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Summary 
In this study, different strains of Saccharomyces cerevisiae have been screened for the 

ability of bioethanol production. Yeasts were grown in synthetic liquid medium 

containing two different substrates: sucrose at different concentrations (10 to 400g/l) 

and cane molasses (120g/l of sucrose). The screening was made in batch regime and the 

growth rates, ethanol and biomass productions were determined. The results indicate a 

flocculent yeast strain – F as the more suitable microorganism to produce ethanol, 

presenting the highest value of growth rate (0.49h
-1

) and ethanol yield (0.40g/g) with 

120g/l of sucrose concentration. In addition, ethanol production was also studied in a 

continuous process with the selected yeast strain (F strain), with sucrose and cane 

molasses (120g/l) at different dilution rates (0.05-0.5 h
-1

). Data showed that when 

dilution rate raised to 0.4h
-1

 the highest sugar conversion, 85% and 90%, were 

achieved with an ethanol production of 40.5g/l and 50.8g/l for sucrose and molasses, 

respectively.  

 
1. Introduction 

Ethanol has many desirable features as a petroleum substitute and could help make a 

smoother transition from a petroleum-based to a bio-based sustainable and environment 

friendly economics [1, 2]. Most of the ethanol produced in the world is currently 

obtained from agricultural products such as starch biomass, molasses or cane juice, by 

hydrolysis of starch and fermentation of sugars. Starch and sugar-based ethanol is often 

referred as a first-generation biofuel.  

Recently, lignocellulosic biomass such as agricultural and forestry residues and 

herbaceous energy crops can serve as low cost feedstocks for production of fuel ethanol 

and other value-added commodity.chemicals. These residues are much more social and 

economical interesting than using sugar crops such as sugar cane, sugar beet or sweet 

shorgum [3] and the chemical properties of the components of lignocellulosic residues 

make them a substrate of enormous biotechnological value [4]. However, development 

of efficient pretreatment and cost-effective enzymatic conversion of any lignocellulosic 

biomass to fermentable sugars is a key issue. Moreover, the technology for ethanol 

production from non-food plant sources (second generation biofuel) is being developed 

rapidly so that large-scale production will become a reality soon [5].  

Fermentation of biomass involves significantly greater challenges, owing to the 

necessity of converting pentose as well as multiple hexose sugars to ethanol. The 

production of ethanol by continuous fermentation is a more productive process, 

compared to batch ones [6, 7], as higher productivities are achieved. There are several 

methods to increase cells density inside a bioreactor; cell immobilization [8], settling 

techniques [9], as well as utilizing the natural ability of several microorganisms for 

flocculation [10] are some of them. As main advantages from the alternative processes, 
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flocculation systems present low associated capital and operational costs and design 

simplicity.  

In this work, we present results of high cell density fluidized reactors and its 

implications on cell physiology and how to integrate them on a continuous culture 

model, using flocculent yeast strains for ethanol production.  

 

2. Material and Methods 

2.1. Microrganisms strains 

Saccaharomyces cerevisiae strains were obtained from: INETI Collection 

Microorganisms CCMI 396, DER 24; Deutsche Collection Microorganisms DSMZ 

2548, Collection Microorganisms NCYC 1119, an isolated strain F from corn fibre 

hydrolysates (DVT). 

2.2. Batch growth experiments 

S. cerevisiae strains were kept on malt extract agar slants at 4ºC and the medium used 

for the growth of the inocula was YMAgar (Difco). In batch growth experiments the 

culture medium was: 120 g/L sucrose, 3.5 g/L peptone, 3 g/L yeast extract, 2 g/L 

KH2PO4, 1 g/L MgSO4.7 H2O and 1 g/L(NH4)2SO4. The pH was adjusted to 5.0 and the 

medium was sterilized at 121ºC for 15 minutes. For fermentation studies a defined 

molasses medium (diluted to yield a sugar load of 120 g/L) was used.  

2.4. Sugar and Ethanol Determination 

Sugars (S) and ethanol (P) were determined by HPLC using a refractive index as a 

detector and a Sugar-Pak column was used at 70ºC with MilliQ water containing EDTA 

Ca
2+

 (5mM) as the mobile phase; the flow rate was 0.5 mL/min and the injection 

volume was 20 µL.  

2.5. Bioreactor for Continuous Experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiments were performed in a 1 L-glass tubular bioreactor (ID 60 mm, H 800 mm) 

(Fig. 1). The temperature was maintained at 28 ºC through a jacketed water bath. The 

pH was monitored but not controlled. The bed of free cells was fluidized by the 
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Fig 1 - Schematic 

representation of the 

experimental apparatus 

used in continuous 

culture. 
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generated gas during fermentation and by the recirculation of cells through a peristaltic 

pump. This reactor is shown schematically in Figure 1. For the model development, 

only steady-state values were taken into account for statistic calculations. To fit-in 

measured variables and operational parameters during steady-states the software 

package SCAN (Minitab Inc.) was used. Some methods of linear regression were tested 

(OLS, PCR, PLS), using percentage of consumed sugar, dilution rate, ethanol 

concentration and biomass concentration in the outflow as inputs to predict the biomass 

concentration within the broth. 

 

3. Results and Discussion 

3.1. Growth and ethanol production screening for different yeasts strains 

The ability of five yeasts strains (CCMI 396, DER 24, DSMZ 2548, NCYC 1119 and F) 

to grow and flocculate in sucrose medium and molasses (120 g/L) and to produce 

ethanol was studied and compared. Strain F presented the highest values of growth rate 

(0.49 h
-1

) and ethanol yield (0.40 g/g) and was selected as the most promising flocculent 

strain for ethanol production. 

 

3.2 Continuous experiments 

The flocculent yeast strain selected was used for continuous culture. Its capacity for 

flocculation permitted to obtain a fluidized biomass bed inside the bioreactor without 

using a solid support and thus lowering the costs of pumps and support. With a bed of 

free cells there is an increased contact between biomass and culture medium, which 

facilitates the uptake of the feeding substrate. In addition, as cells tend to sediment at 

the bottom of the bioreactor, wash out is not observed at dilution rates near the 

maximum specific growth rate of the microorganism (approximately 0.49 h
-1

).  

The biomass concentration in the outflow showed an increased instability as the dilution 

rate was being increased. An explanation for this may be the fact that when dilution rate 

increased the rate of formation of gas increased as well, and the produced bubbles may 

have dragged cells toward the upper side of the bioreactor, forcing them to go out in the 

effluent. Nevertheless the concentration of outgoing cells was in average below 5 g/L. 

During the various steps of the experiments, the residual sugar has varied, although it 

has always been underneath 30 %. At the earlier stage, when dilution rate was 0.7 h
-1

 

and recirculation velocity was about 4 cm/s, almost all sugar was consumed (96 %). 

After increasing dilution rate to 0.23 h
-1

, there was a significant decrease in the extent of 

sugar conversion and approximately 23 % of sugar remained intact. In this time the 

concentration of feeding sugar switched to 120 g/L and four days later the recirculation 

velocity was raised (till 7 cm/s). This produced a better mixture level inside the 

bioreactor as the consumed sugar percentage achieved nearly 90 %. Increasing again 

dilution rate (now for a value near the maximum specific growth rate of the flocculent 

microorganism) no significant effect was observed concerning sugar uptake. 

During the experiments, the yield of ethanol production (YP/S) was very close to the 

stoichiometric one (0.50 g/g), considering only the steady-state periods of the process; 

also the yield of biomass formation (YX/S) was low, as desired, and the ethanol yield 

was varying around 0.45 g/g during the running. In this way, except for that mentioned 

period, ethanol concentrations in the outflow ranged between 45 and 50 g/L. 

Ethanol productivity was calculated as follows: 
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DPrP ×=                                                        (1) 

 

A linear increase in the ethanol productivity was observed with an increase in dilution 

rate (see Figure 2). The best result attained was 22 g/Lh for a dilution rate of 0.42 h
-1

. 

Microbiological monitoring was performed in a regular way and no persistent 

contamination was found. This is due to the environmental conditions within the broth: 

low pH (2.50-3.90) and high ethanol concentration (around 0.6 % (v/v)). Also cells 

viability was followed and it was obtained for all the experiment more than 90 % of 

viable cells in the recirculation flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusions 

The good results obtained with our bioreactor can lead us to believe that higher 

productivities can still be achieved if we can use even higher dilution rates. As biomass 

is flocculated and sediments easily, there is no problem with cells wash out. The 

problem of washing biomass out may arise for hydrodynamic reasons, as the gas 

dragging force on cells flocs. This has been solved in a scale-up reactor design by 

installing a degassing zone on the top of the bioreactor, allowing cells to sediment 

before leaving with the effluent (to be published).  

The model developed for estimating biomass concentration within the broth shows good 

capability of predicting that variable thus being a useful tool in monitoring the 

fermentation process with flocculated cells. To validate the model larger sets of 

measured variables would be needed, as well as accurate measures of the biomass 

concentration. Nevertheless there is strong indication that the model can be used as an 

inferential sensor for biomass with this bioreactor in the tested conditions. 

In conclusion this work shows that higher ethanol productivity (20 g/Lh) is obtained 

with flocculating yeast fluidized continuous reactors compared to those achieved by 

traditional processes: 2-5 g/Lh for batch reactors; 6-8 g/Lh for CSTR with free cells and 

10-16 g/Lh for CSTR with immobilized cells what makes this process very attractive for 

large-scale ethanol production and a crucial factor for its economical viability.  

In this context, the bioethanol production using this process with agro wastes available 

in the region (e.g. wheat straw) is being also carried out after the application of an 
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Fig. 2- Continuous fermentation: ethanol productivity (rP, ▲) and 

sugar consumption rate (rS, ●), along time running for different 

dilution rates (D, �). 
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efficient pretreatment (acid hydrolysis) and cost-effective enzymatic conversion of the 

lignocellulosic biomass to fermentable sugars. 
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