
SIMULATION OF IMMUNE SYSTEM RESPONSE TO BACTERIAL CHALLENGE

Nuno Fachada1,∗, Vitor V. Lopes1,2, Agostinho Rosa1

1 LaSEEB - Instituto de Sistemas e Robotica,

Torre Norte 6.21, Av. Rovisco Pais 1, 1049-001 Lisboa
2 INETI - Instituto Nacional de Engenharia, Tecnologia e Inovação

Estrada do Paço do Lumiar, 22, 1649-038 Lisboa

KEYWORDS

Modeling, Simulation, Agents, Immune System

ABSTRACT

Immune system (IS) simulations have several applica-
tions, such as biological theory testing or as a comple-
ment in the development of improved drugs. This pa-
per presents an agent based approach to simulate the
IS response to bacterial infection challenge. The agent
simulator is implemented in a discrete time and two-
dimensional space, and composed by two layers: a) a
specialized cellular automata responsible for substance
di�usion and reactions; and b) the layer where agents
move, act and interact. The IS model focuses upon
low level cellular receptor interactions, receptor diversity
and genetic-ruled agents, aiming to observe and study
the resultant emergent behavior. The model reproduces
the following IS behavioral characteristics: speci�city
and specialization, immune memory and vaccine immu-
nization.

INTRODUCTION

Experimental immunology research is a di�cult and ex-
pensive research �eld, where the systematic clinical tri-
als of new drugs follow a complex and strict protocol
(Emerson and Rossi 2007). As such, computational
models of the immune system (IS) can be a valuable
tool to understand the e�ects of a new drug, as well as
to test or validate immunologic theories.
In agent-based modeling (ABM), a system is modeled
as a group of independent decision-making agents that
evaluate its current situation and make decisions on the
basis of a rule set (Chen et al. 2004). Cellular automata
(CA) (Wolfram 2002) are the simplest form of ABM, and
are based on an environment with non-moving agents,
discrete in space and time. Agents can range from sim-
ple propositional logic based agents (Remondino 2003)
to learning agents (Bonabeau 2002) (e.g., using neural
networks or evolutionary algorithms).
Several ABM models to perform IS simulation already
exist, each presenting a di�erent focus, approach and
features. ImmSim, one of the most referenced and peer

∗Corresponding author.

reviewed IS simulators, is based on a CA with proba-
bilistic rules (Kohler et al. 2000), presenting concepts
later used in other models, such as entities moving from
site to site. The fundamental concepts of this model
were explored in 1992 (Celada and Seiden 1992). The
AbAIS (Agent-based Arti�cial Immune System) intro-
duced a hybrid approach supporting the evolution of an
heterogeneous population of genetic-ruled agents over a
CA environment (Grilo et al. 2001). Simmune brought
the modeling focus on low level molecular interactions
(Meier-Schellersheim and Mack 1999), although with
limited results regarding IS simulation. Event driven IS
modeling was introduced in CAFISS, a platform which
used multithreaded asynchronous updating of the sim-
ulation (Tay and Jhavar 2005), where each IS cell in-
stance runs in its own thread; although realistic, this
is a computationally expensive approach. The concern
on specialized engines to manage physical and chemical
interactions was underlined by the Sentinel platform,
used in the evaluation of several immunological memory
theories (Robbins and Garrett 2005).

In this paper we discuss an agent-based model of the
IS and bacteria, and present several simulations of the
IS response to bacterial attack under di�erent circum-
stances. The model is developed using LAIS, a frame-
work for simulation of biological systems in general
and the IS in particular (Fachada 2008), which gathers
and improves on important features of previous models,
o�ering a versatile and accessible modeling approach.
Simulations concern immune memory, speci�city and
specialization; a vaccine simulation is also presented.

THE IMMUNE SYSTEM

The exact function of the IS is still a source of active de-
bate, but it can be stated that its physiologic function
is to protect individuals against infections (Abbas and
Lichtman 2006) caused by pathogenic agents. At the
same time the IS must distinguish self from non-self,
in order to avoid self in�icted damage. Auto-immune
diseases are the consequence of failure to perform such
distinction. The IS is gifted with learning and memory
features: it remembers previous challenges with speci�c
pathogens, and deals with them more e�ectively in sub-
sequent encounters. The defense mechanism of an indi-
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vidual consists of innate and adaptive immunity, which
work together to provide protection against infections.
Innate immunity is the �rst line of defense against in-
fections; its performance does not depend of prior con-
tact with potential threats. Innate immunity cells, such
as macrophages, recognize generic pathogen-associated
molecular patterns in the surface of microbes, destroying
them via phagocytosis (i.e., by engul�ng them) (Abbas
and Lichtman 2006).
Microbial adversaries can rapidly evolve strategies to
evade innate immunity mechanisms. Adaptive immu-
nity is the evolutionary answer of vertebrate animals, al-
lowing the body to adapt to �rst time invasions, remem-
bering and handling them more e�ectively in the future.
Lymphocytes are adaptive immunity agents which can
challenge particular invaders through the recognition of
the unique receptors they express, known as antigens.
There are two main types of lymphocytes, which di�er
in function and type of antigen receptor: B cells and T
cells.
The B cell produces antibody molecules complementary
to a given antigen in its native form; it plays a cen-
tral role in humoral immunity, the protection against
extracellular microbes. When a macrophage detects a
microorganism covered (opsonized) with antibody, the
probability of successful phagocytosis increases substan-
tially. The B cell is activated when its receptor (BCR),
a super�cial antibody, binds speci�c antigen.
The T cell is the main actor in cell-mediated immunity
(CMI), which provides protection against intracellular
microbes. T cells are subdivided in Th (helper) cells,
which assist macrophages and B cells, and Tc (cyto-
toxic) cells, which kill infected cells. Th cells may also
help the activation of Tc lymphocytes. The T cell re-
ceptor (TCR) is more complex, and will not bind to na-
tive antigen; instead, it binds a complex formed by an
MHC molecule and an antigen derived peptide. MHC
(Major Histocompatibility Complex) is a genetic recep-
tor of body cells, involved in antigen presentation to T
cells; MHC class I is present in all nucleated cells and is
recognized by Tc cells; MHC class II exists on antigen-
presenting cells (mainly B cells, macrophages, dendritic
cells), and is recognized by Th cells (Roitt and Delves
2001). Cells that present antigenic peptides to Th cells
via MHC class II, such as macrophages and B cells, are
known as Antigen Presenting Cells (APC). Macrophages
process antigen for presentation after microbe phagocy-
tosis, while B cells do the same after engul�ng BCRs
binding antigen.
When a B cell presents antigen to a Th cell, the lat-
ter is stimulated to secrete cytokines (mediators of im-
mune and in�ammatory reactions (Abbas and Licht-
man 2006)), which in turn increase B cell proliferation
and di�erentiation. B cells either become plasma cells,
which secrete antibody, or long-lived memory B cells,
which allow a more e�ective response in future chal-
lenges by the same microorganism. After a few days,

some of the antigen activated B cells undergo a process
called somatic hypermutation, which consists of high-
frequency mutations in antibody speci�city; B cells pro-
ducing higher a�nity antibodies after mutation have an
increased chance of survival, leading to a�nity matura-
tion of the humoral immune response. When a Th cell
recognizes the antigenic peptide + MHC class II com-
plex on the surface of a macrophage, it releases IFN-γ,
a cytokine which helps the macrophage destroy phago-
cyted, but still living microbes. Several bacteria, such as
Listeria, Mycobacterium tuberculosis or M. leprae, sur-
vive inside macrophages, requiring external macrophage
activation by Th cells in order to be properly eliminated.

These are important aspects of IS dynamics and ad-
versarial strategies, and illustrate the variety of ways
in which di�erent components interact in order achieve
their goal. However, this introduction doesn't even be-
gin to re�ect the true complexity of what is at stake;
it serves only to contextualize the reader and to estab-
lish an underlying natural agent-based structure, further
justifying the use of agent-based approaches for model-
ing the IS.

THE LAIS SIMULATION FRAMEWORK

The LAIS framework is a multi-threaded agent-based
simulation platform, o�ering a set of tools for the sim-
ulation of biological systems. The platform is im-
plemented in Java and makes use of following open
source libraries: a) the Repast Agent Simulation Toolkit
(North et al. 2006) classes that provide or simplify spa-
tial organization and visualization, event scheduling and
simulation output (e.g., charts, CSV �les, movies); and
b) the Simple XML serialization library1 that provides
simple class development and instantiation using XML.
The platform will be available on Sourceforge early 2009.

The two main actors in the LAIS framework are the sub-
stances and the agents. The simulator is organized in
two layers: a) a specialized cellular automaton (CA) re-
sponsible for substance di�usion, reaction and degrada-
tion; and, b) the agent layer where the agents move and
act. The communication between these layers occurs
when agents produce or consume substances, or when
an agent action depends on the underlying substances.
Current implementation restricts the simulation to dis-
crete time and two-dimensional space.

Substances

Substances are uniquely identi�ed by a 64 bit string, al-
lowing a repertoire of 264 ≈ 1019 di�erent substances. In
the model speci�cation it is possible to attribute speci�c
biological functions to di�erent bit substrings. The bio-
logical a�nity between substances primarily depends on
the existence of complementary zones, i.e., regions where
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the biological substances can ��t� with each other. To
mimic the IS, the bit string of substances that model
IS antibodies are composed by: a) a constant region re-
sponsible for secondary functions such as macrophage
binding or complement �xation, and b) a variable re-
gion which is used to determine the binding a�nity with
the antigen. The biological a�nity is implemented by
the Hamming distance between two substance bitstrings
(Celada and Seiden 1992).
LAIS represents the substances as real valued concen-
trations, allowing to: a) model di�usion and reaction
phenomena in the CA layer; and b) simulate the sub-
stances present on the agent surface, in the agent layer.
Antigens are modeled as substances and thus di�erenti-
ated from pathogenic agents themselves.
New substances can be dynamically created during sim-
ulation as the result of: a) di�erent substances produced
by mutation of cloning agents; and, b) substance merg-
ing. Merging can be either a�nity dependent, such as
in the antigen-antibody complex formation or indepen-
dent, such as in the case of the complex formed by MHC
and the antigen peptide.
The simulator o�ers the possibility to group the sub-
stances into families in order to: a) simplify the process
of tracking substances with similar functions, e.g. in B
cell response, where a multitude of di�erent antibodies
are temporarily produced; and, b) allow the de�nition
of substance merging rules a�ecting speci�c families. In
the latter case, model speci�cation is considerably fa-
cilitated and the substance merging simulation becomes
computationally feasible.

Agents

Agents have a set of conditional rules which evaluate
state, super�cial substance concentration and the local
CA cell, analyzing local substance concentration, as well
as substances displayed by other agents. These rules
are grouped in lists of rules; each list of rules is asso-
ciated to a list of actions. A �rule list - action list�
mapping is called a �gene�. In order to perform the ac-
tions in a list, all the rules in the associated gene rule list
must yield true. Fig. 1 shows the schematics of a LAIS
agent. Rules and actions are hard-coded Java classes,
but accept instantiation parameters, making them �ex-
ible. The grouping of rules and actions with di�erent
instantiation parameters permits a vast range of behav-
iors. If a particular behavior cannot be achieved using
available rules and actions, it is relatively simple to code
additional ones, following speci�c interfaces. The agent
set of genes (each one being a �rule list - action list�
mapping) can be referred as the agent's genotype. Evo-
lution takes place when an agent creates another agent,
either by a cloning process (e.g., cellular division) or
by producing a di�erent type of agent (e.g., an infected
immune cell producing viruses). In such cases, rules
and actions are also cloned. These have a mutation pa-

Figure 1: The LAIS agent model.

rameter which can modify referenced substances. Agent
movement is controlled by these rules; movement can
be random, inertial (higher probability of moving for-
ward) or substance dependent (simulating chemotaxis,
cell movement directed by a chemical concentration gra-
dient (Abbas and Lichtman 2006)). LAIS supports the
exchange of genetic code (at gene level), a feature intro-
duced in AbAIS, allowing models to represent realistic
evolving systems.

MODELING CONSIDERATIONS

One of the most complex challenges when developing a
IS model is to �nd a balance between scale, granular-
ity and computational feasibility. Features that are in-
cluded in the model should not only be theoretically and
experimentally sound, but also relevant for in the con-
text of the simulations to perform. Knowledge gaps, in-
complete data and excluded system features imply that
models are incomplete, always abstract to some point.
However, an incomplete model can still do a good job
of simulating reality. Biological systems can also work
without various parts; they are robust, having redun-
dant features and components with overlapping func-
tions. As such, if a model captures the principal com-
ponents of a biological system, there is no reason why it
cannot yield realistic simulations (Cohen 2007).

Having the previous paragraph into consideration, four
types of entities were modeled in order to perform a
simulation of immune response to bacterial challenge:
APCs, B cells, Th cells and a phagocytosis resistant
bacteria agent. The most relevant soluble substances
for this experiment consisted in three cytokines, a single
bacterial antigen, and a variety of antibodies and anti-
gen + antibody complex, not known at the beginning of
the simulation, as its production is a consequence of the
immune response. Other substances, such as MHC Class
II, are only present in the agent surface, but are of crit-
ical importance in the overall simulation. The behavior
of IS agent models follows the description discussed in



the IMMUNE SYSTEM section, while the model bacte-
ria consists of an agent who's replication rate is higher
than the death rate, so if left alone in the simulation
environment would grow inde�nitely; naturally, limited
resources would stop this from occurring in reality. De-
tailed model implementation can be found in (Fachada
2008).

EXPERIMENTS AND RESULTS

Immune memory

The establishment of memory against previous infec-
tions is one of the most important characteristics of the
adaptive immune system. This property is responsible
for enhanced immune responses to recurrent infections
(Abbas and Lichtman 2006).
Bacteria are inserted for the �rst time in the simulation
environment at tick 95 (�g. 2a). The immune response
ensues, with APCs performing phagocytosis. APCs are
unable to kill the ingested bacteria, but the release of
IL-12 cytokine and presentation of MHC Class II + anti-
gen complex activates speci�c Th cells. These release
IL-2, which induces self-proliferation and proliferation
of B cells, a process called clonal expansion (i.e., the
multiplication of cells speci�c for the invader). Th cells
continue to proliferate, and become e�ector cells, i.e.,
cells which produce IFN-γ. This cytokine will in turn
help the APCs �kill� the phagocyted bacteria. Antigen
speci�c B cells also take part in the initial activation
of Th cells, as they also express MHC Class II + anti-
gen complex, after engul�ng soluble antigen. However,
they only become activated after IL-2 signaling. Some of
the activated B cells become antibody producing plasma
cells, while others will go into somatic hypermutation
state and others become memory. The antibodies pro-
duced by plasma cells act in two fronts by a) opsonizing
the bacteria, helping APCs perform phagocytosis, and
b) directly neutralizing bacteria when concentration is
high enough. B cells in somatic hypermutation undergo
a�nity maturation, in which only high a�nity clones are
able to survive; the surviving clones then become anti-
gen speci�c activated, plasma and memory cells. When
the concerted response is in place, bacteria starts to be
removed from the environment, lasting 51 ticks from ini-
tial insertion to full neutralization.
When all bacteria are eliminated, the immune response
is hampered by the negative feedback rules in the agents.
All traces of the �rst bacterial challenge, except for the
long-lived memory cells, are cleared by tick 500 (�g. 2).
At tick 533, a new dose of bacteria is introduced in the
simulation environment (�g. 2a); it's possible to observe
that they resist less when compared to the primary at-
tack, surviving 18 ticks. The secondary response had
a shorter delay between antigen deployment and anti-
body production, and the production of antibody was
higher, as can be observed in �g. 2b. These results com-
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Figure 2: Dynamics during the establishment of immune
memory.

pare favorably with literature descriptions (Abbas and
Lichtman 2006, Roitt and Delves 2001).

Speci�city and specialization

Like memory, speci�city and specialization are two
important properties of the adaptive immune system.
Speci�city is the ability to recognize and respond to a
variety of microorganisms, while specialization refers to
the fact that responses for distinct microbes are opti-
mized for defense against these microbes (Abbas and
Lichtman 2006). This experiment aims to demonstrate
these two characteristics.
In order to verify speci�city and specialization in the
model, two types of bacteria, A and B, are introduced
at simulation ticks 50 and 800, respectively (�g. 3a).
The bacteria are distinguished only by their super�cial
antigen. The response to the �rst challenge leads to the
creation of speci�c memory against bacteria A. When
the secondary challenge occurs, there is no evident im-
provement in the quality of the secondary response (�g.
3b), with bacteria B surviving slightly longer (�g. 3a).
This occurs because memory cells created during the



�rst challenge are speci�c for bacteria A, not recogniz-
ing bacteria B during the secondary response.
Comparing the antibody response (�g. 3b) with results
from literature (Abbas and Lichtman 2006, Roitt and
Delves 2001), it is possible to conclude that the model
yields the expected results.
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Figure 3: Speci�c memory created for bacteria A does
not recognize bacteria B.

Vaccine simulation

Vaccination uses the memory property of the immune
system to achieve a state of immunization against a
given pathogen. The �rst stages of vaccine testing con-
stitute a perfect opportunity for the use of simulators,
which can provide preliminary indications on the e�ec-
tiveness and safety of new drugs. The use of killed
organisms as a vaccine is one of the most common,
although with limited e�ectiveness (Roitt and Delves
2001). In this experiment, a virtual vaccine based on
dead (non-replicating) bacteria is used to immunize the
host, and its e�ectiveness measured (�g. 4).
The vaccine, compose of 50 non-replicating bacteria, is
introduced at tick 50 (�g. 4a (in the �gure the num-
ber does not reach 50 due to the simulation mechanism:
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Figure 4: Vaccine composed of attenuated bacteria
causes a state of immunization.

�rst the vaccine is deployed, then cells perform their
steps - some vaccine disappears - and only then are the
charts updated). The immune response is eventually
mounted, removing the vaccine from the system and
creating memory cells in the process. At tick 500, 25
units of �live� replicating bacteria are deployed in the
simulation environment (�g. 4a). The IS recognizes
the invader and the response is almost immediate when
compared with the initial injection of vaccine (�g. 4b).
The immune response removes the bacteria without dif-
�culty, asserting the e�ect of vaccination using �dead�
microorganisms in the presented model.

CONCLUSIONS

This paper presents an agent based approach to simu-
late the immune system response to bacterial challenge.
It aims to demonstrate LAIS framework capabilities for
this type of simulations. Three simulation scenarios
were designed to test the implemented model for im-
mune memory, vaccine immunization and the speci�city
and specialization behavioral characteristics present in
the IS. Results show that: a) LAIS framework archi-



tecture provides all the necessary �exibility to specify
the IS model in a biological meaningful way; and b) the
implemented IS model can re�ect all these three charac-
teristics and, thus, be further calibrated and validated
against experimental data.
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