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 Abstract 

In this study a stochastic model to describe the 
behaviour of an articulated system is developed. 
Optimal mechanical damping and spring coefficients 
are computed. Probability density functions are defined 
for the relevant parameters that characterize the device 
behaviour. For these parameters and for different sea 
state conditions the probability density functions are 
found and the articulated system is characterized in 
terms of these functions. Average values for useful 
power and capture width are also obtained for these sea 
state conditions. 

Time domain models allow the computation of time 
series for the variables that characterize the wave 
power system behaviour. In this study a time domain 
model is also developed for the articulated wave power 
device. Results are obtained for regular and irregular 
waves.  

Pontryagin Maximum Principle is presented as an 
algorithm for the control of the device.  

Keywords: stochastic modelling, time domain modelling, 
Pontryagin Maximum Principle, two body device. 

Nomenclature 

ijA        = added mass hydrodynamic coefficient 

Â          = complex wave elevation amplitude 

nÂ      = complex random amplitude 

ijB        = damping hydrodynamic coefficient 

iC         = hydrostatic restoring coefficient for body i 

LD       = damping coefficient of the power take-off    
    equipment 

{ }E      = expected value of 

i
FD       = complex amplitude for the diffraction force on  

     body i 
LF      = load force 

1HG , 2HG = transfer function 

sH       = significant wave height 
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LK       = spring coefficient of the power take-off                 
equipment 

iM        = mass of body i 

IP         = incident power for a regular wave 

uP         = average useful power 

ηS   = spectral density 
 T           = time interval 

eT      = wave energy period 

LZ      = load impedance 
 g           = acceleration of gravity  
 h           = water depth 
 k           = wave number 
t           = time 

nϕ         = random phase 
η           = sea surface elevation 

cλ      = capture width 
θ          = wave direction angle 
ρ          = water specific mass 

2σ   = variance 

iξ̂          = complex amplitude displacement for body i 
Max = maximum value 
Min = minimum value 
W  = admissible control values 

Superscripts 
−  = mean value 
*    = complex conjugate or optimum value 

Subscripts 
i, j  = body index 

1 Introduction 
The ocean wave energy conversion has been a field 

of increasing research for some time. “In fact, there are 
over 1000 patented wave energy conversion techniques 
in Japan, North America, Western Europe, and the 
United Kingdom”, McCormick says, [1]. Usually wave 
energy converter performance is first assessed by 
analytical and numerical tools. 
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Assuming that the wave power system 
hydrodynamics has a linear behaviour, diffraction and 
radiation coefficients can be computed using, for 
example, WAMIT© or Aquadyn. If the power take-off 
equipment is considered to exhibit, in a first approach, 
a linear behaviour then overall (hydrodynamic plus 
mechanical) device performance can be studied for 
regular waves. In [2] a theory for wave power 
absorption by two independently oscillating bodies has 
already been devised. Frequency analysis has been used 
to study the performance of several single devices, such 
as Searev wave energy converter, [3], as well as the 
performance of arrays of devices, as in [4]. 
Hydrodynamic coefficients referring to two concentric 
surface-piercing truncated cylinders in heave motion 
were already computed in [5] using panel-method 
software. 

A stochastic model has already been developed for 
OWC power plants [6]. This stochastic model has been 
used for optimization procedures of the Foz do Douro 
OWC plant, [7,8]. In this paper a stochastic model is 
derived for the articulated wave power device. 
Probability density functions are defined for the 
relevant parameters that characterize the device 
behaviour. Assuming that the overall system behaviour 
is linear and that the wave elevation for irregular waves 
may be regarded as a stochastic process with a 
Gaussian probability density function, the variables that 
define the system behaviour, such as, for example, 
displacements of the articulated system elements, will 
also exhibit a Gaussian probability density function. 
The probability density functions are obtained for these 
parameters and for different sea state conditions. The 
articulated system is characterized in terms of these 
functions. Average values for useful power and capture 
width are also obtained for these sea state conditions. 

Time domain models allow the computation of time 
series for the variables that characterize the wave 
power system behaviour. Moreover, a time domain 
analysis holds the possibility of assuming a non-linear 
power take-off system, which is the most realistic 
scenario for the majority of wave power devices. In this 
study a time domain model is also developed for the 
articulated wave power device. A non-linear power 
take-off configuration, consisting of  a hydraulic circuit 
with a high-pressure gas accumulator, a low-pressure 
gas accumulator and a hydraulic machine as in [9], is 
adopted. Results in regular wave conditions are 
obtained for this configuration, for different values of 
the number of pairs of sets piston/cylinder (driven by 
the relative displacement between the two articulated 
system elements) and the parameter relating flow rate 
through the hydraulic machine to pressure difference 
between the two accumulators. Results for this non-
linear configuration for the power take-off and irregular 
waves are also computed and presented. Finally, these 
results are compared to the results obtained from the 
stochastic model. 

Pontryaguin Maximum Principle is presented as an 
algorithm for the control of the device. Assuming that 
power take-off equipment presents a linear behaviour it 

is possible to see that damping control should be of the 
kind on-off except for singular arcs.  

2 Mathematical models 
Consider a wave energy device made of two coaxial 

axisymmetric oscillating bodies such that relative heave 
motion between bodies allows energy to be extracted 
from sea waves. For the purpose of this study it is 
assumed that the two bodies have linear hydrodynamic 
behaviour. A stochastic model is established and 
presented, based on the assumption that the power take-
off system consists of a linear spring and a linear 
damper, whose forces are proportional to the relative 
displacement and to the relative velocity between 
bodies, respectively. 

 
2.1 Stochastic model 

Applying Newton’s second law, the governing 
equations for the wave energy device may be written as 
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where ω  is the angular frequency, iξ̂  the complex 
amplitude displacement for body i , iM  the mass of 
body i, iC   the hydrostatic restoring coefficient for 
body i, ijA  and ijB  the added mass and damping 
hydrodynamic coefficients for body i when body j 
oscillates,

i
FD the complex amplitude for the diffraction 

force on body i, and LK  and LD   the spring and 
damping coefficients of the power take-off equipment. 

Let us assume that the sea surface elevation is a 
Gaussian random variable in a time interval T. 
 

Taking into consideration that the two oscillating 
bodies are axisymmetric and that their behaviour in the 
frequency domain can be described by eqs. (1) and (2), 
it is possible to find transfer functions, ( )01 ωnHG  and 

( )02 ωnHG , where T/20 πω =   and n is an integer, 

that relate the amplitude of the incident wave nÂ  to the 
displacement amplitude of body 1 and body 2, and 
write 

( ) ( ) nAnHGn ˆˆ
0101 ωωξ = ,             (3) 

and, 

( ) ( ) nAnHGn ˆˆ
0202 ωωξ = .            (4) 

Thus, the vertical displacements for bodies 1 and 2 are 
described by 
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( ) ( ) ( )∑
+∞
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=
n

n tinAnHGt 0011 expˆ ωωξ ,        (5) 

and 

( ) ( ) ( )∑
+∞

−∞=

=
n

n tinAnHGt 0022 expˆ ωωξ .          (6) 

Note that, like for the sea surface elevation, 1ξ  and 2ξ  
are also Gaussian random variables. 
In the case of a sea state represented by a continuous 
power spectrum, the variances of 1ξ  and 2ξ  are 
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Assuming the load force, LF , to be given by 
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                                (9) 
using eqs. (8-9) and taking into account that 
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load force is 

( ) ( ) ( ) ,22
0201

2
0L

2
L ∑

+∞

−∞=

−=
n

nF nHGnHGnZ σωωωσ      

(10) 
with ( ) .L0L0L DinKnZ ωω +=  For a continuous power 
spectrum this expression can be written as 
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The average useful power is 
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where iξ&  is the velocity of body i and, in the case of a 
sea state represented by a continuous power spectrum, 
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2.2 Time domain model 

The governing equations for the wave energy device 
in the time domain take the form 
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where iξ&&  is the acceleration of body i , 
ij

A∞  is the 

limiting value, when ∞→ω , of the added mass ijA , 

i
f D the diffraction force on body i, and Lf  the load 

force applied on the two bodies by the power take-off 
equipment, which may be a linear function of the 
relative velocity and/or relative displacement between 
bodies or a non-linear function. The convolution 
integrals introduced in these equations represent the 
memory effect in the radiation force caused by the 
history of the two bodies’ motion ([9]). ijL  is a 
memory function, obtained from the hydrodynamic 
damping coefficient ijB   by 
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Assuming the power take-off mechanism to consist 
of a linear spring and a linear damper, the load force is  

)).()(())()((),( 21L21LL ttDttKf ii ξξξξξξ &&& −±−±=      

(17) 
The time domain analysis allows the modelling of a 

non-linear power take-off mechanism, which is the 
most realistic scenario for the majority of wave power 
devices. Following [9] we will consider a hydraulic 
circuit  that includes hydraulic cylinders, high-pressure 
and low-pressure gas accumulators and a hydraulic 
motor. The relative motion between the two bodies 
induces the displacement of pistons inside the 
cylinders. A rectifying valve ensures that, whenever the 
bodies are moving relative to each other, the hydraulic 
fluid is pumped into the high-pressure accumulator and 
sucked from the low-pressure accumulator. The 
resulting pressure difference between the 
accumulators,, acspΔ , drives the hydraulic motor, 
whose flow rate, mq , is controlled according to

 
)()()( 2 tpGANtq acsmpcpcm Δ⋅= ,       (18) 

where mG  is a constant, pcN  the number of pairs of 

cylinders and pcA  the total effective cross-sectional 
area of a pair of cylinders. 

Following [9], the pressure difference between the 
accumulators is, in turn, obtained from 
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Here, 1Θ  and 2Θ  are constants related to the 
assumedly isentropic processes in the high-pressure and 
low-pressure accumulators, respectively, vp cc /=γ  is 
the specific-heat ratio for the gas inside the 
accumulators, 1m  and 2m  are the masses of gas inside 
the high-pressure and the low-pressure accumulators, 
respectively, assumed to be fixed along the process, 1v  
is the specific volume of gas inside the high-pressure 
accumulator and 0V  the total volume of gas inside the 
accumulators, which remains constant along the 
process, so that constant)()( 02211 ==+ Vtvmtvm  ( 2v  
is the specific volume of gas inside the low-pressure 
accumulator). 

The total flow rate in the hydraulic circuit is given 
by the variation in the volume of gas inside the high-
pressure accumulator, that is 

dt
tdv

mtqtq m
)(

)()( 1
1−=− ,               (20) 

where q  is the volume flow rate of liquid displaced by 
the pistons. 

The useful power at a given instant, uP , is, in any 
case, given by 

)()()( tptqtP acsmu Δ⋅= .                 (21) 

 
2.3 Pontryagin Maximum Principle 

We assuming that the PTO load force is given by 

( ) ( ) ( ) ( )( ),21LL tttDf i ξξξ &&& −±=           (22) 
the Pontryagin Maximum Principle (PMP) may be used 
to find the optimum control variable ( )tD*

L  that 
maximizes the time-averaged power production over 
the time interval T 
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Taking into consideration that ( )
( )

dt
tdL

tk ij
ij =  the 

convolution integrals in equations (14) and (15) may be 
written as  
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The state equations given by (14) and (15) may now be 
given by 
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1
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ξ &=
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2
2 ξ

ξ &=
dt

d                 (28) 

Thus according to equations (25-28) the state variables 
are 2121  and ,, ξξξξ && . 

The Hamiltonian takes into consideration the state 
equations as well as the equation (23). 
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In order to apply PMP it is necessary to define adjoint 
equations that allow us to compute the adjoint variables 

4321  and ,, λλλλ . These equations may be obtained 
from the Hamiltonian relationships 
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Since ( )43212121L ,,,,,,,, λλλλξξξξ &&DHH = , then, 
according to PMP we must have for the optimum 
control variable  



 
5 

( ) TtDH

DH

D
∈∀=

=

Ω∈
4321

*
2

*
1

*
2

*
1L

4321
*
2

*
1

*
2

*
1

*
L

,,,,,,,,

),,,,,,,,(

Max
L

λλλλξξξξ

λλλλξξξξ
&&

&&

 

                   (31) 
where * denotes the optimum solution and Ω  is the 
admissible interval for the control variable LD . 

From equations (25) to (29) it may be seen that the 
Hamiltonian is linear in the control variable. It follows 
that LD  should take the Ω  maximum or minimum 
values (except for singular arcs), and so 
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If for some time intervals we get 
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then singular arcs will be present in the solution. For 
these time intervals the control variable may take 
values between the maximum and minimum W-values. 
In such cases, the control variable will be made equal 
to a value implicitly given by the algorithm used to 
solve the problem. 

To apply equation (32) it will be necessary to 
compute the adjoint variables over the time interval T. 
Applying the transversality equations and assuming the 
initial values for the state variables to be known but not 

( ) ( ) ( ) ( )T TTT 2121  and ,, ξξξξ &&  we find that 
( ) ( ) ( ) ( ) .0 4321 ==== TTTT λλλλ  

3 Numerical results 

In order to illustrate the application of the stochastic 
and time-domain models, results were obtained for an 
axisymmetric two-body wave energy converter, 
represented in Fig. 1. It is assumed that body 1 is the 
body with a ring like shape (outside body). Body 2 is 
the inside body made of two parts (one surface-piercing 
body and a completely submerged cylinder) that 
oscillate together. For the stochastic model WAMIT© 
was used to compute the hydrodynamic diffraction and 
radiation coefficients for a set of 131 wave frequencies 
in the range of 0.05 rad/s to 1.2566 rad/s. For the time-
domain model this range was extended to 2.5097 rad/s. 
The water depth is 50m. 

 
Figure 1: Panel grid describing the wet surface of the 
concentric axisymmetric oscillating bodies in numerical 
evaluation. 

 
3.1 Stochastic model 

Two scenarios were considered for the power take-
off equipment:  a) the PTO consists of a linear damper 
with a damping coefficient, LD ; b) the PTO consists of 
a linear spring, with stiffness LK , and linear damper 
with coefficient LD . The values of LK  and LD  that 
maximize the average useful power, and thus the 
capture width, cλ , were computed. Results are 
obtained for the variance of 1ξ  and 2ξ  , as well as for 
the variance of the load force, LF . The optimized 
values of LK  and LD  for each sea state are also 
shown. To represent the sea states the following 
frequency spectrum was adopted ([10]): 

( ) ( )4-4
e

5-4
e

2
s 1054exp5.131 −− −= ωωωη TTHS     (34) 

The device behaviour was simulated for wave energy 
periods from 7 to 10s and significant wave height, sH , 
equal to 2m. Figures 2 to 6 present, respectively, the 
capture width, mechanical damping coefficient, spring 
coefficient and variances for the displacement of both 
bodies, for the two mentioned power take-off scenarios. 
Figure 2 shows that the system has a better 
performance for sea states with smaller wave energy 
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period. This is more marked in the second power take-
off scenario. For the considered range of wave energy 
periods the damping coefficient values obtained for 
scenario a) are greater than the ones obtained for 
scenario b) (Fig. 3). The spring coefficients computed 
for scenario b) may be negative or positive, depending 
on the wave energy period (Fig. 4). For scenario a) the 
curves for the displacement variance of both bodies 
present a very similar pattern (Fig. 5). This, however, 
does not happen for scenario b) (Fig. 6). 
  

 
Figure 2: Capture width for wave energy periods from 7 to 
10s and sH  equal to 2m, assuming that the power take-off 

equipment can be simulated by a damping coefficient LD
(black line) and assuming that the power take-off equipment 
can be simulated by both damping and spring coefficients 

LD  and LK  (red line). 

 

 
Figure 3: Mechanical damping coefficient for wave energy 
periods from 7 to 10s and sH  equal to 2m, assuming that the 
power take-off equipment can be simulated by a damping 
coefficient LD (black line) and assuming that the power take-
off equipment can be simulated by both damping and spring 
coefficients LD  and LK  (red line). 

 

 

3.2 Time domain model 

Since the memory effect in equations (14) and (15) is 
negligible after few tens of second, the infinite interval 
of integration in these equations may be, in practice, 
replaced by a finite one ([9]). For the purpose of this 

work a 60s interval was used. The values of the 
memory function defined by equation (16) and the 

 
Figure 4: Mechanical spring coefficient for wave energy 
periods from 7 to 10s and sH  equal to 2m, assuming that the 
power take-off equipment can be simulated by both damping 
and spring coefficients LD  and LK . 

 

 
Figure 5: Variances for the displacements of body 1 and 2, 
for wave energy periods from 7 to 10s and sH  equal to 2m, 
assuming that the power take-off equipment can be simulated 
by a damping coefficient. 

 

 
Figure 6: Variances for the displacements of body 1 and 2, 
for wave energy periods from 7 to 10s and sH  equal to 2m, 
assuming that the power take-off equipment can be simulated 
by both damping and spring coefficients LD  and LK . 
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limiting values of the added mass, 
ij

A∞ , were directly 

obtained from WAMIT©. Time series of 7200s, with a 
time step of 0.01s, were obtained for several values of 
the parameters that characterize the wave power device. 

Time domain model (non-linear PTO) 

Npc Gm (m/Ns) T (s) uP  (kW) Capture 
widht (m) 

1 9.00E-08 9.35 721.369 18.43 

6 9.00E-08 9.35 720.385 18.40. 

12 9.00E-08 9.35 709.777 18.13 

Table 1: Average useful power and capture width results 
obtained from the time domain model for a 1m amplitude 
regular wave with a period of 9.35s, assuming different 
numbers for the pairs of cylinders. 

In Table 1, the value of the flow proportionality 
constant mG  (see Eq. (18)) is the same for the three 
presented cases. Though the highest capture width value 
occurs for the case in which only one pair of cylinders is 
considered, it can be seen that the performance of the 
system is very similar for the three scenarios. Figures 7 
to 9 present, for the case in which 6 pairs of cylinders 
are considered, the time variation of the displacements 
of body 1 and body 2, the relative displacement and 
velocity between the two bodies, and the useful power, 
for the interval 27602740 ≤≤ t  s. It can be observed 
that, although body 1 and body 2 are practically never 
motionless (except for the instants when the direction 
of the motion changes - Fig. 7), sometimes the two 
bodies stay rigidly connected, i.e., the relative velocity 
between the two bodies is null, for some seconds (Fig. 
8). When this occurs the production of energy clearly 
decays but never ceases (Fig. 9). 

 
Figure 7: Displacements of body 1, body 2 and relative 
displacement between bodies for a 1m amplitude regular 
wave with a period of 9.35s, assuming a non-linear power 
take-off mechanism with 6 pairs of cylinders and 

08-9.00E=mG  m/Ns. 

Figure 8: Relative velocity between body 1 and body 2 for a 
1m amplitude regular wave with a period of 9.35s, assuming 
a non-linear power take-off mechanism with 6 pairs of 
cylinders and 08-9.00E=mG  m/Ns. 

 
Figure 9: Useful power for a 1m amplitude regular wave 
with a period of 9.35s, assuming a non-linear power take-off 
mechanism with 6 pairs of cylinders and 08-9.00E=mG  
m/Ns. 

To obtain the results for irregular waves the same 
spectral distribution defined by (34) was used. Figures 
10 to 13 present, for the interval 30002700 ≤≤ t s, the 
time variation of the displacements of body 1 and body 
2, the relative displacement and velocity between the 
two bodies, the useful power and the pressure inside 
both the high-pressure and low-pressure accumulators, 
as well as the pressure difference between the two 
accumulators, for significant wave height 2s =H m 
and wave energy period 8e =T s. A power take-off 
mechanism with 1 pair of cylinders and 08-9.00E=mG
m/Ns was used. Again several time intervals can be 
observed in which, although the motion of body 1 and 
body 2 only ceases when it changes direction (Fig. 11), 
there is no relative motion between the bodies (Figs. 11 
and 12). The production of energy drops accentually in 
these intervals (Fig. 12). From Fig. 13 it can be seen 
that this occurs when the pressure level inside the high-
pressure accumulator also drops, which corresponds to 
a rising of the level inside the low-pressure 
accumulator. This remaining pressure difference when 
there is no relative motion between bodies keeps the 
flow of liquid through the hydraulic motor and thus the 
production of energy. The averaged capture width for 
this case was 3.0 m. 

 
2740 2744 2748 2752 2756 2760

t (s)

600000

700000

800000

900000

1000000

U
se

fu
l P

ow
er

 (W
)

 
2740 2744 2748 2752 2756 2760

t (s)

-1.5

-1

-0.5

0

0.5

1

1.5

R
el

at
iv

e 
V

el
oc

ity
 (m

/s
)

2740 2744 2748 2752 2756 2760
t (s)

-12

-8

-4

0

4

8

12

D
is

pl
ac

em
en

t A
m

pl
itu

de
 (m

)

body 1
body 2
relative displacement



 
Figure 10: Displacements of body 1, body 2 and relative 
displacement between bodies for significant wave height 

2s =H m and wave energy period 8e =T s, assuming a non-
linear power take-off mechanism with 1 pair of cylinders and 

08-9.00E=mG  m/Ns. 

 

 
Figure 11: Relative velocity between body 1 and body 2 for 
significant wave height 2s =H m and wave energy period 

8e =T s, assuming a non-linear power take-off mechanism 
with 1 pair of cylinders and 08-9.00E=mG  m/Ns. 

 

 
Figure 12: Useful power for significant wave height 2s =H
m and wave energy period 8e =T s, assuming a non-linear 
power take-off mechanism with 1 pair of cylinders and 

08-9.00E=mG  m/Ns. 

 
Figure 13: Pressure inside the high-pressure accumulator (

1p ), inside the low-pressure accumulator ( 2p ) and pressure 

difference between the two accumulators ( acspΔ ) for 
significant wave height 2s =H m and wave energy period 

8e =T s, assuming a non-linear power take-off mechanism 
with 1 pair of cylinders and 08-9.00E=mG  m/Ns. 

Results for this same power take-off configuration 
were also obtained for significant wave height 2s =H
m and energy periods equal to 7, 9 and 10s. Fig. 14 
presents the comparison between these results (capture 
width) and the ones obtained from the stochastic model 
for the same sH  and eT  values. It can be seen that the 
patterns of the time-domain model curve and the 
stochastic model curve (particularly when assuming a 
power take-off system simulated by a damping) are 
identical: in both cases the highest capture width value 
occurs for 8e =T s and the smaller capture width values 
occur for the higher energy period values. The time-
domain results were obtained for 08-9.00E=mG m/Ns 
and not for an optimized value of this parameter. This 
partially justifies the fact that the computed values are 
smaller than the ones obtained from the stochastic 
model. In order to achieve a better device performance, 
the optimization of this power take-off parameter is 
important. Figures 15 and 16 present the capture width 
values obtained for different mG  parameter values 
(only 1 pair of cylinders was considered) and different 
wave conditions. In Fig. 15 two curves are represented, 
corresponding to incident regular waves with amplitude 
of 1m and periods of 8 and 12s. For 8=T s the highest 
capture width value (5.5m) is observed to 

m/Ns06-1.00E=mG . For 12=T s a larger mG  

parameter value is required ( m/Ns05-1.00E=mG ). 
The curve presented in Fig. 16 corresponds to irregular 
waves with 2s =H  and s12e =T . In this case the 
highest capture width value (1.3m) occurs to 

m/Ns07-5.00E=mG , representing a value  43% 
higher than the one obtained in the worst mG  scenario 
presented. 
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Figure 14: Capture width results for wave energy periods 
from 7 to 10s and sH  equal to 2m, obtained from the time 
domain model assuming a non-linear power take-off 
mechanism with 1 pair of cylinders and 08-9.00E=mG
m/Ns (blue line) and obtained from the stochastic model, 
assuming that the power take-off equipment can be simulated 
by a damping coefficient LD (black line) and assuming that 
the power take-off equipment can be simulated by both 
damping and spring coefficients LD  and LK  (red line). 

 
Figure 15: Capture width values obtained for different mG  
parameter values (1 pair of cylinders is considered) and 
incident regular waves with amplitude of 1m and periods of 8 
and 12s. 

 

 
Figure 16: Capture width values obtained for different mG  
parameter values (1 pair of cylinders is considered) and 
irregular waves with m2s =H  and s12e =T . 

 

 

3.3 Pontryagin Maximum Principle 

It was also assumed for the time domain model a 
load damping coefficient as described in section 2 
(equations (22) and (23)). The use of PMP implies 
solving equations (30) backwards in time meaning that 
the knowledge in advance of the diffraction forces 
applied to the device during the time interval T is 
needed. The problem is non causal. In order to devise a 
control strategy, which may be considered causal, an 
approach based on PMP was devised. Thus, since PMP 
states that the optimum load damping coefficient 
should take the W maximum or minimum values 
(except for singular arcs), it is assumed that 

⎭
⎬
⎫

⎩
⎨
⎧

ΩΩ= Max,Min
LL

L
DD

D  for most of the time interval T. 

By setting a velocity limit for which LD  should 
change between ΩMin

LD
 and ΩMax

LD
 it will be 

possible to apply the control procedure to the device. 
However, note that this strategy will introduce large 
fluctuations in the power production, which may 
damage the energy quality from the electrical grid point 
of view (this problem might be mitigated by setting 
several devices in large array configurations). Indeed, 
this kind of fluctuations is characteristic of power take-
off mechanism configurations with no energy storage 
system, such as the linear configuration here considered 
for the uncontrolled scenario. 

Table 2 shows the amount of increased power 
production obtained with the considered control 
strategy. It should be noted that this is not an optimum 
control but instead it is based on the findings reached 
for PMP. Depending on the incident wave period there 
is a useful power increase of approximately 31% (test 
1) and 41% (test 2). As expected, large uP  oscillations 
are observed, Fig. 17. For test 1 the minimum value for 

LD  is 6.76E4 Ns/m, when the relative velocity 
between bodies is lower than 0.55 m/s, and the 
maximum value is 10.14E5 Ns/m, when 

m/s6.021 >−ξξ && . For test 2, Fig. 18, the minimum 

value for LD  is 2.08E4 Ns/m and the maximum is 

3.12E5 Ns/m, respectively when m/s2.021 <−ξξ &&  and 

m/s25.021 >−ξξ && .  

4  Conclusions 
Stochastic and time-domain models were developed 

for an articulated device composed by two coaxial 
bodies. The use of the stochastic model for irregular 
waves allows finding variances that define Gaussian 
probability density functions for relevant wave device 
parameters. It was assumed that the power take-off 
mechanical equipment has a linear behaviour and can 
be modelled by spring and damping coefficients. Its 
characteristics were assumed to be constant for the 
duration of a sea state. For the time-domain model a 

0

1

2

3

4

5

7 8 9 10

C
ap

tu
re

 W
id

th
 (m

)

Te(s)

STOCHASTIC MODEL - Damping

STOCHASTIC MODEL - Spring and Damping

TIME MODEL

5.00E-08

1.00E-07

5.00E-07

1.00E-06

5.00E-06

1.00E-05

5.00E-08
1.00E-07 5.00E-07

1.00E-06

5.00E-06

1.00E-05

0

1

2

3

4

5

6

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04

C
ap

tu
re

 W
id

th
 (m

)

Gm (m/Ns)

T=8s T=12s

5.00E-08

1.00E-07

5.00E-07

1.00E-06

5.00E-06

1.00E-05

0.8

1.0

1.2

1.4

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04

C
ap

tu
re

 W
id

th
 (m

)

Gm (m/Ns)

Te=12s



 
10 

Time domain model (linear PTO) 

Test DL (Ns/m) T (s) uP  
(kW) 

Uncontrolled Best DL  
6.76E5 8.02s 125.7 

1 Min=6.76E4 
Max=10.14E5 8.02s 164.7 

Uncontrolled Best DL 
2.084E5 10.05s 93 

2 Min=2.084E4 
Max=3.12E5 10.05s 130.8 

Table 2: Average useful power results obtained from the time 
domain model for a 1m amplitude regular wave, for the 
uncontrolled and controlled device. 

 
Figure 17: Useful power values obtained for test 2, T=10.05s 
and 1m wave amplitude. 

 
Figure 18: LD  values obtained for test 2, T=10.05s and 1m 
wave amplitude. 

non-linear power take-off mechanism configuration 
was devised. Results were obtained for regular and 
irregular waves. The results for irregular waves were 
compared to the ones computed by the stochastic model 
and a good agreement was found between them. The 
capture width values for the stochastic model and for 
the time-domain model, assuming a non-linear power 
take-off mechanism, obtained in irregular waves 

conditions are significantly lower than the ones 
obtained for regular waves. The articulated device 
performance proved to be highly sensitive to the 
characteristic parameters of the non-linear power take-
off mechanism. In order to obtain a better performance, 
further optimization of these parameters and device 
control are essential. Pontryagin Maximum Principle 
was analytically developed as an algorithm for the 
control of the device, considering the power take-off 
mechanism simulated by a damping term. An empirical 
algorithm based on PMP was tested for incident regular 
waves, increasing the useful power. 
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