40.766 42.151 99.7 3251 30409 
P16 (50,17,6) ? 52.849 48.929 51.444 371 12690 29413 

 

0 5 10 15 20 25 30

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

Time (h)

44 4 38 19 1729 21 49 33 42 43 41 39 28 27 7 46 1147 34 20 5 15 31 45 1 24

18 30 16 2623 9 37 40 14 6 28 3 3622 13 12 10 50 3248 25 35

30 38 26 9 8 42 28 13 11 27 41 34 15 45 20

35 40 45

7 35

18 4 19 29 33 14 40 3 22 46 10 47 1 36 31

44 16 17 21 37 43 39 49 6 12 5 25 50 32 24

38 21 46 47 13

16 8 17 49 12 1

44 33 26 27 32

44 29 14 42 3 6 15 36

30 38 21 8 40 43 26 5 47 25 34

18 4
19 16 9

37 39
33 28 22

11
46 10 41 49 45

18 444
16 29

14 37
28

11
10 47 41

45

30 21 40 43 8 6 22 15 36

19
38

9 42 39
33

46 5 49 25

19 16 14 28 37 11 47
5

18 9 21 43 33 46 10 2

4 30
29 44 38 40 8 22 42 15

39

48 23 2

50 20

24 23 35

48 17

13 50 12 35

31
32 7 24 20

2 1
23

27

26
31

7 24 17 2 1 35
27

3 13 32 50 23
34

48 20 12

49 34 17
20

50 1

5 36 13 3 48 41 23
45 26 24 7 32 12 35 27

316 2

 
Figure 3. Best found solution for P16. 

 



Effective Decomposition Algorithm for Multistage Batch Plant Scheduling   

 

References 
P. Castro , I. Grossmann, A. Novais, 2006, Two New Continuous-Time Models for the 

Scheduling of Multistage Batch Plants with Sequence-Dependent Changeovers. Ind. Eng. 
Chem. Res. 45, 6210. 

P. Castro, A. Novais, 2009, Scheduling Multistage Batch Plants with Sequence-Dependent 
Changeovers. AIChE J. 55, 2122. 

C. Méndez, J. Cerdá, 2003, Dynamic Scheduling in Multiproduct Batch Plants, Comput. Chem. 
Eng. 27, 1247. 

J. Roslöf, I. Harjunkoski, J. Björkqvist, S. Karlsson, T. Westerlund, 2001, An MILP-based 
Reordering Algorithm for Complex Industrial Scheduling and Rescheduling. Comput. Chem. 
Eng. 25, 821. 


