
 

 

 

  

Abstract—The paper deals with the modelling, optimization 

and control of the IPS buoy wave energy converter, a two-body 

point-absorber oscillating in heave, consisting of a floater 

rigidly connected to a long submerged vertical acceleration tube 

open at both ends within which a piston can slide, forcing the 

motion of the inside water below and above it. Energy is 

converted from the relative motion between the piston and the 

buoy-tube pair. The modelling is performed in the frequency 

domain (including reactive phase control), in order to provide 

some kind of geometry optimization, and also in the time-

domain to allow the simulation of a more realistic high-

pressure-oil power take-off system. 

1. INTRODUCTION 

The concept of point absorber for wave energy utilization 

was developed in the late 1970s and early 1980s, mostly in 

Scandinavia. This is in general a wave energy converter of 

oscillating body type whose horizontal dimensions are small 

compared to the representative wave length. In its simplest 

version, the body reacts against the sea bottom. In deep 

water (say 50-m depth or more), this may raise difficulties 

due to the distance between the floating body and the 

bottom. Multi-body systems may then be used instead, in 

which the energy is converted from the relative motion 

between two bodies oscillating differently. 

One of the most interesting two-body point absorbers for 

wave energy conversion is the IPS buoy, invented by Sven 

A. Noren [1] and initially developed in Sweden by the 

company Interproject Service (IPS). A half-scale prototype 

of the IPS buoy was tested in sea trials in Sweden, in the 

early 1980s [2]. The AquaBuOY is a wave energy converter, 

developed in the 2000s, that combines the IPS buoy concept 

with a pair of hose pumps to produce a flow of water at high 

pressure that drives a Pelton turbine [3]. A prototype of the 

AquaBuOY was deployed and tested in 2007 in the Pacific 

Ocean off the coast of Oregon. 

 The theoretical dynamics of a two-body heaving wave 

energy converter has been analysed in detail by Falnes [4] 

(see also [5-7]). Here, we consider a simplified version of the 

IPS buoy. Results from an optimization study in the 

frequency domain (linear power take-off) are presented for 

regular as well as irregular waves, including the effect of 
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reactive phase control. Numerical results are then presented 

from a time-domain study for a more realistic high-pressure-

oil power take-off system (PTO). 

 

2.  THEORETICAL MODEL 

2.1. Basic assumptions 

The IPS buoy consists basically of a buoy rigidly 

connected to a submerged tube (the acceleration tube), 

oscillating in heave, by the action of the waves, with respect 

to a piston that can slide along the tube. The wave energy is 

absorbed by means of the relative motion between the piston 

and the buoy-tube set. The concept is represented in Fig. 1a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. (a) On the left, the IPS buoy; (b) on the right, a simplified 

representation. 

We note that most of the inertia against which the buoy 

moves is that of the water contained inside the acceleration 

tube (obviously in addition to the mass of the piston itself). 

In the simplified mathematical modelling presented in this 

section, the IPS buoy is replaced by two bodies oscillating 

independently in heave (Fig. 1b). Body 1 consists of a floater 

(body 1a, shown as a semi-submerged sphere, a geometry 

adopted here for modelling) rigidly connected to a fully 

submerged body (body 1b, that represents the inertia of the 

acceleration tube walls). We neglect the mass and volume of 

the structure linking bodies 1a and 1b (or include it in the 

mass of body 1b), as well as the hydrodynamic forces on the 

structure. Body 2 represents the inertia of the piston plus the 

water inside the tube. In the frequency domain analysis, we 

will assume that bodies 1 and 2 are connected by a linear 

damper-spring PTO, as shown in Fig. 1b. 

Because the converter performance depends on body 

geometry as well as on PTO parameters and control strategy 
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and algorithm, the optimization is not an easy task. To render 

it more feasible, we introduce some simplifying assumptions. 

Firstly, we fix the shape and size of the floating body 1a. 

Then we assume that the distance from the submerged bodies 

1b and 2 to the free surface is large enough so that (i) they 

are subject neither to excitation forces nor to radiation 

forces, and (ii) their added masses are independent of 

frequency of oscillation. Besides, we neglect the 

hydrodynamic interaction between bodies 1a, 1b and 2. 

 

2.2.  Basic equations in the frequency domain 

We consider the two-body system represented in Fig. 1b, 

and  assume that both bodies are constrained to oscillate in 

heave, a reasonable approximation taking into account the 

relatively large length of the submerged tube. Let x and y be 

the coordinates for the heaving motion of bodies 1 and 2, 

respectively, with 0== yx  at equilibrium and x, y 

increasing upwards.  

The equations of motion can be found in [8] for an 

arbitrary number of oscillating bodies, and in [4] for the 

specific case of two bodies oscillating in heave. We may 

write, for the motion of bodies 1 and 2, acted upon by 

sinusoidal waves of frequency ω , 

,)()()( 11 dfyxKyxCgSxxBxAm =−+−++++ &&&&& ρ  (1) 

.0)()()( 22 =−−−−+ yxKyxCyAm &&&&  (2) 

Here ρ  is water density, g is acceleration of gravity, jm  

( 1=j  for body 1, 2=j  for body 2) is body mass, )(ωjA  

is added mass, )(ωB  is radiation damping coefficient (of 

body 1a), S is the cross sectional area of body 1a defined by 

the undisturbed free-surface, C is the damping coefficient 

due to the power take-off mechanism and K is the stiffness of 

the spring. Finally df  is the hydrodynamic excitation force 

on body 1a. 

If the whole system is linear (which requires the damper 

and the spring to be linear), we may write ,)( 0
tieXtx ω=  

tieYty ω
0)( = , where 0X  and 0Y  are (in general complex) 

amplitudes, and ti
wd eAtf ωω)()( Γ= . Here wA  is the 

incident wave (real) amplitude, and Γ  is the (in general 

complex) excitation (or diffraction) force coefficient for 

body 1a.  From (1,2), we obtain 
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Here bbb AmM 111 +=  and 222 AmM +=  are the mass 

plus added mass of bodies 1b (acceleration tube) and 2 

(water in tube plus piston), respectively. Note that bA1  and 

2A  are supposed not to be functions of frequency ω  (as a 

consequence from the assumption of deep submergence). 

The complex amplitudes 0X  and 0Y  can easily be obtained 

by solving the system of equations (3,4). 

The time-averaged power extracted from the waves is 

given by 2
2

00
2

YXCP −= ω . 

We assume the floating body 1a to be a hemisphere. 

Tabulated values (together with asymptotic expressions) can 

be found in [9] (in dimensionless form) for the added mass 

)(1 ωaA  and the radiation resistance coefficient )(ωB  of 

body 1a deep water. The absolute value of the excitation 

force coefficient )(ωΓ  may be obtained from )(ωB  by using 

the Haskind relation (valid for an axisymmetric body 

oscillating in heave, see [8]) 
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Since we only consider heave oscillations, the equations of 

motion are not affected by how the mass ba mmm 111 +=  is 

distributed between bodies 1a and 1b. For convenience of 

presentation of numerical results, we assume that am1 is the 

mass of water of volume equal to the submerged part of the 

buoy in the absence of waves (in the present case a 

hemisphere). 

 

3. NUMERICAL RESULTS FOR LINEAR PTO 

We adopt the simplified model, in deep water, as 

described in sub-section 2.2 and shown in Fig. 1b, with a 

floating hemispherical buoy of diameter 15 m, and assume a 

linear PTO. We set 2ms8.9 −=g , 3mkg1025 −=ρ , and 

define dimensionless values denoted by an asterisk. For 

mass, it is abb mMM 11
*
1 =  and amMM 12

*
2 = , where 

kg107.905 3
1 ×=am . We also define dimensionless values 

for PTO damping and stiffness as )(* 8ωBCC =  and 

)(* gSKK ρ= , respectively. Here it is 

1mMN776.1 −=gSρ , 828 πω = rad/s is the frequency for 

wave period 8=T s, and smkN5.242)( 1
8

−=ωB . Finally, 

we define the dimensionless absorbed power as 

max* PPP = . Here maxP  is the theoretical maximum limit 

of the (time-averaged) power that an axisymmetric heaving 

wave energy converter can absorb from regular waves of 

frequency ω  and amplitude wA , and is known to be (see 

e.g. [8]) )4/( 323
max ωρ wAgP =  (corresponding to capture 

width πλ 2 ). 

For irregular waves, a Pierson-Moskowitz spectral 

distribution was adopted, defined by (SI units, see [10]) 

)1054exp(526)( 44542 −−−− −= ωωω TeTHS es , (6) 

where sH  is significant wave height and eT  is energy 

period. The time-averaged power output in irregular waves is 

computed as 

ωωω dSPTHP es )()(),(
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where )(1 ωP  is the power absorbed from regular waves of 

frequency ω  and unit amplitude. The time-averaged 

theoretical maximum power that can be absorbed from the 

irregular waves by an axisymmetric (one- or two-body) 

heaving converter is 
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As for regular waves, we define irrmax,irr
*

irr PPP = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Results from optimization in irregular waves versus *
1bM , for 

8=eT s (linear damper, no spring). 

Results were computed for 8=eT s and a PTO consisting 

of a linear damper of coefficient C (no spring, 0=K , i.e. 

non-reactive phase control). For each *
1bM , values of the 

pair *
2M , *C  were obtained that yield maximum *

irrP . The 

results of this optimisation are plotted versus *
1bM  in Fig. 2, 

together with *
irr10 P× . 

Unlike in the case of regular waves, it is not longer 

possible to extract the theoretical maximum power from 

irregular waves with a linear damper as PTO. In the 

simulated case, the power that can be absorbed can be seen 

to be weakly dependent on the ratio ab mM 11 and equal to 

about 41-44%. The curve for *
2M  exhibits a minimum. To 

the left of this point, we have the “strong damping” solution 

(characterized by small mass *
1bM  and small relative motion 

amplitude); to the right is the “week damping” solution 

(large *
1bM , in the limit ∞=*

1bM  i.e. a single body 

converter). 

 

3.1.  Phase control 

It is known that optimal (non-linear) phase control would 

allow the theoretical maximum to be attained (i.e. 1*
irr =P ). 

Unfortunately optimal phase control is unfeasible, for well 

known reasons [11]: it would require the prediction of the 

incoming waves (and also relatively heavy computing that 

cannot be easily implemented in real time). Besides it would 

imply reactive control, i.e. the reversal of the energy flow 

direction during part of the cycle, with the negative 

consequences if the reactive power peaks are not small and 

(friction) losses are significant in the two-way energy transfer 

process (see [12]). An alternative control method that avoids 

the energy flow reversal was proposed by Budal and Falnes 

[13] and consists in latching the device in a fixed position (in 

the present case relative position of bodies 1 and 2) during 

certain intervals of the wave cycle (see also [15,16]). This will 

be considered in section 4.1. 

3.2. Reactive phase control in irregular waves 

In this subsection we consider linear reactive control, 

simulated by a linear damper (coefficient C) and a linear spring 

(negative stiffness K). 

In order to fix the masses bM1  and 2M , we make use of 

the optimized results shown in Fig. 2, and look for masses of 

bodies 1b and 2 that are not unacceptably high. We choose 

ab mM 11 2= , amM 12 76.1= , a pair which, together with 

)(77.3 8ωBC = , was found to maximize the absorbed 

energy for 8=eT s with a non-reactive linear PTO. The 

following step is to simulate reactive control by allowing K 

to take negative values and look for optimal values of C. The 

results are represented is Figs 3, 4 for 8=eT  and 12 s, and 

show that, if K is allowed to take unrestricted negative 

values, substantially more power can be absorbed, especially 

for the larger periods. For example, for 12=eT s, *
irrP  

attains 38% (for 63.0* −=K , Fig. 4), whereas the maximum 

is 12% if K is constrained to be zero. Off course, large 

negative values of K in reactive phase control are to be 

avoided in practice for the reasons mentioned above.  

 

4. TIME-DOMAIN MODELLING FOR NON-LINEAR PTO (HIGH 

PRESSURE OIL) 

4.1.  Latching phase-control 

It may be of interest to investigate how phase control by 

latching (rather then reactive phase control) can provide an 

increase in absorbed energy. Here we assume that latching is 

provided by a high-pressure-oil PTO, that includes a 

hydraulic ram, a hydraulic motor and a gas accumulator 

system (as in some wave energy converters like Pelamis and 

Wavebob). In the modelling of this PTO we closely follow 

[14]. In the case of a single body oscillating in heave, 

latching control was found to significantly increase the 

amount of absorbed energy by a relatively small (5m radius 

hemispherical buoy) point absorber [14]. 

In the case of two bodies, by latching we mean that, during 

a part of the wave cycle (latched period), the two bodies are 

constrained to remain rigidly connected to each other; 

obviously, unlike for a single body system, latching does not 
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Fig. 3. Results from optimization (linear PTO) with reactive control 

versus negative spring stiffness, in irregular waves of 8=eT s. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. As in Fig. 4, for 12=eT s. 

constrain any of the two bodies (including especially the 

energy extracting floating body) to remain motionless (with 

respect to the sea bottom).  

Here we assume the relative motion between bodies 1 and 

2 to drive a two-way hydraulic ram that feeds high pressure 

oil to a hydraulic motor. A gas accumulator system, 

consisting of a high-pressure (HP) reservoir and a low 

pressure (LP) reservoir, is placed in the circuit to produce a 

smoothing effect. Such a wave energy converter is highly 

non-linear, which requires a time-domain model consisting 

of a set of coupled equations: (i) a set of two differential 

equations (one of which constrains a convolution integral 

representing the radiation memory effect) that account for 

the hydrodynamics of the two-body wave energy absorber 

[8]; (ii) an ordinary differential equation that models the 

time-varying gas volume and pressure, the dependence of the 

oil flow rate (supplied to the hydraulic motor) on 

accumulator pressure, and the non-return valve system [14]. 

Standard methods were employed to numerically integrate 

the differential equations, with appropriate initial conditions 

(for details, see [14,17]). Instead of (3,4), the governing 

equations for the hydrodynamics are now 

,)()()(
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The memory function L can be obtained from the radiation 

damping coefficient )(ωB  (see [17]). In (9,10), mf  is the 

vertical force on body 1 due to the PTO mechanism. This 

force will depend on the instantaneous gas pressures in the 

HP and LP accumulators and on the control algorithm.  

We consider first the case in which the force mf  is 

insufficient to move the piston inside the hydraulic ram (and 

so yx && = ) for as long as pSf cm ∆< , where cS  is the 

piston area and p∆  is the instantaneous value of the pressure 

difference between the HP and LP accumulators. This kind 

of damping (simple Coulomb damping) does not involve any 

phase control strategy and was analysed in detail (for a 

single body) in [17]. For this situation, the control algorithm 

proposed in [17] consists in establishing a proportionality 

relationship pGSq cm ∆= 2  between the instantaneous liquid-

flow rate through the hydraulic motor, mq , and p∆ . Here G 

is a control parameter. The power available to the hydraulic 

machine is 2)( pSGpqP cmm ∆=∆= . We note that, over a 

sufficiently long time, the time-averaged values of P (power 

absorbed from the waves) and mP  are equal (no energy 

losses are assumed to occur in the hydraulic circuit).  

As in [14], this kind of hydraulic PTO can be used to 

achieve a phase control by extending the period of time 

during which bodies 1 and 2 remain fixed to each other. 

When the bodies are moving, their relative velocity, yx && − , 

will, at some time, come to zero, as a result of the 

hydrodynamic forces on their wetted surfaces and the PTO 

forces. The bodies will then remain fixed to each other until 

force mf  exceeds )( pSR c ∆ , where 1>R . It is to be noted 

that the force that has to be overcome (if the piston is to 

restart moving) is now larger (by a factor R) as compared 

with the simple Coulomb damping (i.e. compared with 

pSc ∆ ). There is now a new parameter, R, to be optimized, 

jointly with parameter G. 

Numerical simulations (83 min long each) were carried 

out, based on this procedure and algorithm, for the two-body 

system (in deep water) represented in Fig. 1b, with a 

hemispheric floater radius 5.7=a m. Piston area (in 

hydraulic ram) was 0314.0=cS m2. The masses of gas 

(nitrogen) in the HP and LP accumulators were 200 kg and 

40 kg, respectively. The Pierson-Moskowitz spectrum (11) 

was discretized into 225 equally spaced ( 01.0=∆ω rad/s) 

sinusoidal harmonics in the range 0.25-2.5 rad/s. The 

differential equations were numerically integrated in the time 

domain with a time step size of 0.02 s. 
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The results presented in Figs 5,6 were computed for 

2=sH m, and several values of dimensionless masses 

*
1bM and *

2M , time period eT , and control parameters G and 

R. The curves were plotted versus control parameter G (for 

the oil flow rate through the hydraulic motor). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Results from latching control with high-pressure-oil PTO, for 

masses 2*
1 =bM  and 76.1*

2 =M , and several values of eT  and 

control parameter R. 

 

In Fig. 5, the same values 2*
1 =bM  and 76.1*

2 =M  were 

adopted as in Figs 3-4 (where the PTO is linear). The 

maximum values of  *
irrP  obtainable with the non-linear 

hydraulic PTO are slightly lower (by about 10%) than the 

ones shown in Figs 3,4 for 0=K  (no reactive phase 

control). It is to be noted that no improvement was found by 

increasing control parameter R above unity (i.e. introducing 

latching), unlike the beneficial effect of negative spring 

stiffness (reactive phase control) observed in Figs 3-4 with a 

linear PTO. This seems to be due to the fact that the effect 

intended with latching (keeping the floating energy-

absorbing body motionless during part of the wave cycle) in 

ineffective due to the finite mass of body 2. 

To further investigate this, numerical simulations were 

performed for a smaller mass of body 1b ( 1*
1 =bM ) and 

increasingly larger masses of body 2: 6*
2 =M  (Fig. 6) and 

∞=*
2M  (Fig. 7). Latching (i.e. control parameter 1>R ) 

was found to be marginally effective for 6*
2 =M  and the 

long wave period 14=eT s. As expected, the improvement 

from latching may be substantial (especially for the larger 

wave periods) for ∞=*
2M , i.e. a single body reacting 

against the sea bottom, as shown in Fig. 7. 

 

 

 

 

 

 

 

 

 
 

Fig. 6. As in Fig. 5, for masses 1*
1 =bM  and 6*

2 =M , 14=eT s and 

several values of control parameter R . 

 

 

 

 

Fig. 7. As in Fig. 5, for masses 1*
1 =bM  and ∞=*

2M , 12=eT s and 

several values of control parameter R . 

 
Fig. 8. Results from a PTO combining a hydraulic circuit (flow 

control parameter G) with a negative spring, for masses 2*
1 =bM  and 

76.1*
2 =M , and several values of eT  and non-dimensional spring 

stiffness *K . 
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4.2. Reactive phase control 

In principle, it seems possible to achieve reactive phase-

control with a hydraulic PTO as the one outlined here, by 

suitably reversing the direction of the oil flow (and delivering 

energy to the surrounding wave field) during part of the wave 

cycle, as a means of increasing the overall absorbed energy. 

Numerical simulations (not reported here) showed this not to 

be effective. 

An additional simulation was performed for a PTO 

consisting of a high-pressure-oil circuit (as above, with R = 1) 

combined (not very realistically) with a linear “spring” of 

negative stiffness K, providing reactive phase control. 

Numerical results, shown in Fig. 8, illustrate the effectiveness 

of such a PTO, especially for the longer wave periods. 

However, as could be anticipated, this requires large 

“negative-spring” forces )( yxK −  which most of the time 

greatly exceed what the be provided by the hydraulic circuit 

(i.e largely exceed pSc∆ ) (see Fig. 9). This indicates that 

effective reactive control requires larger forces (and larger 

exchanges of energy) than what can be provided by the PTO 

systems usually proposed for wave energy converters. 

 
Fig. 8. Comparison between force on piston pSc∆  and negative-

spring (reactive) force )( yxK − , for 2*
1 =bM , 76.1*

2 =M , 

12=eT s,  3.0* −=K  and 6102 −×=G s/kg. 

5. Conclusions 

Simulations were performed, in the frequency domain 

(regular and irregular waves), for a simplified version of the 

IPS buoy (a two-body wave energy converter) equipped with 

a linear damper as PTO. 

It was found that, by introducing a “spring” with negative 

stiffness (reactive phase control), the amount of absorbed 

energy (from irregular waves) can be significantly increased, 

especially for the longer wave periods. 

The substantial increase in absorbed energy by latching 

phase-control of a single-body converter (known from the 

published literature) was found not to occur for the two-body 

IPS buoy under consideration, except for (possibly 

impractically) large values of the mass of the submerged 

body against which the floater is reacting. This may be 

explained by the incapacity (due to insufficient inertia of 

body 2) of producing the effect intended with latching: to 

keep the floater unmoving during part of the wave cycle and 

in this way (approximately) bringing the floater velocity into 

phase with the diffraction (or excitation) force. 

It was found that reactive phase control can hardly be 

achieved in an effective way with a hydraulic PTO by 

reversing the direction of the oil flow during part of the wave 

cycle. This conclusion is reinforced by the results from 

simulations with a PTO combining a hydraulic PTO with a 

“negative linear spring”, which indicate that the required 

reactive (negative spring) force largely exceeds what can be 

practically provided by a hydraulic PTO circuit. 
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