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Mozambique tilapia Oreochromis mossambicus were housed individually during 7 days in

a continuous flow-trough respirometry system and daily exposed to one of three treatments: (1)

a series of knocks on the side of the aquarium, (2) a series of photo-flashes and (3) control

group. Exposure to photo-flashes did not change locomotor activity but decreased both night-

time and daytime oxygen consumption throughout the experiment. Knocking induced a short-

lived increase in locomotor activity and tended to increase oxygen consumption, but this latter

effect was not significant. Night-time oxygen consumption was not affected by knocking

exposure. Cortisol levels assayed from fish-holding water collected at the end of the experiment

were significantly lower in subjects exposed to photo-flashes than in subjects exposed to knocks

or controls. Males did not respond differently than females to the treatments in any of the

measurements taken. In summary, the data reported here suggest that exposure to repetitive

photo-flashes, but not knocking, suppressed normal energy metabolism and cortisol levels.

These effects were present hours to a half day after exposure to the flashes. # 2009 The Authors
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stress.

INTRODUCTION

Many regular events, such as reproduction or seasonal changes, challenge the
individual’s ability to maintain homeostasis. As a response to these challenges,
an individual may activate a specific set of neural, neuroendocrine and neuro-
immune mechanisms (Selye, 1936; McEwen, 1998). Often this response includes
an acute increase in glucocorticoid levels, and the metabolic and behavioural
effects of these steroids are usually effective for the animal to release itself from
the stressor or to adapt to the stressor. In case the animal is not able to adapt
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to the stressor, for example when the occurrence of the stressor is unpredict-
able, the resulting chronically increased glucocorticoid levels may lead to
pathology (McEwen, 1998; McEwen & Wingfield, 2003). Therefore, prevention
of chronic stress by monitoring possible sources of stressors is of vital impor-
tance for the well-being of animals held in captivity.
Recent discoveries on pain mechanisms in fishes (Sneddon, 2002; Sneddon

et al., 2003) and the increasing awareness that fishes are able to execute com-
plex cognitive programmes (Bshary et al., 2002; Chandroo et al., 2004) have
increased the attention made to issues of welfare in fishes (Braithwaite &
Huntingford, 2004). In public aquaria, visitors expect to see healthy and natu-
rally behaving fishes. Many activities of the visitors, however, can potentially
act as stressors for the fishes. Despite the potential role of visitors as a source
of stressors for fishes in public aquaria, surprisingly little research has been
carried out on their actual effects on fish behaviour and physiology.
Stressors have been defined as actions that result in impediment of normal

behavioural activity and an increase in glucocorticoid levels (Oidtmann &
Hoffmann, 2001; Barton, 2002). In fishes for example, catch and release
angling has been shown to impair locomotor activity, e.g. largemouth bass
Micropterus salmoides (Lac�epède) (Cooke et al., 2000), while confinement has
been shown to result in a rise in the main teleost glucocorticoid cortisol (Vijayan
et al., 1997; Arends et al., 1999; Haddy & Pankhurst, 1999). Furthermore,
changes in cortisol levels after exposure to a stressor have been shown to mod-
ulate energy metabolism and behavioural activity in fishes (Vijayan et al., 1997;
Arends, 1999; Barton, 2002; Sunny et al., 2002).
The two main sources of putative stressors commonly present in public

aquaria are sounds and visual stimuli. Sounds may increase cortisol levels
as has been found for playback of white noise in the goldfish Carassius aur-
atus (L.) (Smith et al., 2004a) and playback of intermittent noise (recorded
from below a ship) but not Gaussian noise in perch Perca fluviatilis L., the
common carp Cyprinus carpio L. and the gudgeon Gobio gobio (L.) (Wysocki
et al., 2006). Visual stimuli may mask or mimic biologically relevant
signals for fishes and thus hinder normal behavioural activity in these envi-
ronments (Kratochvil & Schwammer, 1997). Therefore, fluctuating noise and
vibrations produced by visitors, such as knocking on aquaria walls and tak-
ing pictures with flashes, have been highlighted as putative stressors for
fishes in the aquaria. In this study, the effects of such putative stressors were
investigated.
As a study model, the cichlid fish Oreochromis mossambicus (Peters) was cho-

sen since in this species metabolism and stress physiology has been well studied
(Job, 1969; Kutty, 1972; van Ginneken et al., 1996, 1997; Vijayan et al., 1997;
Ros et al., 2004, 2006). As putative stressors, either a series of knocks on the
side of the aquarium or a series of photo-flashes were used. These treatments
were compared with a treatment in which individuals were neither exposed
to knocks nor to flashes. The aim of the experiment was to query both
short-lived and long-lived consequences of these stimuli on activity and energy
metabolism. Cortisol levels were measured at the end of the experiment using
the non-invasive fish-holding water method.
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MATERIALS AND METHODS

ANIMAL HANDLING

Experimental fish were selected from a stock of individuals kept in the fish housing
facilities of the Instituto Superior de Psicologia Aplicada (Lisbon, Portugal). In the
stock tanks (750–800 l), fish were fed once every other day with commercial flakes
for tropical fishes (Tropical Flake, Astra; http://astra-aquaria.de/index.php?id=17).
During the experiment, fish were fed daily proportionally to their body mass (4�5 g
kg�0�8 day�1 of pellet food; Ros et al., 2004). In the respirometry boxes, food was
applied through a small opening in the lid of the respirometry box that was closed with
a rubber stopper. Food was given at 0900 hours and 90 min after feeding the water
flow was increased to wash out uneaten food that could contaminate the oxygen
measurements.

Stock aquaria were equipped with a bottom filter of sand. In the respirometry sys-
tem, water was continuously filtered over charcoal (Eheim; www.eheim.de) and passed
a UV lamp. All water was gradually renewed and was continuously aerated (turnover
time c. 1 week). The water temperature was kept at 26° C, range �1° C, and the pho-
toperiod regime used was 12L:12D.

EXPERIMENTAL PROCEDURES

In total, 54 fish were selected to be subjected to one of three experimental treatments:
(1) ‘knock’ treatment, fish received a series of knocks daily on the side of the aquarium;
(2) ‘flash’ treatment, fish received a series of photo-flashes daily and (3) control group,
fish were neither subjected to knocks nor to flashes. These treatments were given in
three trials, where each trial consisted of six fish in individual compartments that under-
went the same treatment. Furthermore, the treatments of consecutive trials were alter-
nated to correct for any order effect. Due to size constraints of the stock groups, eight
juvenile fish were used in the experiment. These were later discarded from the analysis
resulting in a final sample size of 46 individuals (‘knock’ group: six males and eight fe-
males; flash group: seven males and 10 females; control: nine males and six females).

On day 1 of each trial, six fish from the stock were caught and weighed (M), and
individually housed in 12 l aquaria, visually isolated from other fish. Fish were kept
in isolation for 7 days before the start of the experiment. This isolation prior to exper-
imentation has been standard laboratory procedure to normalize the body condition of
the experimental fish and to reduce carry-over effects of prior experience (Ros et al.,
2004; Oliveira et al., 2005).

At day 8, fish were weighed and individually housed in 3�5 l respirometry boxes
(a description of the respirometry system is given, Ros et al., 2004). Neighbours were
visually isolated by a black opaque division placed between boxes.

From day 9 until day 16 of each trial, animals were exposed to their assigned stimuli.
In order to apply the knocking stimulus, a 150 mm iron bolt of 88 g with a rubber stop
was hung on a hinge 200 mm above each aquarium. By operating a lever from behind
a curtain, all hinges were quickly lowered and each bolt fell with the rubber stop on top
of each aquarium, resulting in a simultaneous knock. Qualitative comparison of spec-
trograms confirmed that this resulted in a sound that was comparable to a human made
knock on the aquarium with most energy in frequencies, <500 Hz. Oreochromis mos-
sambicus produces courtship sounds that have most power in this range (Amorim
et al., 2003). In each trial, two knocks (c. 2 s interval between knocks) were given every
3 min for 30 min, which corresponds to 20 knocks in the period in which the stress was
given.

Flashes were generated by means of a digital camera (Canon Power Shot G1;
www.canon.com). Flashes were shot at different angles. This was done in order to pre-
vent the fish from habituating. During the experience, 15 flashes were shot in each 3
min, which corresponded to 150 flashes in the period in which the stress was given.
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The stimulus intensity of flashes and knocks was chosen based on an estimation of
the exposure to these stimuli of fishes in a public aquarium in Lisbon (Lisbon Ocean-
arium during the high season; I. Marques da Silva & R. F. Oliveira, unpubl. data). The
stimulus intensity value was doubled because the public aquarium has an active policy
of not allowing the use of flashes to take pictures and visitors are instructed not to
knock on aquaria walls. Research at the Aquarium House of the Tiergarten Schön-
brunn, Vienna, Austria, has shown that such a policy approximately halves the amount
of stimulation (Kratochvil & Schwammer, 1997).

CALORIMETRIC SYSTEM AND OXYGEN CONSUMPTION
MEASUREMENTS

Energy metabolism was measured using an open flow-through respirometry system
(Cech, 1990), designed to record oxygen concentrations sampled from eight different
respirometry boxes at constant intervals (Ros et al., 2004). Water was kept at a constant
temperature of 26° C (range �1° C), filtered over charcoal (Eheim filter) and oxygen-
ated with an air stone. Each respirometry box was made from flat, optically clear 12
mm thick perspex (outside dimensions 154 � 154 � 262 mm). Between boxes, a black
partition was placed in order to visually isolate neighbouring fishes. A respirometry box
containing no fish was used as a blank control to correct for possible background con-
sumption of oxygen by micro-organisms living in the system.

Automated continuous-flow sampling allowed oxygen consumption of several respi-
rometry boxes to be measured with a single sensor (CellOx� fitted with stirrer type
R2 300 in a through flow cell type D201; WTW GmbH; www.wtw.com). The output
of the oxygen meter (Oxi 197; WTW GmbH) was logged to a computer that allowed
automated online acquisition of the data for later analysis.

The treatments were repeated four times per day. During the first three treatment ses-
sions: from 1100 to 1200 hours, 1400 to 1500 hours and 1600 to 1700 hours, oxygen
consumption and locomotor activity were measured. For fine scale measurements of
oxygen consumption during the treatments, the valves of the respirometry system were
programmed to sample water of two fish, simultaneously resulting in one recording of
the treatment per fish per day. For these two fish, oxygen consumption measurements
were started 0�5 h pre-exposure and continued 0�5 h during exposure to the experimen-
tal stimulation [according to their group assignment: flashes, knocks or none (control)].
To correct for possible effects of time of day on the oxygen consumption measure-
ments, individuals were sampled during different sessions on subsequent days. During
the last session, at 1800–1900 hours, the animals were exposed to their assigned stimuli
but without measuring oxygen consumption and locomotor activity. During the dark
phase (night-time), which started at 2100 hours and lasted until 0800 hours, the valves
of the respirometry system were programmed to sample oxygen consumption of all
animals.

Metabolic rates were calculated following Cech (1990). The commonly used allome-
tric factor of 0�8 was used to correct oxygen consumption rates (R) for M (RM�0�8 mmol
O2 h�1 kg�0�8) (Job, 1969; Clarke & Johnston, 1999; O. mossambicus: Ros et al., 2004).
In order to assess the effect of the putative stressors, routine metabolic rates were cal-
culated from measurements logged 15 min before and during exposing the animals to
the stimuli and during the dark phase (night-time) when locomotor activity was zero
(Ros et al., 2004). There was no immediate effect of stressor treatments on oxygen con-
sumption. Therefore, to keep measurement periods comparable to the activity measure-
ments, oxygen consumption was calculated over the last 15 min of the stimulus period.

MEASUREMENT OF LOCOMOTOR ACTIVITY

In order not to disturb the fish, observations and application of the treatment were
carried out from behind a blind c. 500 mm in front of the respirometry boxes. Loco-
motor activity was recorded from the last 15 min of each experimental period (before
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and during applying the assigned stimuli) every second day. Under each respirometry
box, a grid was drawn with one horizontal line over the length and three lines over
the width of the respirometry box, resulting in eight equal partitions (c. 3800 mm2

each). As a measure of locomotor activity, the number of times the tip of the snout
of the observed individual passed one of the gridlines was recorded.

CORTISOL MEASUREMENT

As a non-invasive alternative to blood sampling from fish, cortisol was measured
from fish-holding water (Scott et al., 2001; Hirschenhauser et al., 2002; methods adap-
ted from Hirschenhauser et al., 2004). The sample procedure involved some handling,
which is likely to be stressful for the fish (collecting of the water and catching of the
fish). Therefore, in order not to interfere with the oxygen consumption measurements,
fish-holding water was sampled at the last day of the trial.

On the day of fish-holding water collection, fish were not fed nor were the fish
exposed to any of the treatments. At 1100 hours, 1�8 l water was collected from the
respirometry boxes. Immediately after collection, water was filtered through filter paper.
Thereafter to trap the lipophilic phase, each sample was passed through a solid phase
chromatography column (Merck LiChrolut RP-18, 500 mg; www.merck-chemicals.com)
using a vacuum pump. These columns had previously been activated with 5 ml of meth-
anol followed by 5 ml of distilled water. The columns were subsequently eluted with 2 �
2 ml of ethanol, and the solution with the eluted steroids was stored at �20° C until fur-
ther processing.

A relatively large part of steroids are excreted from circulation after being conju-
gated to sulphates or glucuronides. In order to measure total cortisol excretion, the
extraction procedures of Scott & Sorensen (1994) were followed with modifications
described by Oliveira et al. (1996). This extraction procedure included three phases:
(1) after evaporating the ethanol and adding 0�5 ml of phosphate buffer, diethyl
ether was used to extract the low polar (free) fraction from the buffer; (2) the
sulphate-conjugated fraction was extracted after incubation with trifluoroacetic acid
in ethyl acetate and (3) the glucuronide-conjugated fraction was extracted after enzy-
matic hydrolysis with glucuronidase. The resulting unbound steroid residues were
pooled and dissolved in analysis buffer. A radioimmunoassay was carried out to
quantify these residues using a polyclonal antibody (Fitzgerald Industries Interna-
tional, Inc.; www.fitzgerald-fii.com catalogue number ¼ 20-CR50), which has cross-
reactivity of 5�7% for 11-desoxycortisol, 3�3% for corticosterone and <0�7% for
cortisone. The sensitivity of the assay was 0�4 ng ml�1. All samples were processed
in a single assay with an intra-assay coefficient of variance (C.V.) of 1�3%. Cortisol
values are expressed as the total amount of cortisol contained in each sample cor-
rected for M and sampling volume (1 l). Probably due to interference with
dissolved organic matter in the circulation, some of the blank respirometry boxes
had detectable cortisol immunoreactivity. Therefore, these ‘zero’ values were sub-
tracted from the values measured in the fish-holding respirometry boxes to correct
for background noise in the measurements.

STATISTICAL TREATMENT

All statistics were calculated using SPSS 14 package (SPSS Inc.; www.spss.com).
Normality of data was tested by means of Kolgomorov–Smirnov tests. Only for the
variables ‘locomotor activity’ and ‘cortisol level’, did the data significantly deviate from
the normal distribution (P < 0�05). Therefore, in order to carry out repeated measure-
ments ANOVA, these data were transformed by log10 (x þ 1). Correlations were tested
using the Spearman rank correlation. In the light of the relatively high n-value, this cor-
relation test reaches the power of parametric tests (Pearson) but does make fewer as-
sumptions on the type or order of the relationship between the variables tested.
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In order to optimize the analysis of general changes in the data due to treatment
while minimizing loss of power (via the decrease of d.f.), data were pooled over three
different intervals: 2nd þ 3rd day, 4th þ 5th day and 6th þ 7th day. The first day was
excluded because fish show some changes in oxygen measurements during the first day
that might be due to adapting to the new housing condition (Ros et al. 2004). Repeated
measurement ANOVA were calculated with interval period as repeated factor (n ¼ 3,
see above) and sex (male and female) and treatment group (‘control’, ‘knock’ and
‘flash’) as independent factors. Dependent variables tested in the ANOVA were: (1)
metabolic rate and activity data measured before exposing the fish to their assigned
stimuli; (2) metabolic rate and activity data representing the direct effect of the stimuli.
These variables were calculated as the value measured during exposure to the assigned
stimuli minus the value measured in the period before this exposure; (3) metabolic rate
measured during the night-time phase and (4) cortisol measurements taken at the end of
the experiment. Simple contrasts with the control group as a reference were applied for
testing of treatment effects.

ETHICAL CONSIDERATIONS

In previous respirometry experiments, O. mossambicus did not show evident signs of
distress (Ros et al., 2004, 2006). Furthermore, in those experiments, social behaviour of
animals that were isolated in the respirometry boxes for several days did not seem to
have been compromised (Ros et al., 2004, 2006; Oliveira et al., 2005). Therefore, the
temporary confinement in the respirometry boxes was not considered stressful for
O. mossambicus. After the trials, all fish were returned to their original stock tank. None
of the fish died or showed evident signs of stress (inactivity or hyperactivity) after the
experiment. The procedures used are in compliance with the regulations on animal
experimentation in Portugal.

RESULTS

TREATMENT EFFECTS ON ACTIVITY AND METABOLISM

Daytime spontaneous locomotor activity (measured before exposure to the
assigned stimuli) was highly variable between individuals [Fig. 1(a); mean �
S.E. C.V. ¼ 68 � 6%, n ¼ 46). Spontaneous locomotor activity was not signif-
icantly correlated with M fish (Spearman rank correlation, n ¼ 46, all periods:
rs < 0�16, P > 0�05]. Treatment did not cause general changes in spontaneous
locomotor activity [Fig. 1(a); ANOVA, d.f. ¼ 1,42, P > 0�05; all interaction ef-
fects P > 0�05] During the exposure to the assigned stimuli, a significant change
was detected in activity depending on the type of stimulus applied [Fig. 1(b);
ANOVA, treatment: d.f. ¼ 1,42, P < 0�01], with knocks increasing the activity,
while flashes had no significant effect (ANOVA simple contrasts: ‘knock’, P <
0�05; ‘flash’, P > 0�05)
Daytime routine metabolism (mean � S.E. C.V. ¼ 11 � 2%, n ¼ 46) did not

differ significantly between the control and the knock groups but was signifi-
cantly decreased in the flash group [Fig. 2(a); ANOVA, d.f. ¼ 2,42; effect treat-
ment: P < 0�01; simple contrasts: ‘flash’, P < 0�01; ‘knock’, P > 0�05]. A similar
trend was found for the lowest night-time routine metabolism (Fig. 3; ANOVA,
d.f. ¼ 2,42, P < 0�05; simple contrasts: ‘flash’, P < 0�01; ‘knock’, P > 0�05). In
contrast to activity, routine metabolism did not change significantly as a direct
result of exposure to the assigned stimuli [Fig. 2(b); ANOVA, main effects:
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d.f. ¼ 2,42, P > 0�05; interaction: d.f. ¼ 4,84, P > 0�05). Neither locomotor
activity nor metabolism measurements showed significant changes from the
start to the end of the experiment (ANOVA change over interval: 2nd þ 3rd
day, 4th þ 5th day and 6th þ 7th day: d.f. ¼ 2,84, P > 0�05).
In order to analyse the relationship between variation in daily metabolism

and activity measurements, a regression analysis was carried out. This analysis
showed that daytime routine metabolism was positively correlated with lowest
night-time routine metabolism and locomotor activity (regression analysis: final
model r ¼ 0�70; ANOVA: d.f. ¼ 2,45, P < 0�001; lowest night-time metabo-
lism: P < 0�001; locomotor activity: P < 0�01).

40

35

30

25

20

15

10

5

0

Sp
on

ta
ne

ou
s 

ac
tiv

ity
(n

um
be

r 
of

 g
ri

dl
in

es
 c

ro
ss

ed
 p

er
 1

5 
m

in
)

15

10

5

0

–5

–10

C
ha

ng
e 

in
 a

ct
iv

ity
 d

ur
in

g 
ap

pl
ic

at
io

n 
of

 s
tr

es
so

r

(a)

(b)

Control Knock Flash

*

FIG. 1. The effect of 7 days of experimental treatment on Oreochromis mossambicus locomotor activity.

The knock group was exposed to repetitive knocks against the wall of the aquaria. The flash group

was exposed to photo-flashes. The control group was not exposed to these putative stressors but

otherwise handled similarly. The mean � S.E. (a) activity before applying the stimuli and (b) the

direct effect of applying the stimuli on the locomotor activity. *, P < 0�05.
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TREATMENT EFFECTS ON CORTISOL

In accord with the results obtained for routine metabolism (Fig. 2), the anal-
ysis of cortisol showed a significant decrease in the ‘flash’ group, whereas no
effect was detected in the ‘knock’ group (Fig. 4; ANOVA, d.f. ¼ 2,40, P <
0�001; simple contrast: ‘flash’, P ¼ 0�001; ‘knock’, P > 0�05). Regression anal-
ysis did not detect a significant correlation between cortisol levels, activity and
metabolic rate measurements, which might be due to the large variation in the
measurements taken (rs < 0�11, n ¼ 46, P > 0�05).
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FIG. 2. The effect of 7 days of experimental treatment on Oreochromis mossambicus oxygen consumption.

The knock group was exposed to repetitive knocks against the wall of the aquaria. The flash group

was exposed to photo-flashes. The control group was not exposed to these stimuli but otherwise

handled similarly. Mean � S.E. (a) metabolism before applying the stimuli and (b) the direct effect of

applying the stimuli on metabolism. **, P < 0�01.
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SEX-SPECIFIC STRESS RESPONSES

Sex was added as an independent factor in all ANOVA. Sex showed neither
any significant main effect (ANOVA, d.f. ¼ 1,42, P > 0�05) nor any significant
interaction effect (ANOVA, d.f. ¼ 2,84, P > 0.05) with any of the measured
variables (locomotor activity, oxygen consumption or cortisol).

DISCUSSION

The aim of this study was to analyse the consequences of common human-
induced stimuli for aquarium fishes. In line with expectations (Kratochvil &
Schwammer, 1997), males and females of O. mossambicus showed a temporary
increase in locomotor activity in response to knocks on the wall of their aquar-
ium. These knocks, however, did not have lasting effects on locomotor activity
nor did they influence energy metabolism and cortisol levels. On the other
hand, photo-flashes did not result in an immediate change in activity levels
or metabolism but resulted in a general decrease in routine metabolic rates
and cortisol levels.
Teleost species differ strongly in their sensitivity to acoustic stimuli (Smith

et al., 2004b) and acoustic stimuli, as in day-active v. night-active species. This
might greatly influence how different species respond to different types of stres-
sors. Oreochromis mossambicus emit low-pitch sounds mainly during courtship
activities (Amorim et al., 2003). For this species, the low-frequency knocks
might thus comprise a more familiar stimulation than the light flashes. This
might explain why longer lasting effects were measured as a consequence of
flash light stimulation but not of knock stimulation in the experiment. Many
species, called hearing specialists, however, are more sensitive to sounds (Smith
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FIG. 3. The mean � S.E. effect of 7 days of experimental treatment on the lowest oxygen consumption of

Oreochromis mossambicus measured during the dark period. The knock group was exposed to

repetitive knocks against the wall of the aquaria. The flash group was exposed to photo-flashes. The

control group was not exposed to these stimuli but otherwise handled similarly. *, P < 0�05.
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et al., 2004a, b) and these species might have shown stronger responses to the
knock treatment. The effects of these stimuli should thus be tested in a wider
range of species to evaluate the effects of human-induced stimuli on aquarium
species.
Knocks resulted in a peak in locomotor activity (c. 70% increase). Although

locomotor activity was positively correlated with routine levels of metabolism,
the substantial changes in locomotor activity during the exposure to the stimuli
did not correlate with changes in oxygen consumption that were relatively
small (on average 5�4% in the knock group). In a previous experiment on
O. mossambicus, it was shown that the high-intensity movements made during
escalated aggressive interactions are energetically costly to carry out (Ros et al.,
2006). Comparable to the current study, however, van Ginneken et al. (1997)
did not find significant effects of changes in ‘non-social’ swimming movements
on oxygen consumption. Thus, changes in non-social routine swimming move-
ments may have only marginal effects on oxygen consumption.
Cortisol levels were measured at the end of the experiment without applica-

tion of any of the treatments (flash or knock). Thus, the decreased cortisol lev-
els in fish exposed to photo-flashes suggest that this human-induced stimulus in
this species may down-regulate cortisol secretion in a chronic manner. At
a between-group comparison level, cortisol appeared to be modulated the same
way as metabolic rates and locomotor activity. In O. mossambicus, cortisol
treatment has been shown to increase glucose levels and to enhance amino acid
mobilization, both important for high levels of locomotor activity (Vijayan
et al., 1997). Therefore, the results are in accord with the suggestion that cor-
tisol is important for the long-term regulation of metabolism in fishes (Vijayan
et al., 1997). Contrary to what was described in other experiments in which
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fishes were exposed to different stressors (Barton, 2002), cortisol levels
decreased rather than increased as a consequence of the flash treatment.
In light of the expected detrimental effect of chronic high glucocorticoid lev-

els, it might be argued that the results obtained from repeated photo-flashes
might hint at a beneficial calming effect. In fact, low levels of cortisol have
been associated with social dominance in a related species, Haplochromis burtoni
(Günther), (Fox et al., 1997). It should be taken into consideration, however,
that the experimental fish were tested in an unnatural situation (isolation)
and it might be that this had an effect on how the fish responded to the stim-
ulation. Little is known about this, i.e. the effect of unnatural situations on the
response to different stressors in fishes. For example, different species might
respond differently to similar stressors, fishes might respond differently to stres-
sors in isolation or in groups and fishes might respond differently depending on
being confined or having space to escape the stressor (as in the ‘desperado
effect’; Grafen, 1987). Finally, both an increase and a decrease in cortisol might
indicate an unbalance in homeostasis. Glucocorticoids have been shown to
modulate physiological systems in a wide range of forms, for example, facilitat-
ing or inhibiting the expression of particular behaviours (Barton, 1997, 2002;
Wingfield & Sapolsky, 2003). It should be tested whether being exposed to
photo-flashes affect the social behaviour of the fishes and whether this has con-
sequences for important traits like growth, health and reproduction (Barton,
1997, 2002).
In conclusion, this study on O. mossambicus indicates that common human-

induced stimuli for aquarium held fishes might have opposite effects on activ-
ity, metabolic rate and cortisol levels. The direction of the effects of the stimuli
on these variables and their time course should be considered when studying
possible effects of these stimuli on the welfare of aquarium fishes. Finally,
changes in these variables might be species dependent and the effect of stressors
should thus be tested in a wide range of species.

T. Oliveira carried out the radioimmunoassays. I. M. da Silva and N. Pereira pro-
vided information about visitors to the Oceanario of Lisbon and helped during the
study. L. Galhardo and colleagues of the UIE research unit of ISPA and two anony-
mous referees greatly helped improving the manuscript. The research of R.F.O. and
A.F.H.R. is supported by the Pluriannual Programme of FCT (R&D Unit 331/2001).
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