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Consistency and Efficiency of
Ordinary Least Squares, Maximum
Likelihood, and Three Type II Linear

Regression Models
A Monte-Carlo Simulation Study
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Abstract. Type I linear regression models, which allow for measurement errors only in the criterion variable, are frequently used in
modeling research in psychology and the social sciences. Although there are frequently measurement errors and large natural variation
both in the criterion and predictor variables, type II regression methods that account for these errors are seldom used in these fields of
study. The consistency and efficiency of three type II regression methods (reduced major axis, Kendall’s robust line-fit and Bartlett’s
three-group) were evaluated in comparison to ordinary least squares (OLS) and the maximum likelihood with known variance ratio used
frequently in biometrics and econometrics. When predictors are measured with error, OLS slope estimates are biased toward zero, and
the same bias was observed with both Kendall’s and Bartlett’s methods. Reduced major axis produced consistent estimates even for small
sample sizes, whenever the measurement errors in X are similar in magnitude to measurement errors in Y, but there was a consistent bias
when the measurement error in X was smaller/greater than in Y. Maximum likelihood estimates behaved erroneously for small sample
sizes, but for larger sample sizes they converged to the expected values.
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Introduction

The simple linear regression model is one of the most in-
teresting data analysis tools that a researcher in the social
sciences may use. This type of model allows for the estab-
lishment of a functional linear relationship between one
dependent or criterion variable (Yi) and one independent or
predictor variable (Xi) (i = 1,. . ., n) on a relatively straight-
forward and simple mathematical model:

Yi = b0 + b1Xi + ei (1)

In Model 1, the variation in Yi is explained by a constant
value (b0 – the intercept) plus an additive term that trans-
ports the influence of Xi over Yi translated by the regression
coefficient b1 (slope) and a random term (ei) that is associ-
ated with both measurement error and natural variation of
Y. Inference about b1 allows for conclusions relative to the
statistical significance of the influence of Xi over Yi, as well
as for using the model to estimate mean expected values
for Yi from fixed values of Xi:

Y
^

i = b0 + b1Xi (2)

However, inference about Model 1 and estimation with
Model 2 requires that a set of assumptions must be valid.
First of all, the Xi (i = 1, . . ., n) observations must be mea-
sured without significant error or if the error or natural vari-
ation is present it must be controlled by the researcher to a
range much smaller than the error range in Y. Second, er-
rors associated with measurement and natural variation of
Y must be independent and identically distributed with nor-
mal distribution with zero mean and constant variance, i.e.,
ei ~ IIN(0,s). Finally, the relation between Y and X must be
linear in form. When these assumptions of Model 1 are
valid, the model is said to be a type I linear regression
model. For this type of model, the regression coefficients
are best estimated by ordinary least squares (OLS).

For several research scenarios in the social sciences
(quasi-experimental studies, correlational studies, etc.), the
independent variables are measured and not set by the re-
searcher and so the assumption of perfectly reliable predic-
tors is often difficult to justify (Schuster, 2004). When pre-
dictor variables are plagued with measurement errors and
natural variation that is not controlled by the researcher the
slope coefficients obtained by OLS are biased toward zero
(Cheng & Van Ness, 1999; Fuller, 1987; Isaac, 1970; Ray-

DOI 10.1027/1614-2241.3.2.81
© Hogrefe & Huber Publishers Methodology 2007; Vol. 3(2):81–88

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório do ISPA

https://core.ac.uk/display/70650547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ner, 1985; Riggs, Guarnieri, & Addelman, 1978), introduce
imprecision in the statistical inference process, and reduce
the power of the tests. Linear regression models, where
both the dependent and independent variables are subject
to error and conjointly normally distributed, are designated
as type II linear regression (Sokal & Rohlf, 1995) or as
errors-in-variables models (Cheng & Van Ness, 1999;
Fuller, 1987). Although the problems associated with mea-
surement error in the independent variables are not new in
several research fields, for example in biology (Kendall &
Stuart, 1961; Ricker, 1973; Riggs et al., 1978), agronomy
(Fuller, 1987), economy (Li, 2002), and biomedicine (Car-
rol & Ruppert, 1996), they are seldom acknowledged, both
in these fields of study (Quinn & Keough, 2002) and in the
social sciences and psychology. A search conducted in the
PsychARTICLES and PsychINFO databases (as of March
25, 2006) with keywords model II regression or errors-in-
variables returned only a few significant matches for the
last 15 years (Jaccard & Wan, 1995; Klauer, Draine, &
Greenwald, 1998; Miller, 2000; Schuster, 2004). This is not
to say that the problems associated with errors-in-variables
in the psychology and social sciences fields have not been
previously acknowledged. Isaac (1970) pointed to a partic-
ular misuse of the OLS regression analysis in situations
involving linear structural relations when both predictor
and criterion variables are measured with errors. He dis-
cussed the fact that failure to consider the X error-variabil-
ity can distort the estimates of the linear parameter b1, typ-
ically by underestimating it. He then expands and discusses
the application of Kendall and Stuart’s (1961) unbiased
slope estimators to psychology and social sciences research
scenarios when error variances in Y, X, Y and X, and only
the error-variance ratios are known.

When errors-in-variables are present, it is common prac-
tice in psychology and the social sciences to model these
variables as latent constructs that define the observed vari-
ables (indicators) measured with error (Jöreskog & Sör-
bom, 1982; Rock, Werts, Linn, & Jöreskog, 1977; Weston
& Gore, 2006). Regression paths between the constructs
are then analyzed by structural equation modeling (SEM)
methods. However, although it is possible to have single
indicator constructs, its use is quite controversial, and mul-
tiple (three or more) indicator constructs are normally re-
quired (Bollen, 1989; Jaccard & Wan, 1995; Marsh, Hau,
Balla, & Grayson, 1998). Additionally, constrains on error-
variances must be imposed to identify the model, which
requires previous knowledge of the phenomenon under
study. This preknowledge constitutes a severe limitation to
the application of structural equation modeling to the er-
rors-in-variables problem; since it is not always possible to
have several indicators defining a latent construct; nor to
know in advance construct reliability and/or the variance
of measurement errors and latent constructs. Simultaneous-
ly, the use of type II regression models has been the subject
of some research. For example, Klauer et al. (1998) pro-
posed an error-in-variables variant of the regression meth-
od that accommodated measurement-error in the predictor

of subliminal perception. However, Miller (2000), present-
ed simulation analyses of the instrumental variable method
and the modified error-in-variables method of Klauer et al.
(1998) for detecting unconscious cognition and argued that
both methods exhibited statistical biases and neither pro-
vided valid statistical tests for the non-zero intercept that
is required as a proof for unconscious cognition. The esti-
mation of regression coefficients when predictors are mea-
sured with error is still controversial and several methods
for the estimation of the regression coefficients are avail-
able (Freedman, Fainberg, Kipnis, Midthune, & Carroll,
2004; Klauer et al., 1998; Kulathinal, Kuulasmaa, & Gas-
bara, 2002; Miller, 2000; Quinn & Keough, 2002; Rayner,
1985; Ricker, 1984; Ryu, 2004; Sokal & Rohlf, 1995).
However, these methods are specific for different types of
data, errors-in-variables, or specific data distribution as-
sumptions, and definitive recommendations are difficult to
make. This is, in part, because of the lack of information
on the efficiency, consistency, and distributional character-
istics of the different estimators as well as of the robustness
of these estimators (Carrol & Ruppert, 1996; Cheng & Van
Ness, 1999; Miller, 2000; Sokal & Rohlf, 1995). While the
distributional properties of OLS estimators are well known,
making it possible to demonstrate theoretical biases in their
estimates, for most type II models the distributional prop-
erties of sample estimators are not known and, thus, sam-
pling distributions of estimates are best, and easily, obtain-
able by simulation methods.

In this paper, building on Fuller (1987), Sokal and Rohlf
(1995), and Cheng and Van Ness’s (1999) seminal works,
a set of Monte Carlo simulation studies are presented to
evaluate the efficiency and consistency of the slope and
intercept estimators for three type II linear regression mod-
els estimators (reduced major axis [RMA], Kendall’s ro-
bust method, Bartlett’s three groups) as compared with
OLS and the maximum likelihood with known error-vari-
ances ratio estimators.

Type II Linear Regression or
“Error-in-Variables” Model

Suppose one is interested in modeling the linear relation-
ship between the criterion (vi) and predictor (xi) variables,
but we are not able to observe these variables without mea-
surement error. That is, one measures (Yi, Xi), which are the
true (latent) unobserved variables (vi,xi) (i = 1, . . ., n) plus
additive measurement errors (hi, di):

Yi = vi + hi (3)

and

Xi = xi + di (4)

Assume that hi ~ N (0, eh), di ~ N(0, ed) and that the error
terms are independent from each other and from the unob-
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served variables. Thus, the true linear relationship between
vi and xi may be written as

vi = b0 + b1xi + ®i (5)

The term ®i stands for the equation error, and reflects the
fact that vi and xi may not be perfectly related if there are
variables other than xi that may also be responsible for the
variation in vi . Although failure to account for ®i may result
in overestimation or underestimation of the true regression
slope (Carrol & Ruppert, 1996), I assume, for simplicity
and without loss of generality, that there is no equation er-
ror in the linear relationship between vi and xi (that is ®i =
0). In this case the model is known as the no-equation error
model (Cheng & Van Ness, 1999) and can be written as

vi = b0 + b1xi (6)

The analysis objective is to estimate the regression coeffi-
cients b0 and b1 from the measured (Yi, Xi), so, by substitut-
ing (3) and (4) into (6), the model can be written as

Yi – hi = b0 + b1(Xi – di) (7)

Since h and d are independent, we may condense them and
write Model 7 as

Yi = b0 + b1Xi + ei (8)

where ei = hi – b1di and ei ~ N (0,sh + β1
2sd). Model 8 is

known as the error-in-variables model (EVM), and it has
been widely discussed in the literature (Carrol, Ruppert, &
Stefanski, 1995; Cheng & Van Ness, 1999; Fuller, 1987;
Isaac, 1970). If X is a set of unknown constants, then the
model is called the functional error-in-variables model; if
X is a random variable, the model is called the structural
error-in-variables model (Cheng & Van Ness, 1999; Fuller,
1987). At first sight, the EVM may look like the simple
linear, or type I, regression model, but this only holds for
the trivial case (b1 = 0) or when d = 0. For the other scenar-
ios, X is correlated with e, as Cov(X, e) = –b1σδ

2, and if one
attempts to use OLS to estimate the regression coefficients,
then one obtains inconsistent estimates biased toward 0
(Cheng & Van Ness, 1999; Fuller, 1987; Isaac, 1970; Ken-
dall & Stuart, 1961). That is, one obtains biased estimates
of the true slope that do not converge, in probability, to the
true population slope as the sample size (n) tends to infinity.

Monte-Carlo Simulations

Error-free data for x (representing the true unobserved pre-
dictor population) was generated with the RndNormal(s)
function (with m = 0 and s = 1) from STATISTICA 7 (Stat-
Soft, Tulsa, OK) and scaled to a range of –6 to 6 for ~95%
of the values. v data (representing the true unobserved cri-
terion population) was generated as

v = 1 + 1x (9)

Random normally distributed error terms with zero mean
and fixed standard deviation were then added to both the
predictor and criterion to mimic measurement and natural
variation errors. The simulated “observed” values of Xi and
Yi were given by:

Xi = xi + di with di ~ N (0,sd) (10)

Yi = vi + hi with hi ~ N (0,sh) (11)

where di and hi were generated with the RndNormal(sd)
and RndNormal(sh) functions, respectively, are indepen-
dently normally distributed and independent of Xi and Yi.
The degree of error in the predictors used in the simulations
is estimated by the reliability ratio kx = Var(x)/Var(X)
(Cheng & Van Ness, 1999) for comparison with traditional
psychological constructs reliability.

A total of 10,000 samples were interactively generated
from the above models (9–11), with sample size (n) 4, 6,
8, . . ., 50 and then 100, 200, 300, and 400 following the
observation of Jaccard and Wan (1995) that the median
sample size across studies in the psychology sciences is
around 175, with large sample sizes around 400. Slope and
intercept estimates for each of the 10,000 samples were
calculated with the different models’ estimators described
below and data is given as averages and the 2.5 and 97.5
percentiles of the calculated estimates. Choice of models
tested was based on their wide application in other fields,
namely in econometry and biometry, as well as its easy
mathematical calculations, which may be advantageous for
researchers in psychology and the social sciences. Validity
of the software code1 implemented in  STATISTICA
VBASIC (STATsoft, Tulsa, OK) to perform the simulation
and data calculations was assessed with the reference data
sets given in Cheng and Van Ness (1999, p. 25–26) and
Sokal and Rohlf (1995, p. 546–549).

Slope and Intercept Estimators

The OLS, estimators for the slope and intercept in the sim-
ple linear regression model are respectively:

β
^

1 =
∑
i=1

n

(Yi−Y
__

)(Xi−X
__

)

∑
i=1

n

(Xi−X
__

)2

=
SXY

SXX
(12)

β
^

0 = Y
__

– β
^

1X
__

(13)

These estimators have been extensively studied and are
well known to produce unbiased estimates when predictors
are error-free. If predictors are measured with error; slope
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estimates are biased toward zero. However, if a predictor’s
reliability is known (which happens frequently with psy-
chological predictors), unbiased slope estimates are easily
obtained as β̂1

∗ = b1/kx (Cheng & Van Ness, 1999; Fuller,
1987).

For the RMA or geometric mean type II model, the es-
timators  for  the  slope and  intercept  are respectively
(Ricker, 1984):

β
^

0RMA
= Y

__
−β

^
1RMA

X
__

(15)

These estimators are a particularization of the major axis
method and give the same estimates if both variables are in
the same units of measurement. If variables have different
units of measurement, as is frequently the case in the social
sciences, the major axis slope estimates are meaningless
and the RMA technique should be used (Legendre & Le-
gendre, 1988; Rayner, 1985). The RMA slope estimator is
simply the ratio of standard deviations, affected by the sign
of the covariance of both variables. Thus, its independence
from whatever conjoint distribution X and Y may show,
which has drawn some early criticism of this method (Joli-
couer, 1975). However, as we shall see, it performs quite
well when errors in both predictor and criterion variables
are of the same magnitude.

The Theil (1950) or Kendall’s robust method requires
the ranking of (Xi,Yi) data by the magnitude of Xi and the
calculation of the n(n–1)/2 slopes for adjacent data points
(Kendall & Gibbons, 1990):

Sj+1,j =
Yj+1−Yj

Xj+1−Xj

(16)

The slope estimator is the median of Sj+1,j (j = 1, . . . , n–1):

β
^

1K
= Med(Sj+1,j) (17)

while the intercept estimator is

β
^

0K
= Med(ai = Yi – β

^
1K

Xi) (18)

For the Bartlett’s three groups (Sokal & Rohlf, 1995) or
Wald method (Pakes, 1982), the data, after ranking by order
of X, is divided into three equal-sized groups (if that is not
possible, than the 1st and 3rd group must have the same

number of observations). The slope and intercept are esti-
mated from the (X, Y) data in Group 3 and Group 1 as:

β
^

1B
=

Y
__

3−Y
__

1

X
__

3−X
__

1

(19)

β
^

0B
= Y

__
– β

^
1BX

__
(20)

Ranking of data using the X predictor measured with error
has raised concerns about bias in slope estimates (Cheng
& Van Ness, 1999; Kuhry & Marcus, 1977).

In the maximum likelihood method (ML) for the errors-
in-variables model with known error-variances ratio l =
σϑ

2/σδ
2, the slope and intercept estimators are (Fuller, 1987;

Kendall & Stuart, 1961):

β1ML
=

SYY−λSXX + √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(SXX−λSYY)2 + 4SXY
2

2SXY
(21)

β
^

0ML
= Y

__
– β

^
1ML

X
__

(22)

The (21) estimator is also the Cheng and Van Ness (1999,
p. 85–86) modified least squares estimator (which produce
the same estimates as maximum likelihood, but without
requiring the normality assumption), as well as the Ryu
(2004) rectangular regression estimator.

Rayner (1985) showed that OLS, RMA, and ML meth-
ods all are special cases of the general structural relation-
ship and discuss its application whenever measurement er-
ror variances are either known, the ratio known or both
unknown.

Results

Slope and intercept estimates were obtained for 10,000 rep-
licates of different sample sizes, using the estimators of the
three type II regression models, as well as, for comparative
proposes, OLS and ML. Figure 1 shows the average, percen-
tile 2.5 (lower-bound) and percentile 97.5 (upper bound) for
the 10,000 estimates of the intercept and slope obtained with
Y affected by random normal errors with m = 0 and mh = 2 to
mimic measurement errors in the criterion variable only.
When only Y is affected by measurement errors normally
distributed with 0 mean and X is perfectly reliable (kx = 1),
OLS are the best linear unbiased estimators. Both Bartlett and
Kendall methods produced nonbiased estimates; however,
these estimators are less efficient than OLS as they produce
estimates with larger variance than the OLS estimators. The
RMA slope estimator consistently overestimated the slope,
while the intercept was underestimated. Finally, the ML esti-
mators are efficient only for large samples, especially as com-
pared with the OLS estimators.

If both Y and X are affected by random normal errors
with 0 mean and equal constant variance (sh = sd = 2; kx =
0.6) (Figure 2), the OLS, Bartlett, and Kendall slope esti-
mators underestimated the true slope, while the intercept

(14)
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Figure 1. Intercept and slope estimates for 10,000 samples with different sample size (n) ranging from 4 to 400 obtained
with OLS, Bartlett three groups method (Bart), reduced major axis (RMA), Kendall robust method (Ken), and maximum
likelihood (ML) fitted to (Y,X) data generated as Y = v + h with h ~ N(0, 2) and X = x + d with d ~ N(0, 0), where v = 1
+ 1x as described in the “Monte Carlo Simulations” section. Reliability ratio for X is kx = 1. Data are shown as the mean
estimates (circles) with the 95% percentile interval (gray area). For the ML method d ~ N(0, 0.001). For clarity’s sake,
data from sample sizes 50 to 100 have been omitted.

Figure 2. Intercept and slope estimates for 10,000 samples with different sample size (n) ranging from 4 to 400 obtained
with OLS, Bartlett’s three groups method (Bart), reduced major axis (RMA), Kendall’s robust method (Ken), and maxi-
mum likelihood (ML) fitted to (Y,X) data generated as Y = v + h with h ~ N(0, 2) and X = x + d with d ~ N(0, 2), where
v = 1 + 1x as described in the “Monte Carlo Simulations” section. Reliability ratio for X is kx = 0.6. Data are shown as
the mean estimates (circles) with the 95% percentile interval (gray area). For clarity’s sake, data from sample sizes 50 to
100 have been omitted.
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estimator overestimated the true intercept. Both the RMA
and ML estimates are unbiased, with the RMA estimators
being more efficient than the ML estimators, as well as
more robust to small sample sizes.

If both Y and X are affected by random normal errors
with 0 mean and constant variance but the variation in X
(sd = 4; kx = 0.4) is greater than the variation in Y (sh = 2)
(in this simulation, twice as great), OLS, Bartlett, and Ken-
dall slope estimates are biased toward 0 (Figure 3). RMA
tends to converge to the true population slope, but when
errors in magnitude in X are greater than in Y, this estimator
consistently underestimates the true population slope, and
this underestimation increases as the magnitude of the error
ratio of X to Y increases (data not shown). The best estima-
tor for the slope is the ML estimator; however, it produces
unbiased estimates only for moderate large samples, behav-
ing erratically for small sample sizes.

Discussion

Slope estimates from OLS are biased toward 0, underestimat-
ing the slope if the true slope is positive; or overestimating
the slope if the true slope is negative, when the X is measured
with error and this has been well documented (Cheng & Van
Ness, 1999; Fuller, 1987; Isaac, 1970; Morton-Jones & He-

derson, 2000; Ricker, 1984; Schuster, 2004; Sokal & Rohlf,
1995). In addition, the bias increases as measurement error in
X increases. Failure to acknowledge bias in OLS when pre-
dictors are measured with error is quite frequent in psychol-
ogy and the social sciences. This may result in increased type
II error rates regarding inference about the regression slope,
deeming as nonsignificant a linear relation that, indeed, is
present in the population under study. Type II regression
models have been proposed to overcome bias in the linear
slope estimation process when predictors are measured with
error. However, results presented in this paper confirm early
observations that Kendall’s and Bartlett’s slope estimates also
show bias toward 0, with lower efficiency than OLS (Ricker,
1973, 1984). Bartlett’s three-group method was reported to
produce unbiased estimates, but only when ranking of data is
done on x rather than on X (Cheng & Van Ness, 1999). Un-
fortunately, practical situations where x is known are rare and,
thus, ranking has to be done on X for most research scenarios
in the psychological and social sciences. If ranking is done
on X, Bartlett’s slope estimator shows a bias similar to the
OLS slope estimator (Pakes, 1982). Both Bartlett’s and Ken-
dall’s methods perform poorly for small kx, while the RMA
method is efficient and consistent if X and Y are measured
with equal reliabilities. ML with known error-variances ratio
is not affected by reliability but estimates are consistent only
for large sample sizes. Forkx ≈ 1, OLS estimators are the most
efficient and, if kx is known, b1* = b1/kx is an unbiased esti-

Figure 3. Intercept and slope estimates for 10,000 samples with different sample size (n) ranging from 4 to 400 obtained
with OLS, Bartlett’s three groups method (Bart), reduced major axis (RMA), Kendall’s robust method (Ken), and maxi-
mum likelihood (ML) fitted to (Y,X) data generated as Y = v + h with h ~ N(0, 2) and X = x + d with d ~ N(0, 4), where
v = 1 + 1x as described in the “Monte Carlo Simulations” section. Reliability ratio for X is kx = 0.4. Data are shown as
the mean estimates (circles) with the 95% percentile interval (gray area). For clarity’s sake, data from sample sizes 50 to
100 have been omitted.
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mator for the OLS slope (see Cheng & Van Ness, 1999;
Fuller, 1987). If errors in X are smaller than errors in Y, the
RMA slope estimator overestimates the true slope, while if
the errors in X are greater than the errors in Y, the slope is
underestimated if the true slope being estimated is positive.
Otherwise, one will obtain underestimates or overestimates
of the true negative slope whenever errors in X are larger or
smaller, respectively, than errors in Y. For the particular case
for which errors in X and Y are of the same magnitude, as may
be the case when standardized measures are used (a common
practice in psychology and the social sciences), the RMA
slope estimator gives consistent and efficient estimates even
for moderate sample sizes (> 15) (see also Ricker, 1984; So-
kal & Rohlf, 1995). Finally, ML estimates with known l =
σϑ

2/σδ
2 give erroneous estimates for small sample sizes, which,

however, converge to the true population value for larger
sample sizes (> 30). Consistency and efficiency of ML esti-
mators are inversely related to the error magnitude in X.

Consistency of Bartlett’s and Kendall’s methods is as
poor as OLS when the variables are affected by significant
measurement errors. When X is not affected by measure-
ment errors, Bartlett’s and Kendall’s methods are consistent
but less efficient than OLS, while the RMA estimators pro-
duce under- or overestimates. When measurement errors in
X are of the same magnitude as errors in Y, the RMA esti-
mators are consistent and efficient especially for small to
moderate samples sizes, as compared with other methods.
Thus, if one can assume that measurement errors in X and
Y are of the same magnitude, the RMA method is quite easy
to implement and gives efficient and consistent estimates
even for relative small sample sizes. ML is the method that
produces consistent estimates in every scenario considered
for the measurement errors in X and Y, although its effi-
ciency is penalized by the magnitude of the errors and, es-
pecially, by small sample sizes for which estimates are un-
reliable and erratic. However, its calculations requires
knowledge of l = σϑ

2/σδ
2 which, in turn, requires a set of

replicated measurements of every Yi and Xi to estimate σϑ
2

and σδ
2, respectively (Fuller, 1987; Morton-Jones & Heder-

son, 2000) or prior knowledge, or calibration, of the phe-
nomenon under study (Carrol & Ruppert, 1996; Morton-
Jones & Hederson, 2000; Schuster, 2004). While replicated
measurements are common in experimental and/or quasi-
experimental studies, they are improbable for correlational
studies and, thus, prior knowledge of l is a limitation to the
applicability of this method for these types of studies. An
alternative to type II regression methods is SEM, which
allows for the modeling of structural relations between la-
tent variables or constructs accessed by multiple observed
indicators. SEM methods are used extensively in psychol-
ogy and the social sciences. However, for most research
scenarios requiring regression analysis, there are no multi-
ple observed indicators per latent construct, nor prior
knowledge of the measurement-error variances required to
make the SEM model identifiable. For ML, it suffices to
know the error variances ratio; thus, ML is applicable to a

larger set of research scenarios than SEM. Researchers
dealing with measurement errors in both predictor and cri-
terion variables should consider the use of the RMA regres-
sion and/or ML (with replicated measurements, if possible)
to remove bias from the linear slope estimates.
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