Electrochemical Characterization of Poly(ethylene oxide)-Zinc Chloride System and its Application in Rechargeable Batteries

<u>M.J.C. Plancha</u>^a, C.M. Rangel^a, C.A.C. Sequeira^{b,*}, ^aUnidade de Electroquímica de Materiais-DMTP, INETI, Azinhaga dos Lameiros à Estrada do Paço do Lumiar 22 1649-038 Lisboa, Portugal ^bICEMS-DEQB, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal *cesarsequeira@ist.utl.pt

The system PEO_nZnCl₂ with n=4-16 was studied in view of its potential application in a solid state rechargeable zinc battery. A.c. conductivity and cationic transference number measurements, in the temperature range 20-150°C, were performed and the electrochemical stability window was established for the polymer electrolyte with n=4 composition. The ionic conductivity, σ , of this film, follows a VTF behaviour, with an activation energy of 3.3 ± 0.2 kJ mol⁻¹ and σ values were found between 2.50×10^{-7} S cm⁻¹ at 24°C and 4.81×10^{-4} S cm⁻¹ at 145°C. Acceptable zinc ion transference numbers of 0.36 (medium value) and decomposition voltage values between 3.19V (20°C) and 1.44V (150°C) were estimated. Cyclic voltammetric studies using Zn/PEO₄ZnCl₂/Zn cell indicated reversibility of the Zn/Zn²⁺ couple at the electrode/electrolyte interface. Several cells Zn(-)/PEO₄ZnCl₂/Nb₂O₅(+) were assembled and studied at 55°C, with several discharge current densities. Results of cell's discharge profiles, capacity values, charge-discharge cycles behaviour and stability are reported.