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    Abstract 

It may be convenient that dense arrays of floating 

point absorbers are spread-moored to the sea bottom 

through only some of their elements (possibly located 

in the periphery), while the other array elements are 

prevented from drifting and colliding with each other 

by connections to adjacent elements. An array of 

identical floating point absorbers located at the grid 

points of an equilateral triangular grid is considered in 

the paper. A spread set of slack-mooring lines connect 

the peripheric floaters to the bottom. A weight is 

located at the centre of each triangle whose function is 

to pull the three floaters towards each other and keep 

the inter-body moorings lines under tension. The whole 

system – buoys, moorings and power take-off systems – 

is assumed linear, so that a frequency domain analysis 

may be employed. Equations are presented for a set of 

three identical point absorbers. This is then extended to 

more complex equilateral triangular grid arrays. Results 

from numerical simulations, with regular and irregular 

waves, are presented for the motions and power 

absorption of hemispherical converters in arrays of 

three and seven elements and different mooring and 

PTO parameters, and wave incidence angles. 

Comparisons are given with the unmoored and 

independently-moored buoy situations. 

Keywords: Wave energy; Wave power; Arrays; Moorings; 

Point absorbers. 

1 Introduction 

Free floating devices are a large class of wave energy 

converters for deployment offshore, typically in water 

depths between 40 and 100m. As in the case of floating 

oil and gas platforms, such devices are subject to drift 

                                                
© Proceedings of the 8th European Wave and Tidal Energy 

Conference, Uppsala, Sweden, 2009 

forces due to waves, currents and wind, and so they 

have to be kept on station by moorings (early 

contributions to the mooring design of wave energy 

converters can be found in [1,2]). Although similarities 

can be found between those applications, the mooring 

design requirements will have some important 

differences, one of them associated to the fact that, in 

the case of a wave energy converter, the mooring 

connections may significantly modify its energy 

absorption properties by interacting with its oscillations 

[3]. 

Among the wide variety of floating wave energy 

devices, point absorbers have been object of special 

development effort since the late 1970s. They are 

oscillating bodies whose horizontal dimensions are 

small in comparison with the representative 

wavelength. Examples of such devices, that have 

attained the stage of prototype tested in the sea, are the 

IPS buoy [4], Aquabuoy [5], Wavebob [6] and 

PowerBuoy [7]. Their rated power ranges typically 

from tens to hundreds of kW. The extensive 

exploitation of the offshore wave energy resource may 

require the deployment of dense arrays of absorbers, the 

distance between elements in the array being possibly 

tens of meters [8]. In such cases, it may be more 

convenient and economical that only (some) elements 

in the periphery of the array are directly slack-moored 

to the sea bottom, while the other elements of the array 

are prevented from drifting and colliding by 

connections to adjacent elements.  

The mooring, especially the slack-mooring, of 

(individual) floating wave energy converters has been 

addressed in the last few years by several authors [3, 9-

13]. Fitzgerald and Bergdahl [12] studied in detail the 

effect of the mooring connections upon the 

performance of a wave energy converter, by linearizing 

the mooring forces about the static condition, which 

conveniently allows a frequency-domain analysis to be 

applied.  This technique is also adopted in the present 

paper. 
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Little attention seems to have been devoted in the 

published literature to the mooring design of free-

floating point absorbers in dense arrays. This may be 

explained by the present stage of development of the 

technology (focusing on single prototypes) and/or by 

the restricted availability of such information. 

Recently, Vicente et al. [14] addressed the array 

mooring problem in its simplest form by considering a 

set of two floating wave energy converters (WECs) 

aligned with the direction of propagation of the 

incoming waves. By linearizing the mooring and power 

take-off (PTO) forces, a frequency-domain analysis 

could be employed. This kind of modelling is adopted 

in the present paper for an array of three (rather than 

two) identical floating WECs in triangular 

configuration and for arbitrary wave incidence. 

Variations in mean surface level due to tides and 

drifting forces due to currents, waves and wind are 

ignored. The whole system – buoys, moorings and 

PTOs – is assumed linear, so that a frequency domain 

analysis may be employed. In the numerical 

simulations, three identical hemispherical buoys 

oscillate in heave, surge and sway, acted upon by the 

waves, the mooring system and their PTOs. The PTO 

consists of a linear damper whose force is proportional 

to the heave velocity. The hydrodynamic interference 

between bodies is ignored. Results from numerical 

simulations, with regular and irregular waves, are 

presented for the motions and power absorption of the 

converters, for different mooring and PTO parameters.  

The governing equations of the triangular array can 

be used to build up a mathematical model for more 

complex arrays in which the floaters are located at the 

grid points of an equilateral triangular grid. Numerical 

results are shown for an array of seven buoys located at 

the vertices and the centre of a regular hexagon. The 

inter-buoy mooring system is provided by 18 lines and 

six weights, with a spread bottom-mooring system 

consisting of six lines.  

Comparisons are given with the unmoored and 

independently moored buoy situations. 

2. Governing equations for a three-buoy 

array 

We consider three identical hemispherical buoys, 1, 2 

and 3 in an equiangular triangular configuration, as 

shown in plan view in Fig. 1. The moorings consists of 

a spread system of three mooring lines 1, 2 and 3 

connecting buoys 1, 2 and 3 to the sea bottom 

respectively, and three lines 1-4, 2-4 and 3-4 connecting 

the buoys to a centrally placed weight 4 (a body much 

denser than water) whose role is to pull the buoys 

towards the centre of the triangle. The inter-body 

mooring cables are assumed inelastic and of negligible 

mass. Since, in addition, we ignore damping (viscous) 

forces on these cables, they remain approximately 

rectilinear. All six lines are supposed to be attached to 

the centres of the bodies. In a plan view and in calm 

water, the centres of the buoys are located at the 

vertices of a triangle and the six connecting lines (three 

bottom-mooring lines and three inter-body mooring 

lines) are aligned with the bisectors of the triangle (Fig. 

1). 

 
 

Fig. 1. Plan view of buoys 1 to 3, weight 4 and mooring 

lines in calm-sea static conditions. The wave direction 

makes an angle θ  with the x-axes. 

 

In the absence of waves, we assume that the centres 

of buoys lie on the free-surface plane, a distance L from 

the centre of the triangle and a distance L3  apart from 

each other. Under calm sea conditions, the centre of 

body 4 is at distance 2122 )( LGh −=  below the free 

surface, where G is the length of cables 1-4, 2-4 and 3-

4. The direction of propagation of the incident waves 

makes an angle θ  with the x-axes, as shown in Fig. 1. 

The buoys and body 4, acted upon by the waves and 

mooring lines, are made to oscillate in heave and 

horizontally. Their centres are defined by coordinate 

systems ),,( jjj zyx  ( 4 to 1=j ) ( jx  and jy  are 

horizontal coordinates, and jz  is a vertical coordinate 

pointing upwards), with 0=== jjj zyx  in the 

absence of waves (Fig. 1). The coordinates 

),,( 444 zyx  of body 4 depend only on the 

instantaneous values of ),,( jjj zyx , 1=j  to 3. We 

assume linear water wave theory to apply, which 

requires small wave-amplitude and small body motions. 

So it is reasonable to consider ),,( jjj zyx  as small 

compared with L and h. Neglecting products of small 

quantities, we find 

,0)(
2

)(3 414114 =−+−+− zz
L

h
yyxx  (1) 

,0)(
2

)(3 424224 =−+−−− zz
L

h
yyxx  (2) 

.0)( 3434 =−+− zz
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h
xx  

 (3) 

The pulling force vectors 1F , 2F  and 3F  by the 

bottom-mooring lines make an angle β  with the 
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horizontal plane which is assumed to be unchanged by 

the bodies’ motions. The tension force vectors 1R   

(line 1-4), 2R  (line 2-4) and 3R  (line (3-4), and the 

corresponding angles 1α , 2α  and 3α  with the 

horizontal plane, depend on the instantaneous position 

of buoys 1, 2 and 3. In the absence of waves, it is 

)arccos()arctan(321 GLLh ===== αααα , 

FFFF === 321  and RRRR === 321 . 

We easily find 

αρ csc)()3( 44 vmgR −= , (4) 

where g is the acceleration of gravity, ρ  is water 

density, and 4m  and 4v  are the mass and volume of 

body 4 respectively. The bottom-mooring force F is 

related to R  by 

βα coscosRF = . (5) 

We denote by jjj rf ε,,  1( =j  to 3) the 

perturbations to the calm-sea values α,, RF . The 

values of ),,( jjj zyx  1( =j  to 4) and jjj rf ε,,  

1( =j  to 3) are small quantities and this allows us to 

neglect their products. (Note: we assume the angle α  

to be neither small nor close to 2π .) We easily find, 

by neglecting small quantities of higher order, 

)3,2,1(,sec
4
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−

= j
G

zz j
j αε . (6) 

The projections of lines 1-4, 2-4 and 3-4 on the 

horizontal plane make, with the x-direction, angles 

31 πδ − , 32 πδ +  and πδ +3 , respectively. Here jδ  

1( =j  to 3) are small perturbation values, related to the 

bodies’ coordinates by 
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Body 4 is subject to the pulling forces of lines 1-4, 2-

4 and 3-4, its own weight 4gm , the buoyancy force 

4vgρ  and the hydrodynamic forces on it. By keeping 

only small quantities of first order, we find 
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Here hA4 , zA4 , hB4 , zB4  are the hydrodynamic 

coefficients of added mass and radiation damping 

concerning the horizontal (subscript h) and heave 

(subscript z) oscillation modes of body 4, and hdf 4  and 

zdf 4  are the horizontal and vertical components of the 

wave excitation force on body 4 (see [15]). 

Equations (1-3) and (7-12) yield jr  3) to 1( =j  as 

linear functions of jjj zyx ,,  3)  to1( =j , of their 

time-derivatives and of the wave excitation force 

),( 44 zdhd ff  on body 4. 

A linearization procedure for the bottom-mooring 

forces has been explained in detail by Fitzgerald and 

Bergdahl [12], who showed that the linear 

approximation depends on the frequency and amplitude 

of the body motions and on the static condition of the 

cable. 

We assume that the attachment angle β  (with the 

horizontal plane) of the bottom-mooring cables 1, 2 and 

3 remains unchanged Then, the extensions jφ  of 

mooring line j )3  to1( =j  due to displacements 

),,( jjj zyx  of the centre of body j are 

β
β

φ sin
2

cos
)3( 1111 zyx +−= , (13) 

β
β

φ sin
2

cos
)3( 2222 zyx ++= , (14) 

ββφ sincos 333 zx +−= . (15) 

We now write, for the perturbation jf  to the mooring 

force jF , 

)3  to1( =++= jDKf jjjj φµφφ &&& , (16) 

where jKφ , jDφ&  and jφµ &&  are perturbation forces 

representing the spring effect, the linear damping and 

the inertia of the cable, respectively. 

The PTO of each floating converter is assumed to 

consist of a simple linear damper activated by the buoy 

heaving motion. The vertical force it produces on the 

buoy is )3  to1( =− jzC j& . 

3. Frequency domain equations for a 

triangular array 

Here, we neglect the hydrodynamic interference 

between the three bodies. Taking into account the 

spherical shape of the floaters, and recalling that the 

mooring lines are supposed to be attached to the centres 

of the bodies, it follows that the only significant modes 

of oscillation are heave, surge and sway, and also that 

these modes are hydrodynamically uncoupled 

By following the usual linear decomposition of the 

hydrodynamics forces [15], we can now write the 

governing linear equations for the motions of floaters 1, 

2 and 3 
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Here hA , zA  and hB , zB  are the hydrodynamic 

coefficients of added mass and radiation damping for 

the horizontal and vertical oscillations of the buoys, and 

djhf , djzf  )3  to1( =j  are the horizontal and vertical 

components of the wave-induced excitation forces on 

buoys 1, 2 and 3. Besides, 2aS π=  is the cross-

sectional area of the hemispherical floaters defined by 

the free surface plane in the absence of waves. 

We recall that the perturbation angles jε , jδ  are 

linear functions of the coordinates of bodies 1, 2 and 3, 

and the perturbation forces jr  and jf  are linear 

functions of those coordinates and of their first and 

second time-derivatives. 

Since Eqs (17-25) are linear, and assuming the 

incoming waves to be regular of angular frequency ω , 

we may write 

{ }
{ } 3),  to1(,,,,

,,,,

== jeAAZYX

ffzyx

ti
wjzwjhjjj

djzdjhjjj

ωΦΦ
(26) 

where jzjhjjj ZYX ΦΦ ,,,,  are (in general complex) 

amplitudes, and wA  is the incident wave amplitude. In 

Eq. (26), and whenever a physical quantity is equated to 

a complex expression, it is implicit that the real part is 

to be taken. 

We easily find 

{ } { } ),2,1(,,,, 333 == jjzyxjzjyjx χΦΦΦΦΦΦ  (27) 

where the complex factor 

))3sin(3exp( πθχ += mkLij  (28) 

accounts for different phases due to different locations 

of the three buoys with respect to the incident wave 

crests. (In Eq. (28), the minus and plus signs are to be 

taken for 1=j  and 2 respectively.) 

If we now substitute from Eq. (26) for 

djzdjhjjj ffzyx ,,,,  3) to 1( =j , we obtain, from 

Eqs. (17-25), a set of nine linear algebraic equations for 

the complex amplitudes )3  to1(,, =jZYX jjj . 

In regular waves, the time-averaged power absorbed 

by each floater is  

)3 to 1(
2

1 22 == jZCP jj ω . (29) 

4. Numerical results for a three-buoy array 

Deep water was assumed for the hydrodynamic 

coefficients of added mass, radiation damping and 

excitation force. Tabulated values (together with 

asymptotic expressions) can be found in [16] (in 

dimensionless form) for the added masses hA , zA  and 

the radiation damping coefficients hB , zB  of a floating 

hemisphere oscillating in heave and surge. The absolute 

value of the vertical excitation force coefficient may be 

obtained from )(ωzB  by using the Haskind relation 

(valid for an axisymmetric body oscillating in heave, 

see [7,17]) 

21

3

3
)(2

)(












=
ω

ωρ
ωΦ z

jz
Bg

 (30) 

( 1=j  to 3). Numerical values for )(ωΦ jh  and for 

( ))()(arg ωΦωΦ jhjz  (not available from [16]) were 

obtained with the aid of the boundary element code 

WAMIT. 

We set -3mkg1025=ρ  (sea water density) and 

2ms8.9 −=g , and define dimensionless values, 

denoted by an asterisk, as aLL =* , 

{ } { } wjjjjjj AZYXZYX ,,,, *** =  )3  to1( =j , 
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21)(* gaωω = , 21251* −−−= gaCC ρ  and 

)(* gSKK ρ= . Body 4 is a sphere of radius 4a  

(dimensionless radius aaa 4
*
4 = ) and density 

-3
4 mkg2500=ρ  (typical of concrete). The submergence 

of body 4 is assumed to be sufficient for the excitation 

force and the radiation damping to be neglected, i.e. we 

set 044 == zh BB  and 0== dAzdAh ff . For the added 

mass of body 4, we take the added mass of an 

accelerating sphere in an unbounded fluid (see e.g. 

[18]) 3
444 )32( aAA zh πρ== . In all cases for which 

results are shown here it is 

2.04
*
4 == aaa , 4* == aLL  and °= 30α . Note that, 

since the buoy centre is assumed to lie on the free-

surface horizontal plane in static conditions, the mass of 

the buoy slightly varies with the mooring parameters. 

We recall that the hydrodynamic interference 

between the three buoys (due to the radiated and 

diffracted wave fields) is neglected, and so the 

interference between them is due solely to the presence 

of body 4 and the action of the inter-body mooring lines 

1-4, 2-4 and 3-4. 

In the numerical simulations, the viscous damping 

and inertia of the bottom-mooring cables are neglected, 

i.e. we set approximately 0== µD . 

4.1. Regular waves 

The power performance of the three wave energy 

converters 1, 2 and 3 is defined by a dimensionless 

power absorption coefficient defined as max
*

PPP jj =  

)3 to 1( =j , where maxP  is the theoretical maximum 

limit of the (time-averaged) power that an axisymmetric 

heaving wave energy converter can absorb from regular 

waves of frequency ω  and amplitude wA , and is 

known to be (see [15]) )4/( 323
max ωρ wAgP =  

(corresponding to capture width πλ 2 ). 

Numerical results are presented in Figs 2 and 3, with 

wave angle of incidence 0=θ . Comparisons are shown 

with a single buoy of the same size (with identical 

values of C, K and β  as for the triple buoys), spread-

moored by two lines (in the vertical plane of the 

incident wave direction) as well as unmoored. 

 
Fig. 2. Dimensionless oscillation amplitudes of buoys 1, 2 and 3 and body 4, compared with a moored and an 

unmoored single buoy of same size. Regular waves, with °= 30β , 0=θ . 

In the range of frequencies of practical interest, the 

amplitudes of heave oscillations of the moored buoys 

appear to be in general significantly larger compared 

with the surge oscillations. The heave oscillation 

amplitudes of the triple buoys are almost identical to 

those of the single moored buoy, and naturally are 

smaller than for the unmoored buoy. As compared with 

heave, the surge oscillations are significantly more 

sensitive to the mooring forces, especially in the lower 

wave frequencies (where resonance may occur). We 

note that the surge oscillations of buoys 1, 2 and 3, and 

the moored single buoy may be significantly different. 

Naturally, sway only occurs for the triple buoys due to 

the inter-body moorings forces. 

Figure 2 shows that a resonance peak occurs at 

87.0* ≅ω  for the heaving motion of the unmoored 

buoys, but not for the (uncoupled) surging mode (as 

expected, since no restoring force exists for the 

horizontal motions). In the cases of the moored buoys, 

the vertical component of the mooring forces is small 

compared with the hydrostatic restoring force (and so 

heaving resonance at about the same frequency also  
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Fig. 3. Comparison of the dimensionless time-averaged 

power *P  absorbed by buoys 1, 2 and 3. Regular 

waves, with °= 30β , 0=θ . 

occurs). The situation is different for the surge mode. 

Here, the restoring force is small and due solely to the 

mooring lines, which explains the presence of a surge 

resonance peak at low frequencies: 39.0* ≅ω  for the 

individually moored buoy and 28.0* ≅ω  for the triple 

buoys. In the latter case, it may be seen that this 

induces a (very narrow) peak on the heaving motion. 

Close to these low-frequency resonances, the 

oscillation amplitudes are (unrealistically) large due to 

small radiation damping. The dimensionless 

contribution of these low-frequency peaks in terms of 

power appears negligible in Fig. 3. This may be 

explained by the fact that the PTO damping is set as 

362.0* =C  that maximizes the absorbed power by the 

unmoored buoy in resonance conditions. Anyway, the 

very narrow low-frequency peak apparent in the 

heaving mode turns out to have little effect in irregular 

waves (see the following subsection), firstly because of 

its narrowness and secondly because, in the power 

spectral distribution, it is located outside the range of 

significant energy content. 

In the case of the triple moored buoys, the centre of 

gravity of the set, and also body 4, oscillate in heave 

but not horizontally, while, individually, buoys 1, 2 and 

3 (apart from heaving) also perform horizontal 

oscillations while remaining (in planform) in 

equilateral triangular positioning. 

Figure 3 (for )0=θ shows that buoys 1 and 2 extract 

more energy than buoy 3. It should be noted, as an 

explanation, that, although buoy 3 is subject to the 

same diffraction force as buoys 1 and 2 with a time 

delay, the same is not true for the inter-body mooring 

forces. 

4.2. Irregular waves 

Computations were also performed for one-

directional irregular waves. A Pierson-Moskowitz 

spectral distribution was adopted, defined by (SI units, 

[19]) 

)1054exp(263)( 44542 −−−− −= ωωω ees TTHS , (31) 

where sH  is significant wave height and eT  is energy 

period. The time-averaged power output in irregular 

waves is 

ωωω dSPTHP jesj )()(2),(
0

,1,irr ∫
∞

= , (32) 

where )(,1 ωjP  is the power absorbed by floater j from 

regular waves of frequency ω  and unit amplitude. In 

dimensionless form, we write, for irregular waves, 

irrmax,irr,
*
irr, PPP jj = , where 

32

0

3
3

irrmax, 5.149)(
2

es THdS
g

P == ∫
∞

− ωωω
ρ

 (33) 

 (SI units) is the maximum (time-averaged) power that 

can be extracted by an axisymmetric body oscillating in 

heave in a sea state represented by the spectral 

distribution )(ωS .  

Time-series (for body displacements and velocities, 

instantaneous absorbed power, etc.) can be simulated 

by discretizing the spectral distribution (32) and 

superposing a large number N of regular waves of 

frequencies ω∆ωω nn += 0 , where ω∆  is a small 

frequency interval, 1,,2,1,0 −= Nn K , and the 

spectrum is supposed not to contain a significant 

amount of energy outside the frequency range 

ω∆ωωω )1(00 −+≤≤ N . (In the numerical 

simulations, it was 01.0=ω∆ rad/s, 05.00 =ω rad/s 

and .)200=N  The complex amplitude (at a fixed 

point) of the wave component of order n is 

( ) ni
nnw eSA

φω∆ω 21
, )(2= . Here nφ  

( 1,,2,1,0 −= Nn K ) are random real numbers in the 

interval )2,0( π . 

 

Fig. 4. Heave oscillations of buoys 1, 2 and 3 and body 

4. Irregular waves of m2=sH , s10=eT , °= 30β , 

0=θ . 

Numerical results are plotted in Figs. 4 and 5, for 

irregular waves of m2=sH , s10=eT , for m5.7=a , 
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m30=L , °= 30β , °= 30α , 2.0*
4 =a , 1.0* =K , 

315.0* =C . 

 

Fig. 5. On the top: Instantaneous dimensionless power 
*
irrP  absorbed by the triple buoys (red solid line) and by 

each buoy. On the bottom: Comparison between the 

power absorbed by the three-buoy array and by arrays 

of three unmoored buoys and three independently 

moored buoys. Irregular waves of m2=sH , 

s10=eT , °= 30β , 0=θ  

Figure 4 shows the heave oscillations for buoys 1 

and 3, and for body 4. As should be expected, the time 

series for buoys 1 and 3 are not identical, due to their 

different locations and, to a less extent, to the cable 

interactions. Since it is 0=θ , obviously the 

oscillations of buoy 1 and 2 are identical. The 

difference between the wave and the buoy elevations 

can be seen.  

Figure 5 shows, on top, the time-varying power 

absorbed separately by buoy 1 (equal to that of buoy 2) 

and buoy 3, and the total power. The combination of 

three converters produces a smoothing effect on power, 

which would be even more effective in the case of an 

array with a larger number of elements, as can be seen 

in section 5 for a seven-buoy array. On the bottom of 

Fig. 5, a comparison is shown between the power 

absorbed by the triple buoy set and by an identical set 

in the unmoored and independently moored situations. 

The differences appear to be significant. 

5. Complex triangular-grid arrays 

The equations derived in sections 2 and 3 can be 

used without major difficulty to build up a 

mathematical model for  more complex arrays 

consisting of buoys placed at the grid points of an 

equilateral triangular grid, with the weights located at 

the centres of the triangular cells. Each buoy is attached 

to a number of weights depending on the array and 

mooring configuration (see Fig. 6). As before, the 

instantaneous position in 3D-space of each weight 

depends only on the instantaneous position of the three 

buoys to which it is attached. The array is spread-

moored to the sea bed through its peripheric buoys, in 

such way that, in calm water, the whole assembly 

conforms to the specified pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Different mooring configurations, I, II and III, 

for a star array of seven point absorbers. 

The numerical results in Figs 8-9 are for irregular 

waves of m2=sH , s10=eT , and for m5.7=a , 

m30=L , °= 30β , °= 30α , 2.0*
8 =a  (dimensionless 

radius of the weights), 1.0* =K , 315.0* =C  and the 

angle of incidence is 0=θ . 

Figure 8 shows the heave, surge and sway 

oscillations for the seven buoys. Due to symmetry, the 

results are identical (of opposite sign for sway) for pairs 

of buoys 1-2, 3-5, 6-7, but not between different pairs 

due to different locations and to mooring effects.  

Figure 9 shows the oscillations in the perturbation of 

the force F of the bottom moored buoys. It can be seen 

that configuration III is more demanding for the 

moorings. 
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Fig. 7. Dimensionless oscillation amplitudes of the seven buoys for mooring configurations I, II and III for 

regular waves. 

 

 

Fig. 8. Heave, surge and sway oscillations of the centres of the seven buoys for mooring configurations I, II and III. 

Irregular waves of m2=sH , s10=eT , °= 30β , 0=θ . 
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Fig. 9. Variation of the perturbations in the mooring force F for the bottom moored buoys in configurations I, II and 

III. Irregular waves of m2=sH , s10=eT , °= 30β , 0=θ . 

 

Conclusions 

The results presented here illustrate the behaviour 

and power performance of triangular-grid arrays of 

identical wave energy converters, absorbing energy in 

the heaving mode from regular and irregular waves, 

spread-moored to the bottom through the bordering 

elements and inter-connected by lines kept under 

tension by weights. The performance was found to be 

significantly affected by the presence of the mooring 

system. 

In the study of complex arrays, the choice of 

mooring arrangement was found to affect the surge and 

sway motions (and also the mooring forces) more than 

the heave oscillations. 

Such effects should be superposed on the 

hydrodynamic interference (diffraction and radiation 

wave fields) between oscillating bodies which was not 

accounted for in this analysis. Mooring effects that are 

known to be significant were ignored in the numerical 

simulations, namely the catenary, damping and inertia 

effects of the mooring cables. Such effects require a 

more demanding time-domain analysis rather than a 

frequency-domain analysis. 
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