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Scheduling of job shop, make-to-order industries with recirculation and 
assembly: discrete versus continuous time models 

Marta C. Gomes, Ana Barbosa-Póvoa and Augusto Q. Novais  

Abstract This work studies the performance of two Mixed Integer Linear Programming 
(MILP) models to solve scheduling problems in a flexible job shop environment with 
recirculation and assembly using a due-date-based objective function. The models convey 
different approaches both in the modelling of time (discrete and continuous approaches) as 
well as in the assignment of jobs to machines. The comparison is carried out for a job shop 
system considered closer to the industrial reality than the classical job shop problem of a single 
machine per operation that has been extensively studied in the literature, with the mould 
making industry providing the motivating application. 

1 Introduction 

A commonly used classification divides mathematical programming models for scheduling 
into discrete and continuous time models. Discrete time models divide the scheduling horizon 
into a finite number of intervals with equal and predefined duration and allow the beginning 
and ending of operations to take place only at the boundaries of these time periods. In 
continuous time models there is no previous division of the scheduling horizon, and timing 
decisions are explicitly represented as a set of continuous variables defining the exact times at 
which the events take place. Models of both kinds have been intensively developed for 
scheduling problems in the process industries but their application in discrete parts 
manufacturing has been quite limited so far.  

A mould is a specially designed tool consisting of a “base” and one or more “cavities” 
contoured to the exact specifications of the desired product. A moulding compound is filled 
into the cavities, hardens by cooling and/or by completion of a chemical reaction and is 
extracted once it has taken the shape of the mould. A closer look at our daily environments 
shows the ubiquity of moulded pieces: the automotive, household and electrical appliances 
industries, together with the packing, electronics, telecommunications and hardware industries 
are the main clients of the mould industry. Mould makers operate in a make-to-order basis, 
producing one-of-a-kind products (orders seldom consist of more than one copy of a mould). 
Machinery is organized in the shop floor as in a typical job shop. The Mixed Integer Linear 
Programming formulations developed model explicitly several features of the mould 
fabrication process:  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório do LNEG

https://core.ac.uk/display/70657441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


− machine groups composed of multiple machines operating in parallel (flexible job 
shop);  

− generalized processing routes, with no constraints upon the machine groups that 
constitute them;  

− recirculation: some jobs visits a machine group more than once;  
− assembly of components produced separately to form an order;  
− every order has a due date for delivery to the costumer. 

In the continuous time formulation, the decision variables in common with the model of 
Manne (1960) are the starting time of each job on each machine (continuous) and the 
sequencing variables (binary) that establish the precedence between tasks in each processing 
unit. The notion of global precedence is used instead of immediate precedence. The model 
additionally accounts for product recirculation, product combination to form an order and a 
due date-based objective function. Orders may correspond to a single component or to several 
components combined in a final assembly operation. Earliness and tardiness variables were 
added following the approach of Zhu and Heady (2000) for the earliness and tardiness problem 
in a single-stage system of non-identical parallel units. While Manne’s model considers a 
single machine per operation, non-identical machines per operation and binary assignment 
variables were considered following the approach of Méndez et al. (2001) in solving a 
flowshop problem in the process industry. 

Scheduling objectives are: to finish each order as close as possible to the corresponding 
due date and to minimize storage of unfinished components in intermediate buffers (the queues 
to the machines). Earliness and tardiness costs for the orders are given, as well as costs of 
intermediate storage of unfinished components.  

The discrete time scheduling formulation developed is based on the one presented by 
Chang and Liao (1994) for flexible flow-shop scheduling, which comprises homogeneous 
machine groups, limited buffers and orders composed of several identical units that follow the 
same processing route. A number of units (of the same or different orders) may be processed at 
the same time in a machine group. Gomes et al. (2005) extended this model to the flexible job 
shop case with generalized processing routes and recirculation. The model was further 
generalized to consider the existence of non-homogeneous machine groups (machines in a 
group may have different processing times). Orders corresponding to single or assembled 
components are considered (the notion of “unit” is replaced by “component” in the new model) 
and assembly operations were added (Gomes 2007). The scheduling horizon is divided into 
identical time slots; all model variables are integer. 

In both models, the objective function (to be minimized) is a weighted sum of order 
earliness, tardiness and intermediate storage time. To summarize, in the discrete time 
formulation, time is modelled explicitly through a time index with no binary variables being 
required for machine assignment. In the continuous time formulation, modelling of time is 
implicit and jobs are assigned to machines through binary variables. 

2 Computational study 

The example considered is based on data collected at a mould making plant. Figure 1 is a 
simplified diagram of the plant: it consists of fifteen machines (M1 to M15) and four 
processing routes (A,B,C,D) that the components may follow. Orders are formed either by 
individual components or by the assemblage of two components, with two possibilities: a 
component from route A combined with a component from route C (assembly 1, performed in 
“machine”, or assembly unit M14) or a component from route B joined with a component from 
route D (assembly 2, performed in assembly unit M15). Routes B and C display recirculation: 
machines M3, M10 and M11 are visited twice. 

 



 

Figure 1.  Processing routes in a shop producing single and assembled orders. 
 

Five sets of orders to be scheduled were generated, involving 10, 20, 30 and 40 
components (which correspond to “jobs” in the job shop terminology). Each set is composed 
of single and assembled orders. Two sets of 40 components were generated, which differ in the 
average interval between consecutive due dates: a “tight” due date set (40A) and a “loose” due 
date set (40B). The simplest operational scenarios considered have one or two machines per 
machine group. Scenario 2+(3,4) displays 34 machines in total: two machines per machine 
group, recirculation groups M10 and M11 with three machines each, and recirculation group 
M3 with four machines. Likewise for scenario 4+(5,6), with 64 machines in total: four 
machines per machine group, groups M10 and M11 have five machines each and group M3 
has six machines. A complete description of order data and processing times can be found in 
Gomes (2007). 

The MILP models were implemented in GAMS modelling system and solved with 
CPLEX on a 3 GHz Pentium IV with 512MB RAM running Windows XP Professional. 
CPLEX releases 9.1.2 (10 component set) and 10.0.1 (other sets) were used. Table I 
summarizes the results, by displaying model statistics, computational performance, the 
objective function value and also the total number of operations. “Gap” is the optimality gap 
(in percentage). For the continuous time model, a better estimate of the gap than the one 
returned by the solver was determined by using the optimal solution or the lower bound 
computed by the discrete time model, whenever it was available. For models not solved to 
optimality, “solution polishing” was performed (a heuristic procedure available in CPLEX 10 
that improves a solution after the branch-and-bound search). 

2.1 Discussion of results 

When analyzing the results (see Table I) for the 10 and 20 component sets, the 
continuous time model performed better than its discrete counterpart when a single machine is 
available per operation. With the continuous time model either the optimal solution was 
computed in a shorter time (10 component set) or a better sub-optimal solution could be 
obtained with less computational effort (20 component set; 422 sec against 2701 sec). 

However, when assignment to machines is considered (scenarios 2 and 2+(3,4) 
machines), the discrete time formulation generally outperformed the continuous one although 
the model size (variables plus constraints) is considerably larger. In all problem instances, 
except set 40A, the discrete time model was solved in CPU time less or equal to 12.7 min (759 
sec). The continuous time model either took, on average, longer time to be solved or could not 



prove optimality within a time limit of 10 min (or longer) for branch-and-bound and 10 min (or 
longer) for solution polishing. 

In set 40A of “tight” due dates and operational scenario 2+(3,4) no integer solution to the 
discrete formulation was found within 30 min of running the solver. Nevertheless, the 
continuous time formulation found a feasible solution in this case: a double entry “40A” is 
shown which corresponds to two solutions obtained with different time limits for branch-and-
bound and solution polishing. A reduction of 73% in the objective function value was achieved 
when total run time increased from 20 to 50 min (1200 to 3000 sec). 

Finally the table shows that two problem instances that could not be solved to optimality 
in 30 min of branch-and-bound with the continuous time model can be so if the number of 
machines per group is increased (and despite the increase in model size). This is the case of the 
20 component set when the number of machines is increased from 2 to 2+(3,4) (41 sec to 
obtain the optimal solution) and the 40A component set when the operational scenario varies 
from 2+(3,4) to 4+(5,6) (356 sec or 5.9 min of CPU time). 

As a main conclusion it can be stated that in the operational scenario of a single machine 
per operation the continuous time formulation performs better than its discrete counterpart 
while in the scenario of two or more machines in parallel per operation the discrete time 
formulation outperforms the continuous one. This result contrasts with the neglect of discrete 
time models in the fields of flow shop and job shop scheduling, where continuous time MILP 

Table I 
Computational statistics and scheduling results 

Scenario 
No. of 

components 
No. of 

variables 
No. of 

constraints 
Objective 
Function 

Gap 
(%) 

CPU 
(sec) 

No. of 
operations  

Continuous time model 

1 10 329 477 621.8 0 4.3 71 
machine 20 1,067 1,775 755.9 11.8 422.1 141 

2 10 400 801 0.8 0 192.6 71 
machines 20 1,208 3,247 0.5 20.0 2700.2 141 

 20 1,278 4,387 0.2 0 40.7 141 
2+(3,4) 30 2,510 9,863 0.3 33.3 1200.3 210 

machines 40A 4,198 17,845 81.8 100 1203.4 282 
 40A ‘’ ‘’ 22.3 100 3000.3 282 
 40B ‘’ ‘’ 1.2 100 1200.4 282 

4+(5,6)  40A 4,762 30,305 0 0 356.4 282 

Discrete time model 

1 10 18,279 13,562 621.8 0 27.4 71 
machine 20 52,025 33,958 859.9 22.5 2701.3 141 

2 10 27,233 16,356 0.8 0 9.6 71 
machines 20 77,162 38,935 0.4 0 95.9 141 

 20 89,132 40,345 0.2 0 31.6 141 
2+(3,4) 30 132,269 55,962 0.2 0 248.8 210 

machines 40A 178,263 73,156 ⎯(a) ⎯ ⎯ 282 
 40B 220,743 89,356 0 0 758.6 282 

(a) An integer solution could not be found within the time limit of 30 min for branch & bound. 



formulations are considered superior based on the performance on classical models of one 
machine per operation (Pan (1997), Stafford et al. (2005), Pan and Chen (2005)). 

Results also show that model performance is not directly related to the model size, but 
critically depends on factors like due date distribution and the number of machines available 
per operation. In spite of the continuous time model being generally outperformed by its 
discrete counterpart, there was a large size instance where no integer solution of the discrete 
model was found within 30 min of running the solver. In such situations the continuous time 
model becomes more attractive because a feasible solution can be obtained and further 
enhanced in relatively short time. 

3 Conclusion and future developments 

The development and comparison of discrete and continuous time formulations for solving the 
job shop scheduling problem is an original contribution of this study. Pan (1997) compares 
different formulations for the classical job shop problem in terms of model size complexity 
(number of variables and number of constraints) but no experimental study seems to have been 
reported like the one of Stafford et al. (2005) for the classical permutation flow shop problem. 

The models developed apply directly to different types of job shop environments; this is 
the case of the mould making industry. Portugal has a relevant place in the world’s mould 
producers. Manufacturers employ processes and techniques with a strong technological level 
and are internationally recognized for the technical quality and the ability to adapt to new and 
increasingly complex challenges. However, among others weaknesses of the sector, the 
following have been pointed out: poor interaction with knowledge centres, difficulty in 
meeting due dates and few highly competitive companies coexisting with a vast number of 
firms with ineffective organization and out-of-date equipments. In this context, mould makers 
would benefit from the use of decision support systems (DSS) to organize production. This 
work expects to be a contribution towards development of such decision tools.  

As future developments, on the one hand the conclusions of this research should be 
consolidated by solving more problem instances and studying other configurations of the job 
shop system. On the other hand, solving larger and more realistic problems will pose the 
challenge of obtaining efficient and fast solutions for MILP models. Several techniques have 
been proposed with the aim of maintaining the number of decisions at a reasonable level in 
exact approaches of large-scale problems (Méndez et al. 2006). In the near future we intend to 
explore model reduction by means of heuristics. The incorporation of structural knowledge of 
the problem into the mathematical representation (like simple or combined dispatching rules) 
can lead to reduced models that capture only the critical decisions to be made and therefore to 
good solutions that can be generated in reasonably short time. 
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