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Abstract 
To have the first look into device performance, 

analytical and numerical tools must be used. Assuming that 
the wave power system hydrodynamics has a linear 
behaviour, diffraction and radiation coefficients can be 
computed. If the power take-off equipment may be, for the 
first approach, regarded as holding a linear behaviour then 
overall (i.e. hydrodynamic plus mechanical) device 
performance can be studied for regular waves. In this study 
a frequency-domain model describes the articulated system 
behaviour for regular waves.  

For this paper a stochastic model is found for an 
articulated wave power device, and probability density 
functions are defined for the relevant parameters that 
characterize the wave power system behaviour. For these 
parameters and for different sea states the probability 
density functions are found. The articulated system is 
characterized by these probability density functions. Also, 
average values for capture width are obtained for these sea 
state conditions. 
 
Keywords: Wave energy, frequency-domain, stochastic 
model. 
 
Nomenclature 
 

ijA        = added mass hydrodynamic coefficient 

Â          = complex wave elevation amplitude 

nÂ      = complex random amplitude 

ijB        = damping hydrodynamic coefficient 

iC         = hydrostatic restoring coefficient for body i 

LD       = damping coefficient of the power take-off   
     equipment 
{ }E      = expected value of 

i
FD       = complex amplitude for the diffraction force on 

      body i 
LF      = load force 

1HG , 2HG = transfer function 

sH       = significant wave height 

LK       = spring coefficient of the power take-off    
             equipment 

iM        = mass of body i 

IP         = incident power for a regular wave 

uP         = average useful power 

ηS   = spectral density 
 T           = time interval 

eT      = wave energy period 

LZ      = load impedance 
 g           = acceleration of gravity  
 h           = water depth 
 k           = wave number 
t           = time 

nϕ         = random phase 
η           = sea surface elevation 

cλ      = capture width 
θ          = wave direction angle 
ρ          = water specific mass 

2σ   = variance 

iξ
)

         = complex amplitude displacement for body i 
 *   = complex conjugate 
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Introduction 
Since the beginning of the 20th century man has been 

thinking on how to make use of wave power. So far more 
than about thousands of patents have been registered. To 
have the first look into device performance, analytical and 
numerical tools must be used. Assuming that the wave 
power system hydrodynamics has a linear behaviour, 
diffraction and radiation coefficients can be computed 
using, for example, WAMIT© or Aquadyn. If the power 
take-off equipment can be, in the first approach, regarded 
as holding a linear behaviour, then overall (i.e. 
hydrodynamic plus mechanical) device performance can be 
studied for regular waves. In this study a frequency-domain 
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model describes the behaviour for regular waves of an 
articulated system consisting of two main concentric 
bodies. Optimal mechanical damping and spring 
coefficients are computed for some parameters (relative 
and absolute displacements) restrictions. Useful power, 
capture width, and other variables, like relative 
displacements (displacement of one body for a coordinate 
reference system that oscillates with the same amplitude 
and phase as the other body, i.e. a coordinate reference 
system fixed with respect to the second body), are 
computed for regular waves and the mechanical 
coefficients mentioned above. In [1] a theory for wave 
power absorption by two independently oscillating bodies 
has already been devised. Frequency analysis has been used 
to study devices such as Searev wave energy converter, [2], 
and also the hydrodynamic performance of arrays of 
devices as in [3]. As mentioned before software using panel 
methods can be used to compute the hydrodynamic 
coefficients of the two concentric bodies. In [4] 
hydrodynamic coefficients in heave of two concentric 
surface-piercing truncated circular cylinders were already 
computed. 

 
A stochastic model has already been developed for 

OWC power plants [5]. This stochastic model has been 
used for optimization procedures of the FOZ do Douro 
OWC plant, [6], [7].  In this paper a stochastic model is 
found for the articulated wave power device, and 
probability density functions are defined for the relevant 
parameters that characterize the wave power system 
behaviour. Assuming that the overall system behaviour is 
linear and that the wave elevation for the irregular waves 
may be regarded as a stochastic process with a Gaussian 
probability density function, the variables that define the 
system behaviour, like, for example, displacements for the 
articulated system elements, will also have a Gaussian 
probability density function. For these parameters and for 
different sea states the probability density functions (i.e. 
variances) are found. The articulated system is 
characterized by these functions.  Also, average values for 
capture width are obtained for these sea state conditions. 

 
 

1   Mathematical models 
The wave energy device is made of two concentric 

axisymmetric oscillating bodies, Fig. 1. The relative heave 
motion between bodies allows extracting power from sea 
waves. As usual it is assumed that the bodies have linear 
hydrodynamic behaviour  and also that the power take-off 
can be modelled by spring and damping terms proportional 
to the relative displacement between bodies and to the 
relative velocity, respectively. A frequency domain model 
and a stochastic model are subsequently presented. 

 
Frequency domain model  

Applying Newton’s second law, the governing equations 
for the wave energy device are, 
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where ω  is the angular frequency, iξ

)
 is the complex 

amplitude displacement for body i , iM  the mass of body i, 

iC  the hydrostatic restoring coefficient for body i, ijA and 

ijB  the added mass and damping hydrodynamic 

coefficients, 
i

FD the complex amplitude for the diffraction 

force on body i, and LK  and LD  the spring and damping 
coefficients of the power take-off equipment. 

As given in [8] for the angular frequency ω  the average 
useful power can be given by, 
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Thus, choosing values for LK  and LD  it is possible to 
compute for each angular frequency and wave elevation 
amplitude the heave motions of the two concentric floating 
bodies, 1ξ

)
 and 2ξ̂ , as well as the average useful power, 

uP . The capture width, cλ , may be computed by, 
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where IP  is the incident power for a regular wave with 
angular frequency ω  and complex wave elevation 

amplitude ( )ωÂ . The water depth is h, k is the wave 
number given by the positive root of the dispersion 

relationship, ( )khkg tanh
2

=ω , ρ  is the water specific 

mass and g the acceleration of gravity. 
 

Stochastic model 
As in [5] we will consider a time interval of duration T, 

and assume that the sea surface elevation, ( ),tη  is a 
Gaussian random variable given by, 
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Following [5] we find for the variance of the sea surface 
elevation, assuming that the sea state can be represented by 
a discrete power spectrum, 

{ } ( )( ) { }

.

ˆˆ'exp

2

*

'
0

*2
'

∑

∑∑
∞+

−∞=

+∞

−∞=

+∞

−∞=

=

=−==

n
n

nn
nn

AAEtnniE

σ

ωηηση
  

                      (6)  
As it is well known, if the sea surface power spectrum is 
continuous the variance of the elevation is given by 
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where ( )ωηS  is a spectral density defined in the range 
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If the power spectrum is dependent not only on the wave 
frequency but also on the direction of the incoming waves 
we get for (5) 
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for 'nn ≠  and 'mm ≠ . The variance of the elevation for a 
continuous power spectrum is now 
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Taking into consideration that the two oscillating bodies are 
axisymmetric and that their behaviour in the frequency 
domain can be described by eqs. (1) and (2), it is possible 
to find transfer functions, ( )01 ωnHG  and ( )02 ωnHG , that 

relate the amplitude of the incident wave nA
)

 and the 
displacement amplitude for body 1 and 2, 
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ωωξ =             (10) 
and, 
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According to (5) the vertical displacements for bodies 1 
and 2 are described by, 
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Note that just as η , also 1ξ  and 2ξ  are Gaussian random 
variables, with variances 

{ } ( ) ,22
01

*
11

2
1 ∑

+∞

−∞=

==
n

nnHGE σωξξσξ         (14) 

and 

{ } ( ) .22
02

*
22

2
2 ∑

+∞

−∞=

==
n

nnHGE σωξξσξ        (15) 

If the sea state can be represented by a continuous power 
spectrum, then we get for 1ξ  and 2ξ  variances 
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It is straightforward that the variance for the velocity of 
bodies 1 and 2 may be computed by,  
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Assuming that the load force, LF , can be given by 
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we get, for the variance of the load force, 
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with ( ) .L0L0L DinKnZ ωω +=  
Since 1ξ  and 2ξ  are given by eqs. (12-13) and 
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variance of LF  
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Thus, for a continuous power spectrum we may write 
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The average useful power may be written as 
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taking into consideration that for a sea state represented by 
a continuous power spectrum we get 

( )( )

( ) ( ) ( ) .2
21

2

*
2121

2
21

∫
∞+

∞−

−=

=
⎭⎬
⎫

⎩⎨
⎧ −−=

⎭
⎬
⎫

⎩
⎨
⎧ −

ωωωωω

ξξξξξξ

η dHGHGS

EE &&&&&&

      (25) 

Note that the probability of the instantaneous useful power 
being less or equal than L

2 Dχ  is given by 
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2   Numerical results 
To illustrate the application of the frequency-domain 

model and mainly the stochastic model, results were 
obtained for the oscillating body presented in Fig. 1. It is 
assumed that body 1 is the body with a toroidal shape 
(outside body) and body 2 is the inside body made of two 
parts (one surface-piercing body and a completely 
submerged cylinder) that oscillate together. WAMIT© was 
used to compute the hydrodynamic diffraction and 
radiation coefficients for a set of 102 wave frequencies in 
the range of 0.2119 rad/s to 1.2778 rad/s. The water depth 
is 50m. 

Assuming two scenarios for the power take-off 
equipment: a) it can only be simulated by a damping, LD , 
coefficient, b) it can be simulated by spring, LK , and 
damping coefficients, values were computed for LK  and 

LD  that maximize the average useful power, uP , and thus 
the capture width, cλ .  Several restrictions were also 
imposed on the amplitude of the heave motion of body 1 
and on the amplitude of the relative heave motion between 
body 1 and body 2, 21 ξξ − , for an incident wave with 
amplitude of 1m. 

For scenario a) the capture width, mechanical damping 
coefficient, relative amplitude displacement between bodies 
and absolute amplitude displacements are presented in Figs. 
2 to 6, respectively. They are obtained for different 
displacement restrictions. In all the cases it is assumed that 
the amplitude for the relative displacement between body 1 
and body 2 cannot exceed 5m for an incident wave of 1m 
amplitude. It is also considered that the absolute 
displacement amplitude for body 1 cannot exceed 4, 5, 6, 7 
and 8m. Thus the case “5_6” means that the amplitude for 
the relative displacement cannot exceed 5m and the 
amplitude for the absolute displacement cannot be greater 
than 6m.  It can be observed from Fig. 2 that the device has 
two well defined capture width peaks, one at 5.5s and 
another at 8.7s. The value for the average useful power for 
the second peak (at 8.7s) is closely related to the allowed 
maximum amplitude heave motion for the first body, Fig. 

5. To be able to control this amplitude, appropriate 
mechanical damping coefficients need to be chosen, Fig. 3. 
Note that if there are restrictions on the relative 
displacement between bodies and on the absolute 
displacement of body 1 then there will be restrictions for 
the absolute displacement of body 2, implicitly.  

For scenario b), Figs. 7 to 12 present capture width, 
mechanical damping and spring coefficients, relative 
amplitude displacement and absolute amplitude 
displacements, respectively. Again, in all the cases it is 
assumed that the amplitude for the relative displacement 
between body 1 and body 2 cannot exceed 5m and that the 
absolute displacement amplitude for body 2 cannot exceed 
4, 5 and 8m. As expected, for different maximum 
amplitude displacements of body 1 we get different capture 
widths – for lower values for body 1 maximum absolute 
displacement amplitude we get smaller values for capture 
width – Fig. 7. Indeed, damping and spring coefficients 
must be tuned out to allow for the restrictions to be 
achieved, Figs. 8 and 9. It may be observed from Fig. 11 
that the absolute displacement amplitude for body 1 is 
bounded, as well as the relative displacement amplitude 
between bodies, Fig. 10.   

 
For the stochastic model results are shown for irregular 

waves. Again, the two scenarios for the power take-off 
equipment above explained were considered. The spring 
and damping coefficients that maximize eq. (24), and thus 
the respective capture width, cλ , were computed. Results 
are obtained for the variance of 1ξ  and 2ξ , as well as for 
the variance of the load force, LF . The best LK  and LD  
for each sea state are also shown. The variances for 1ξ ,  

2ξ  and LF  were obtained for sea states with ,sH  the sea 
state significant wave height, equal to 2m. Knowing that 

,2
1ξ

σ  2
2ξ

σ  and 2
LFσ are given by eqs. (16), (17) and (23), 

respectively, it is easily found that the variances are 
proportional to the square of sH , i.e., if we multiply sH  
by 2, the variances will be multiplied by 4, assuming that 

eT , the sea state wave energy period, is kept constant as 
well as LK  and .LD To represent the sea states the 
following frequency spectrum was adopted ([9]): 
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The device behaviour was simulated for wave energy 

periods from 7 to 10s and for a sH  equal to 2m. As 
already mentioned, two different scenarios were considered 
for the power take-off equipment. Figs. 13 to 18 present the 
capture width, mechanical damping, spring coefficient and 
variances for the displacements of body 1 and 2, and load 
force, for both power take-off scenarios, respectively. It can 
be observed that the system has a better performance for 
sea states with smaller wave energy period, Fig. 13. For the 
range of considered wave energy periods the damping 
coefficients for scenario a) are greater than the ones 
computed for scenario b), Fig. 14. The spring coefficients 
computed for scenario b) may be negative or positive, 



depending on the wave energy period, Fig. 15.  For 
scenario a) the curves for the displacement variance of both 
bodies are similar, Fig. 16. However, these curves are 
rather different for scenario b), Fig. 17. The variance for 
the load force converges for both scenarios when the wave 
energy period increases, Fig. 18. As the capture width is 
quite different for eT equal to 7s for the considered 
scenarios, the variance for the load force should also be 
different as it is observed in Fig. 18. The obtained variances 
allow defining Gaussian probability density functions for 
the analyzed parameters. 

 
 

3     Conclusions 
 Frequency-domain and stochastic models were devised 
for an articulated device composed by two concentric 
bodies. Results were obtained for regular and irregular 
waves. The use of the stochastic model for irregular waves 
allows to find variances that define Gaussian probability 
density functions for relevant wave device parameters. It 
was assumed that the power take-off mechanical equipment 
has a linear behaviour and can be modelled by spring and 
damping coefficients. For irregular waves it was assumed 
that the characteristics of the power take-off system are 
constant for the duration of a sea state. As expected, the 
capture widths for the stochastic model are significantly 
lower than the ones obtained for the frequency-domain 
model. In order to have better performances for irregular 
waves, device control will be essential. 
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Figure 1: Panel grid describing the wet surface of the 
concentric axisymmetric oscillating bodies in 
numerical evaluation. 
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Figure 2: Capture width for a 5m maximum 
displacement amplitude between body 1 and body 2 
(for an incident wave of 1m amplitude) and 
maximum absolute displacement amplitude for body 
1 varying between 4m and 8m, assuming that the 
power take-off equipment can only be simulated by a 
damping coefficient LD . 
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Figure 3: Mechanical damping coefficient for a 5m 
maximum displacement amplitude between body 1 
and body 2 (for an incident wave of 1m amplitude) 
and maximum absolute displacement amplitude for 
body 1 varying between 4m and 8m, assuming that 
the power take-off equipment can only be simulated 
by a damping coefficient LD . 
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Figure 4: Relative displacement amplitude between 
body 1 and body 2 (for an incident wave of 1m 
amplitude) for maximum absolute displacement 
amplitude for body 1 varying between 4m and 8m, 
assuming that the power take-off equipment can only 
be simulated by a damping coefficient LD . 
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Figure 5: Absolute displacement amplitude for body 
1 (for an incident wave of 1m amplitude), 
considering a 5m maximum displacement amplitude 
between body 1 and body 2, and an absolute 
displacement amplitude restriction varying between 
4m and 8m, assuming that the power take-off 
equipment can only be simulated by a damping 
coefficient LD . 
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Figure 6: Absolute displacement amplitude for body 
2 (for an incident wave of 1m amplitude), 
considering a 5m maximum displacement amplitude 
between body 1 and body 2, and an absolute 
displacement amplitude restriction for body 1 varying 
between 4m and 8m, assuming that the power take-
off equipment can only be simulated by a damping 
coefficient LD . 
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Figure 7: Capture width for a 5m maximum 
displacement amplitude between body 1 and body 2 
(for an incident wave of 1m amplitude) and different 
maximum absolute displacement amplitudes for body 
1 of 4m, 5m and 8m, assuming that the power take-
off equipment can be simulated by damping and 
spring coefficients LD  and LK . 
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Figure 8: Mechanical damping coefficient for a 5m 
maximum displacement amplitude between body 1 
and body 2 (for an incident wave of 1m amplitude) 
and different maximum absolute displacement 
amplitudes for body 1 of 4m, 5m and 8m, assuming 
that the power take-off equipment can be simulated 
by damping and spring coefficients LD  and LK . 
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Figure 9: Mechanical spring coefficient for a 5m 
maximum displacement amplitude between body 1 
and body 2 (for an incident wave of 1m amplitude) 
and different maximum absolute displacement 
amplitudes for body 1 of 4m, 5m and 8m, assuming 
that the power take-off equipment can be simulated 
by damping and spring coefficients LD  and LK . 
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Figure 10: Relative displacement amplitude between 
body 1 and body 2 (for an incident wave of 1m 
amplitude) for different maximum absolute 
displacement amplitudes for body 1 of 4m, 5m and 
8m, assuming that the power take-off equipment can 
be simulated by damping and spring coefficients LD  
and LK . 
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Figure 11: Absolute displacement amplitude for 
body 1 (for an incident wave of 1m amplitude), 
considering a 5m maximum displacement amplitude 
between body 1 and body 2, and absolute 
displacement amplitude restrictions of 4m, 5m and 
8m, assuming that the power take-off equipment can 
be simulated by damping and spring coefficients LD  
and LK . 
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Figure 12: Absolute displacement amplitude for 
body 2 (for an incident wave of 1m amplitude), 
considering a 5m maximum displacement amplitude 
between body 1 and body 2, and absolute 
displacement amplitude restrictions for body 1 of 4m, 
5m and 8m, assuming that the power take-off 
equipment can be simulated by damping and spring 
coefficients LD  and LK . 
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Figure 13: Capture width for wave energy periods 
from 7 to 10s and sH  equal to 2m, assuming that the 
power take-off equipment can only be simulated by a 
damping coefficient LD (black line) and assuming 
that the power take-off equipment can be simulated 
by both damping and spring coefficients LD  and LK  
(red line). 
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Figure 14: Mechanical damping coefficient for wave 
energy periods from 7 to 10s and sH  equal to 2m, 
assuming that the power take-off equipment can only 
be simulated by a damping coefficient LD (black 
line) and assuming that the power take-off equipment 
can be simulated by both damping and spring 
coefficients LD  and LK  (red line). 
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Figure 15: Mechanical spring coefficient for wave 
energy periods from 7 to 10s and sH  equal to 2m, 
assuming that the power take-off equipment can be 
simulated by both damping and spring coefficients 

LD  and LK . 
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Figure 16: Variances for the displacements of body 1 
and 2, for wave energy periods from 7 to 10s and sH  
equal to 2m, assuming that the power take-off 
equipment can only be simulated by a damping 
coefficient. 
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Figure 17: Variances for the displacements of body 1 
and 2, for wave energy periods from 7 to 10s and sH  
equal to 2m, assuming that the power take-off 
equipment can be simulated by both damping and 
spring coefficients LD  and LK . 

0.E+00

1.E+10

2.E+10

3.E+10

4.E+10

5.E+10

6.E+10

7 8 9 10Te(s)

Lo
ad

 F
or

ce
 V

ar
ia

nc
e 

(N
^2

)

Damping

Spring and
Damping

 
Figure 18: Variance for load force, for wave energy 
periods from 7 to 10s and sH  equal to 2m, assuming 
that the power take-off equipment can only be 
simulated by a damping coefficient LD (black line) 
and assuming that the power take-off equipment can 
be simulated by both damping and spring coefficients 

LD  and LK  (red line). 
 
 
 

 
 

 
 

 

 

 


