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In this study, the power of common goodness-of-fit (GoF) statistics based on the empirical distribu-
tion function (EDF) was simulated for single type-I right-censored data. The statistical power of the
Kolmogorov–Smirnov, Cramér–von Mises and Anderson–Darling statistics was investigated by varying
the null and the alternative distributions, the sample size, the degree of censoring and the significance
level. The exponential, Weibull, log-logistic and log-normal lifetime distributions were considered as they
are among the most frequently distributions used when modelling censored data. We conclude by giving
some general recommendations for testing the distributional assumption of parametric survival models in
homogeneous populations when using EDF-based GoF statistics.
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1. Introduction

Lifetime or failure time data refer to the time until the occurrence of some event of interest. This
type of data emerges frequently in many areas, such as engineering, bioscience and biomedical
sciences. A difficulty frequently associated with this type of data is the presence of some subjects
for which the exact time of failure is unknown, with only a lower (or an upper) lifetime bound
being available. In particular, when data are obtained over a fixed time period, some subjects’
time is only noted as being less than some predetermined value. This type of data is said to be
type-I censored. More formally, a type-I censored sample arises when n subjects are observed for
the limited periods of time L1, L2, . . . , Ln so that an individual’s lifetime Ti ≤ Li (i = 1, . . . , n).
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2 R. Bispo et al.

Such data can be represented by the n pairs of variables (ti, δi), where

ti = min(Ti, Li) and δi =
{

1 if Ti ≤ Li,

0 if Ti > Li.

When L1 = L2 = · · · = Ln, data are said to be single type-I censored.
Lifetime data can be modelled by using either semiparametric or parametric approaches. Para-

metric methods, assuming a specific form for the underlying data distribution, may achieve more
precise inferences [1]. In particular, Efron [2] and Oakes [3] showed that under certain conditions,
parametric survival models can lead to more efficient parameter estimates than a semiparametric
modelling approach. The drawback is that in this framework the used model is assumed to be
correct and estimates, and hence the corresponding variances, depend on the validity of the dis-
tributional assumption and robustness concerns do arise. The assumption of an a priori specific
distribution model may affect the accuracy of the estimation and the inference procedures [4].
Hence, one of the most important aspects when using parametric survival methods is the selection
of the lifetime distribution that one expects to be governing the generation of the data.

Goodness-of-fit (GoF) tests are a formal procedure to test the significance of the discrepancy
between an empirical distribution function (EDF) (Fn(x)) and a particular distribution function
(F0(x)). Let F be a continuous cumulative distribution function. The hypothesis under test are H0 :
F(x) = F0(x) against the alternative H1 : F(x) �= F0(x). There are several types of statistical GoF
tests. The reader can find a broad discussion on these tests in [5]. GoF statistics based on the EDF
such as the Kolmogorov–Smirnov (D), the Cramér–von Mises (W2) and the Anderson–Darling
(A2) are among the most commonly used statistics.

Although these types of procedures are widely used in research, investigations about the power
of these test statistics for censored data are scarce. The power of a GoF statistic is the conditional
probability of correctly rejecting a null distribution given a true alternative distribution. Informa-
tion about the power of GoF statistics is important as it governs the choice of the test to be used
when checking the GoF of the models. In this study, the power of the traditional GoF statistics
D, W2 and A2 is investigated by varying the null and the alternative distributions (completely
specified), the sample size, the significance level and the degree of censoring.

1.1. GoF statistics based on the EDF

1.1.1. Kolmogorov–Smirnov statistic

For single type-I censoring at point L, the Kolmogorov–Smirnov statistic [5–7] is defined by

Dn,p = sup
−∞<x≤L

|F̃n(x) − F0(x)|, (1)

where p = F0(L). Given the order statistics x(1) < x(2) < · · · < x(n), this statistic has the useful
alternative form for computational purposes

Dn,p = max
1<x≤r

[
max

{
i

n
− F0(x(i)), F0(x(i)) − i − 1

n

}]
, (2)

with r representing the number of observations less than or equal to L (i.e. the number of
uncensored observations).

1.1.2. Anderson–Darling statistic

The Anderson–Darling statistic [5,7–9] is, in fact, a modification of the Kolmogorov–Smirnov
test statistic introduced to give a different weight to the distance |F̃n(x) − F0(x)| placing a higher
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weight in the tails of the underlying distribution [10]. This statistic is defined as

A2
n,p = n

∫ L

−∞
[F̃n(x) − F0(x)]2

F0(x)[1 − F0(x)] dF0(x), (3)

with an alternative form

A2
n,p = −

r∑
i=1

(
2i − 1

n

)
[log(1 − F0(x(i))) − log(F0(x(i)))] − 2

r∑
i=1

log(1 − F0(x(i)))

+ n

[
2r

n
−

( r

n

)2 − 1

]
log(1 − F0(L)) + r2

n
log p − nF0(L). (4)

1.1.3. Cramér–von Mises statistic

The Cramér–von Mises statistic [5,7] is defined by

W2
n,p = n

∫ L

−∞
[F̃n(x) − F0(x)]2 dF0(x), (5)

with an alternative form for computational simplification given by

W2
n,p =

r∑
i=1

(
F0(x(i)) − i − 0.5

n

)2

+ r

12n2
− n

3

( r

n
− F0(L)

)3
. (6)

2. Simulation study

To investigate the power of the mentioned GoF statistics, we conducted a Monte Carlo simulation
study by varying the null and the alternative distributions. The tested lifetime models included
the exponential, Weibull, log-logistic and log-normal distributions as these are among the most
frequently used distributions when modelling censored data [1]. The probability density function
for the exponential distribution with parameter ρ (ρ > 0) and mean 1/ρ is defined by

f (t) = ρ exp{−ρt} (t > 0). (7)

For the Weibull distribution with scale parameter ρ (ρ > 0) and shape parameter γ (γ > 0),
the density function is given by

f (t) = γρt(γ−1) exp{−ρtγ } (t > 0). (8)

The log-logistic distribution, with scale ρ (ρ > 0) and shape κ (κ > 0), has density

f (t) = κρκ t(κ−1)

[1 + (ρt)κ ]2
(t > 0). (9)

The density function of a log-normal random variable T with location and scale parameters μ

and σ (σ > 0) can be written as

f (t) = 1√
2πσ t

exp

{
−1

2

(
log t − μ

σ

)2
}

(t > 0). (10)

As alternative lifetime distributions, we used the exponential distribution with a parameter
of 0.3, the Weibull distribution with a shape parameter of 0.5 and a scale parameter of 2,
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4 R. Bispo et al.

the log-logistic distribution with a shape parameter of 2 and a scale parameter of 1.5 and the
log-normal distribution with location 2 and a scale parameter of 0.8. These specific distributions
cover monotonic decreasing and asymmetric unimodal densities. The models exhibit a range of
possible hazard behaviours (constant, monotonic decreasing and asymmetric with positive mode)
covering frequent situations in many study areas. The use of these models enables a systematic
comparison to show the strong and weak points arising from the use of each of the models when
an alternative model would be a better fit.

The power of the GoF tests was estimated by the proportion of the correct rejections of H0.
The power of each statistic was simulated from 10,000 replications. The sample size included the
values from 10 to 100 (with a step of 10) and from 100 to 200 (with a step of 50) to cover a wide
range of possible sizes for data sets. The significance level was fixed at 0.05 and 0.10 and the
proportion of uncensored observations (r/n) was taken between 0.3 and 0.9 (with a step of 0.2).

To find the critical values for the GoF statistics, we simulated 10,000 random samples that were
type-I right censored, for each of the censoring scenarios, from a uniform U(0, 1) population. If F0

represents the cumulative distribution function of the U(0, 1), then for the test statistic Q, critical
values for the upper tail can be found, such as α = P(Q > qQ,n,1−α|F ≡ F0) [11]. To check the
accuracy of the critical values, we tested the data under the null hypothesis.

In this study, we describe the results obtained by simulating censored samples drawn from the
exponential (Case I), the Weibull (Case II), the log-logistic (Case III) and the log-normal (Case
IV) populations. Although we have performed the simulations using both the significance levels
of 0.05 and 0.10, only the results concerning the 0.05 level are presented as a similar behaviour
was observed under both conditions.

3. Results

Table 1 shows the proportions of correct H0 rejections for the significance level of 0.05. As in
this case, the null hypothesis is true, it is expected that the statistics maintain the type-I error rate.
Overall, we found very small differences between the nominal level 0.05 and the actual levels,
which shows a reliable performance of the studied GoF statistics. The highest deviations were
consistently found for smallest sample sizes and/or higher censoring rates.

Table 1. Significance levels under the null hypothesis at a nominal level of 0.05 (ranges reflect variation according to
sample size).

Distribution r/n Dn,p A2
n,p W2

n,p

Exponential 0.90 0.042–0.055 0.048–0.060 0.039–0.055
0.70 0.041–0.052 0.045–0.055 0.038–0.054
0.50 0.041–0.053 0.041–0.054 0.041–0.051
0.30 0.043–0.050 0.042–0.054 0.041–0.051

Weibull 0.90 0.047–0.056 0.045–0.064 0.043–0.055
0.70 0.040–0.055 0.045–0.053 0.037–0.052
0.50 0.044–0.052 0.042–0.050 0.036–0.049
0.30 0.034–0.048 0.042–0.058 0.034–0.046

Log-logistic 0.90 0.043–0.055 0.043-0.058 0.039–0.055
0.70 0.043–0.055 0.043–0.053 0.040–0.051
0.50 0.041–0.050 0.044–0.053 0.042–0.049
0.30 0.029–0.051 0.042–0.056 0.029–0.046

Log-normal 0.90 0.044–0.056 0.043–0.066 0.040–0.055
0.70 0.040–0.053 0.044–0.053 0.040–0.053
0.50 0.041–0.057 0.042–0.053 0.042–0.049
0.30 0.032–0.050 0.040–0.061 0.033–0.047
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Figure 1. Statistical power when testing H0: Weibull (ρ, γ ), H0: log-logistic (ρ, κ) and H0: log-normal (μ, σ) versus
H1: exponential (0.3) as a function of the sample size and the proportion of uncensored observations (r/n) at a 0.05
significance level (◦, Dn,p; �, W2

n,p; +, A2
n,p).

We now describe the results found for each of the previously described scenarios.

Case I We simulated samples from an exponential population and tested the GoF for the
Weibull, log-logistic and log-normal distributions. The obtained results are presented graphically
in Figure 1.

The statistical power of the studied GoF statistics increased, as expected, with the increase
in the sample size. For small sample sizes, namely under 50, the power of all statistics was
almost always under 0.8. Overall, the power decreased with the censoring degree. This effect was
particularly clear under the null log-logistic (Figure 1(e)–(h)) or the null log-normal (Figure 1(i)–
(l)) distributions. The performance of the Cramér–von Mises statistic was greatly affected by the
increase in the proportion of censored observations, which occurs particularly when testing a null
log-normal distribution.

Case II We simulated samples from a Weibull population and tested the GoF for the exponential,
log-logistic and log-normal distributions. Figure 2 shows the results obtained at a 0.05 significance
level.

D
ow

nl
oa

de
d 

by
 [

R
eg

in
a 

B
is

po
] 

at
 0

4:
44

 2
0 

O
ct

ob
er

 2
01

1 



6 R. Bispo et al.

0.
0

0.
4

0.
8

H0 : Exponential (r)

r/n = 0.90 r/n = 0.90 r/n = 0.90

r/n = 0.70 r/n = 0.70 r/n = 0.70

r/n = 0.50 r/n = 0.50 r/n = 0.50

r/n = 0.30 r/n = 0.30 r/n = 0.30

(a)

H0 : Log-logistic (r, k)
(e)

H0 : Log-normal (m, s)
(i)

0.
0

0.
4

0.
8

(b) (f) (j)

0.
0

0.
4

0.
8

(c) (g) (k)

0 50 100 150 200

0.
0

0.
4

0.
8

(d)

0 50 100 150 200

(h)

0 50 100 150 200

Sample size

P
ow

er

(l)

Figure 2. Statistical power when testing H0: exponential (ρ), H0: log-logistic (ρ, κ) and H0: log-normal (μ, σ) versus
H1: Weibull (2, 0.5) as a function of the sample size and the proportion of uncensored observations (r/n) at a 0.05
significance level (◦, Dn,p; �, W2

n,p; +, A2
n,p).

The efficiency of GoF statistics increased with the sample size. The rate of this increase was,
nonetheless, smaller when testing the adjustment to the exponential (Figure 2(a)–(d)) or the
log-logistic (Figure 2(e)–(h)) distribution than when testing the adjustment to the log-normal
distribution (Figure 2(i)–(l)). The power of the studied statistics was clearly smaller for higher
degrees of right censoring, regardless of the null distribution. The Cramér–von Mises statistic
consistently presented the lowest power results. For low proportions of uncensored observations
(Figure 2(d), (h) and (l)) and small sample sizes (n < 50), this statistic did not discriminate the
null from the alternative distribution. High censoring rates (Figure 2(d), (h) and (l)) required large
samples to correctly reject the null distribution in favour of the alternative distribution, particularly
in the case of testing a null exponential distribution (Figure 2(d)).

Case III We simulated samples from a log-logistic population and tested the GoF for the expo-
nential, Weibull and log-normal distributions. Figure 3 shows the results obtained at a 0.05
significance level.

The statistical power of the GoF statistics increased with the sample size. The three statistics
presented very similar patterns for low censoring rates (Figure 3(a), (e) and (i)). In this case
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Figure 3. Statistical power when testing H0: exponential (ρ), H0: Weibull (ρ, γ ) and H0: log-normal (μ, σ) versus
H1: log-logistic (1.5, 2) as a function of the sample size and the proportion of uncensored observations (r/n) at a 0.05
significance level (◦, Dn,p; �, W2

n,p; +, A2
n,p).

(r/n = 0.90), samples with a number of cases higher than 30 gave good power levels, correctly
rejecting the null distribution in favour of the alternative distribution. With the increase of the
censoring rate, the efficiency of statistics clearly decreased. For a proportion of uncensored obser-
vations of only 30%, the studied statistics did not discriminate the exponential (Figure 3(d)) or
the Weibull (Figure 3(h)) distribution from the log-logistic distribution, regardless of the sample
size. In particular, the Cramér-von Mises statistic was again the statistic that was most affected
by the censoring degree with power levels close to zero for r/n = 0.30 (Figure 3(d), (h) and (l)).

Case IV We simulated samples from a log-normal population and tested the GoF for the expo-
nential, Weibull and log-logistic distributions. Figure 4 shows the results obtained at a 0.05
significance level.

Again as expected, power increased with the sample size and decreased when the proportion of
censored observations increased. For relatively low censoring rates (r/n above 0.7), the decreas-
ing effect of the increasing proportion of censored observations on the power test was difficult to
be observed under a null Weibull distribution (Figure 4(e) versus (f)) or a null log-logistic distri-
bution (Figure 4(i) versus (j)). Higher censoring rates imposed a more evident power decrease,
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Figure 4. Statistical power when testing H0: exponential (ρ), H0: Weibull (ρ, γ ) and H0: log-logistic (ρ, κ) versus
H1: log-normal (2, 0.8) as a function of the sample size and the proportion of uncensored observations (r/n) at a 0.05
significance level (◦, Dn,p; �, W2

n,p; +, A2
n,p).

depending, however, on the null distribution. For a null exponential (Figure 4(a)–(d)), the fact that
the power decreased with the increase in the censoring degree is quite evident. For a low censoring
degree (r/n = 0.90), the exponential distribution was correctly rejected for sample sizes above 30
(Figure 4(a)). For higher censoring rates, acceptable power levels required much larger samples.

Differences between the statistics performance were minor when testing the GoF for the Weibull
(Figure 4(e)–(h)) and the log-logistic (Figure 4(i)–(l)) distributions. When testing a null expo-
nential, the Cramér–von Mises statistic had the poorest performance, particularly low, for higher
censoring rates (Figure 4(d)).

4. Concluding remarks

In general, under severe censoring conditions, the Kolmogorov–Smirnov and Anderson–Darling
statistics show higher power levels than the Cramér–von Mises statistic. Hence, it seems advis-
able to avoid the use of this statistic when dealing with type-I right-censored data. In most cases,
sample sizes above 50 are required to reach power levels above 0.80. The degree of right censoring
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influence on the performance of the statistics varies with the sample size. Larger sample sizes
may cushion the negative impact effect that censoring has on the statistics performance. When-
ever possible, a 0.10 level of significance seems to be advisable, especially when dealing with
small sample sizes and higher censoring rates, to increase power levels. In this study, the power
of some classical GoF statistics was established for the situation of F0(x) completely known.
In this case, the sampling distribution of the GoF statistics was independent of the population
probability distribution from which observations were drawn. These statistics are, therefore, said
to be distribution free. However, if F0(x) has unknown parameters, this is no longer true, which
limits the application of the present study results. Hence, further research is needed to extend the
study to the case of complex hypotheses.
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