
Reboot-based Recovery of Performance Anomalies
in Adaptive Bitrate Video-Streaming Services

Carlos Augusto Cunha ∗, Luis Moura e Silva †
Centre for Informatics and Systems of University of Coimbra

∗ ccunha@dei.uc.pt, † luis@dei.uc.pt

Abstract—Performance anomalies represent one common type
of failures in Internet servers. Overcoming these failures without
introducing server downtimes is of the utmost importance in
video-streaming services. These services have large user abandon-
ment costs when failures occur after users watch a significant part
of a video. Reboot is the most popular and effective technique for
overcoming performance anomalies but it takes several minutes
from start until the server is warmed-up again to run at its
full capacity. During that period, the server is unavailable or
provides limited capacity to process end-users’ requests. This
paper presents a recovery technique for performance anomalies
in HTTP Streaming services, which relies on Container-based
Virtualization to implement an efficient multi-phase server reboot
technique that minimizes the service downtime. The recovery
process includes analysis of variance of request-response times
to delimit the server warm-up period, after which the server
is running at its full capacity. Experimental results show that
the Virtual Container recovery process completes in 72 seconds,
which contrasts with the 434 seconds required for full operating
system recovery. Both recovery types generate service downtimes
imperceptible to end-users.

I. INTRODUCTION

The complexity of modern software applications and the
large frequency of updates make software systems vulnerable
to failures. It is known that recovery from computer failures
generates large costs in organizations, representing from 30 to
50 percent of the computer system’s total cost of ownership
[1]. Performance anomalies are one type of failure caused by
transient faults [2] that occur often in software systems. They
are caused by errors responsible for progressive degradation
of system performance, which later manifests itself as a
degradation of service quality. Software aging [3] is a typical
manifestation of that phenomenon.

A system reboot is a popular maintenance task in Internet
servers that has the purpose of reestablishing the correctness of
the system’s state and behavior. It is done periodically without
awareness of the server behavior, or as a result of continuous
monitoring and analysis of server behavior [4][5]. Notwith-
standing the effectiveness of a system reboot in mitigating
performance anomalies, it is an expensive technique that can
be responsible for server downtimes of several minutes.

The most relevant previous work in recovery of perfor-
mance anomalies includes the Recovery Oriented Computing
(ROC) research area [6]. One important contribution in this
area is the recursive restarting of fine-grained components in
componentized applications to minimize the service downtime
caused by reboots [7][8]. Virtualization techniques have been

also explored to reduce the reboot-induced downtime, using
snapshots [9] and virtual machine replication [10]. As well,
jumping reboot steps has shown effective in reducing the
reboot time [11]. However, most previous approaches require
changes in the software or in the virtualization infrastructure,
influencing negatively their adoption. Also, the applicabil-
ity of previous work to video-streaming services is limited.
The reduction of the server downtime generated by reboot
operations is insufficient to avoid impacting the Quality of
Experience (QoE) of video-streaming users. Not only the
reboot downtime of several seconds can be unacceptable in
most streaming services but also the server warm-up period
should be accounted for as recovery time. The reason is that
the warm-up phase spans over a large period of time, during
which the server capacity is limited and, consequently, will
likely force several requests to fail.

This paper extends our previous work addressing failure
prediction in video-streaming servers [12] with a two-level
server recovery technique. When performance anomalies are
detected, the recovery process starts by rebooting the server
application. Then, in case the problem persists, a full operating
system reboot is executed with the assistance of another host.
Any of the reboot granularities is followed by a server warm-
up period.

The recovery approach focuses on proactive rather than
reactive reboots — reboots are conducted during the normal
server operation. Reboots are used as self-healing techniques
[13] that provide each server with a self-repair mechanism.
They exploit the characteristics of Container-based Virtualiza-
tion and Adaptive Bitrate (ABR) streaming to handle requests
during the recovery period without exposing server downtimes
to end-users.

Container-based Virtualization is a technology that involves
virtualization on top of the operating system. Thus, one single
operating system can be shared by several Virtual Containers
(VCs) that run the server applications. Due to the small size
of VCs, it is fast to reboot and migrate them between hosts.

ABR technologies [14] are becoming default technologies
for delivering videos over the Internet. They allow fragmen-
tation of videos into small segments, each one requested
independently. Hence, players can dynamically switch between
segments with different video qualities, whenever the network
and player conditions change — e.g., reduction of the available
network bandwidth. The small size of video segments and
the large frequency of player requests during video playback

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico de Viseu

https://core.ac.uk/display/70646577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


create the opportunity to:
• Reboot VCs without the need of rescuing the state of the

server and client-server connections;
• Perform progressive protocol-level redirection of requests

to warm-up the secondary server during recovery;
• Exploit the variance of request-response delays (differ-

ence between the time the client transmits the request
until it receives the response) for delimiting the server
warm-up period.

The analysis of the VC infrastructure and the experimental
evaluation of our approach revealed interesting findings:

• The VC infrastructure provides statistics that allow selec-
tion of hosts with available resources to assist recovery
when a full operating system reboot is required;

• VCs restart the server application approximately 3 times
faster than a restart of the server application process;

• The reboot-based recovery approach proposed has negli-
gible server downtimes;

• Analysis of variance of request-response delays is effec-
tive in delimiting the server warm-up period.

The rest of this paper is structured as follows. Section II
presents the related work. Section III defines the problem.
Section IV presents the background of the main concepts
related to our research. Section V explains our recovery
approach. Section VI and Section VII reveal the experimental
methodology and experimental results, respectively. Section
VIII presents the conclusions.

II. RELATED WORK

This paper addresses the problem of recovering HTTP
Adaptive Bitrate video servers from performance anomalies.
Reboot has been the most widely used technique for recover-
ing servers from failures caused by performance anomalies at
several granularity levels.

Recovery Oriented Computing (ROC) [6] is an important
research area that has inspired several recovery techniques
using the reduction of the Mean Time to Repair (MTTR)
as a strategy for increasing software availability. Recursive
Restartability [15][7] is a ROC recovery approach based on the
design of systems to gracefully tolerate successive restarts at
multiple granularity levels. It allows strong fault containment
because dependencies between components are organized into
a hierarchy of restartable components, in which nodes are
highly failure-isolated. When one tree node (component) is
restarted, the entire subtree rooted at that node (dependent
components) is restarted with. Microrebooting [16] has also
been explored in componentized applications to mitigate re-
booting costs. This technique separates process recovery from
data recovery in individual application components to reboot
them at anytime.

Virtual machines (VMs) have been successfully explored
for reduction of reboot downtimes. Phased-based reboot is
presented in [9] as a technique for accelerating system re-
boots when recovering from kernel transient failures. It uses
VM snapshots to restore the system to a restartable point,

corresponding to a clean and consistent system state. Phase-
based reboot uses the VM snapshot mechanism implemented
by Xen, but enhanced to: (1) reduce the snapshot restoration
time by avoiding saving unused memory pages; and (2) avoid
inconsistency in files opened during the snapshot restoration
process. Experimental results show that this technique reduces
the downtime generated by operating system reboots consider-
ably. However, a later study evidences that the phased-based
reboot technique reduces significantly the response time of
the system, adds CPU and I/O overheads at domU and also
increases the memory consumed at dom0 [17]. A virtualization
approach to reduce the reboot downtime caused by software
upgrades is also presented in [10]. When an upgrade is
necessary, an additional VM is started to install the updates
and reboot the system. When the reboot process completes, the
rebooted VM replaces the original VM. The approach requires
changes in the VM infrastructure to control updates during the
reboot process to working directories, on the reboot-dedicated
VM, and to administrative directories, on the original VM.

Other approaches have been proposed to make the reboot
process more efficient. One strategy is jumping stages during
the reboot process. Kexec [11] patches the operating system
kernel at runtime to perform a fast warm reboot by refreshing
the OS internal state without reinitializing the hardware.
By skipping the BIOS and the device check phases of the
Linux boot process, the reboot time decreases significantly.
Otherworld [18] addresses isolation of the kernel termination
from the user-level applications. Thus, when a kernel failure
occurs, only the OS kernel is restarted, keeping the user-
level memory states of the processes. User-level processes are
resumed after the OS kernel has been rebooted. This approach
rescues application states but the reboot downtimes are not
significantly lower than in typical virtualization approaches.

Several approaches have been proposed in previous work
to reduce the server downtime generated by reboots. The
most promising approaches are those based on virtualization,
notwithstanding they require changes in the virtualization
infrastructure and create overheads due to duplication of
VMs and maintenance of snapshots. This paper explores the
particularities of Container-based Virtualization to develop a
method that tackles the limitations of previous approaches to:
(1) recover HTTP video-streaming servers with inconsequen-
tial user-visible downtimes and small overheads; (2) adopt
standard virtualization infrastructures; and (3) embrace the
server warm-up time period as part of the recovery process.

III. PROBLEM STATEMENT

Despite some previous work having addressed the problem
of repairing applications at runtime by changing them dy-
namically [19][20][21], none of them is generic, provides full
recovery of applications and guarantees application correctness
after recovery. By contrast, reboot-based techniques have
shown a singular ability for overcoming transient failures.

Our work addresses the problem of minimizing the server
downtime when performing reboot-based recovery. Accord-
ingly, we define the following requirements for the reboot



approach:
• Client requests should be served during the rebooting

process;
• The least disruptive reboot granularity (application or

operating system) should be chosen to minimize the
reboot time;

• The server should be appropriately warmed-up to run at
its full capacity by the end of the recovery period.

Reboots should be performed with the appropriate granu-
larity to avoid ineffective recovery actions or recovery costs
larger than required. An operating system reboot is expensive
and its cost is proportional to the server downtime caused
by the execution of several activities: stopping all services,
restarting the operating system, starting the services again and
warming-up the server. However, reboots can be performed at
a finer granularity than the operating system. Often, errors
accrue at the server application level and, in many cases,
the kernel goes back to a consistent and clean state simply
by killing and revoking the resources of the faulting process
[22]. Thus, whenever it is possible, only the server application
should be rebooted, since it presents significantly smaller
costs.

IV. BACKGROUND

Our work uses two technologies that are described in this
section: Container-based Virtualization an Adaptive Bitrate
Streaming.

A. Container-based Virtualization

Typical Hypervisor Virtualization requires installation of
one dedicated operating system instance for each Virtual
Machine. By contrast, Container-based Virtualization uses one
single operating system instance for all Virtual Containers
running in the same host. VCs are user-space instances man-
aged by a virtualization layer placed in the operating system
kernel. Virtualization ensures isolation of processes running
within VCs and fair scheduling on utilization of resources
between VCs. Each VC holds its own set of processes, a
private memory address space, logical file system and virtual
network interface.

VCs have negligible overheads, since the virtualization
layer is installed at the operating system level. The CPU
overhead is less than 1% when compared to non-virtualized
environments [23]. The efficiency of VCs is justified by the use
of the standard system call interface provided by the operating
system, without relying on emulation. For recovery purposes,
VCs can be efficiently rebooted or migrated between hosts,
since they have simple constructions that exclude operating
system structures.

VCs can be used either as an alternative to typical VMs or
can be combined with them. In the latter case, VCs can run
inside VMs to isolate the performance of several applications
and to support migration of applications between VMs with
small performance penalties. This configuration is adequate
for typical cloud infrastructures.

Encoder

Web 

Server

Manifest file

Manifest file

encodings with

different bitrate streams

source input

clients can switch between

bitrate streams dynamically

Fig. 1: Adaptive Bitrate streaming workflow.

B. Adaptive Bitrate Streaming

The simplicity of HTTP has come at the cost of lack
of control over the content downloaded in video-streaming
services. Consequently, the download process is inefficient —
streaming users that abandon watching videos or seek another
playback position in time can download significantly more
content than that effectively played — and unadaptable to
specific network conditions and client-side resources (e.g., the
network bandwidth can be insufficient to maintain the player
buffer with enough data for playback). These problems are
tackled by Adaptive Bitrate streaming (ABR), which integrates
the benefits of HTTP with the efficiency and adaptation
features of dedicated video-streaming protocols.

ABR is a technique used to deliver video-streaming to
end-users with different bandwidths and system resources
(e.g., CPU and screen size). ABR videos are encoded at
several different bitrate streams, each segmented into small
multi-second segments. Therefore, streaming clients switch
between different bitrate streams dynamically, according to
their available local resources and network bandwidth (Fig. 1).
Accordingly, before requesting the next video segment during
playback, the player decides the corresponding bitrate with the
support of a list of available bitrates defined by the video’s
manifest file provided by the server.

ABR has several implementations. MPEG-DASH [24] is
the only ABR solution that is an international standard. Other
commercial implementations are Microsoft Smooth Stream-
ing, Adobe Dynamic Streaming and Apple HTTP Adaptive
Streaming [14].

V. RECOVERY APPROACH

Our recovery approach performs reboot of servers at two
granularity levels: (1) Virtual Container and (2) Operating
System. We design a two-phase reboot strategy (Fig. 2), which
starts by rebooting the faulty VC. Then, if the faulty behavior
persists after the reboot, a full operating system reboot is
performed afterwards. This multi-phase reboot strategy aims
to reduce recovery costs by avoiding full reboots when errors
are confined to specific VCs. A VC reboot offers several
advantages over a operating system reboot:

• It is less expensive, since it has smaller reboot delays;
• It reduces the server warm-up period significantly, since

the kernel in-memory structures are isolated from the VC



Host 2

Host 1

VC

VC
VC

1 2

Fig. 2: Two-phase reboot process.

reboot process;
• It can be performed without additional resources provided

by the actual host or other hosts selected to assist the
reboot process.

We adopt the OpenVZ [25] implementation of Container-
based Virtualization in our recovery approach. OpenVZ is
open-source, well documented and provides a rich set of
features for handling and managing Virtual Containers.

A. VC Reboots

The VC reboot process restarts the VC along with all
internal processes. Despite being more efficient than a oper-
ating system reboot, the efficiency of a VC reboot would be
improved by replacing the VC by a replica of it, snapshotted
after a previous reboot. We adopt this reboot strategy for
recovery of faulty VCs. We refer to the faulty VC as primary
VC and to the VC replica that will replace the primary VC as
the secondary VC.

Our VC reboot process starts by creating the secondary VC
in the primary VC’s host, with its own IP address. Afterwards,
the web server running in the primary VC redirects part of the
requests to the secondary VC, using the HTTP REDIRECT
method (Fig. 3). The number of requests redirected grows
progressively to warm-up the server running in the secondary
VC. Finally, the primary VC is destroyed and the secondary
VC becomes the primary VC, by taking its IP address.

B. Operating System Reboot

When the server faulty behavior persists after reboot the
VC, a full operating system reboot is started. This process is
accompanied by the instantiation of a VC replica into another
host to handle the server load during the rebooting process.
We use the term primary host to refer to the faulty host
and secondary host to refer to an alternative host that assists
temporarily the recovery process of the primary host.

The operating system reboot process has two phases. In the
first phase, a replica of the primary VC is created into another
host with resources available for running the VC. Then, the
requests are redirected progressively until the secondary VC
is warmed-up and takes the IP of the primary VC, similarly
to a VC reboot. Finally, a full operating system reboot is
executed. The second phase initiates when the primary host

1

HTTP REDIRECT

2

HTTP GET

3

HTTP GET

10.15.0.201

10.15.0.202

HTTP GET

4

10.15.0.201

10.15.0.201

Report

Fig. 3: Progressive migration of requests to warm-up the server
running in the secondary VC.

finishes the operating system reboot process. Then, the entire
process followed in the first phase is executed again to move
the server back to the primary host.

C. Selection of the Secondary Host

Operating system reboots require the assistance of other
hosts to receive the streaming server during the reboot period.
Any host with available resources to handle the load of the
faulty VC can be used to that end. Thus, the secondary host
can be either one passive machine specifically dedicated to
assist the recovery of other hosts or any of the active machines
with available resources.

Container-based Virtualization infrastructures provide statis-
tics about utilization of system resources for each VC. These
statistics are useful to select one of the active hosts as the
secondary host. Host selection is performed through compar-
ison of resource utilization statistics provided for the primary
VC with equivalent statistics provided for VCs running in
other hosts. In other words, any host running VCs with idle
resources sufficient to afford the consumption of resources by
the primary VC can assist its recovery.

OpenVZ measures the utilization and capacity of resources
for each VC using beancounters. Beancounters represent the
units of utilization of resources and are presented as such:
vzctl exec 101 cat /proc/user_beancounters

uid resource held maxheld barrier limit
101: kmemsize 803866 1246758 2457600 2621440

lockedpages 0 0 32 32
privvmpages 5611 7709 22528 24576
shmpages 39 695 8192 8192

[...]

The held column represents the current resource utilization,
the maxheld the maximum utilization since the last VC reboot
and the barrier and limit represents the capacity of the given
resource — the distinction between the last two metrics is
specific to each resource.

The OpenVZ statistics provided for each VC enable the
selection of eligible secondary hosts based on resources not
consumed by their VCs. One straightforward method for
selection of the secondary host is to find a host where the
maxheld value of all resources in the primary VC fits the



available resources of one VC running in the secondary host,
as formulated in (1). Thus, a replica of the primary VC can
be instantiated in the secondary host to assist the reboot of the
primary host.

maxheldprimary < limitsecondary −maxheldsecondary (1)

The host selection process depends on a data sharing
mechanism that provides the faulty servers with resource
utilization statistics of the other hosts. This mechanism can
be implemented by a reporting service accessible to all hosts
to report resource utilization statistics periodically. The design
of this service is out of the scope of this paper.

D. Detection of Performance Anomalies

Performance anomalies are abnormal server conditions that
can lead, sooner or later, to user-visible failures. Thus, one
server experiencing performance anomalies may not lead
necessarily to immediate degradation of service quality percep-
tible by end-users. As an example, one memory leak allocating
more 50% of memory than normal may not impact the service
quality in the short-term.

Detection of performance anomalies represents a complex
process. It requires knowledge about the normal server behav-
ior in order to recognize any deviation hinting a potential fail-
ure. In [12], we present SHStream, a self-healing framework
for HTTP servers that implements prediction of performance
failures by detecting anomalous server states. SHStream uses
machine learning algorithms to create and evaluate models of
the normal server behavior automatically and iteratively. This
framework can be integrated in our work to perform detection
of performance anomalies.

E. Detection of Service Failures

We perform server-side failure detection to assume the use
of standard video players. However, client-side factors like
the amount of data buffered by players would compensate the
increased server-side request processing delays. Therefore, we
are unable to observe, on the server-side, the impact of server
performance degradation on the user experience. Yet, as long
as the main concern of our work is to ensure that the server is
providing the service correctly, we evaluate the service quality
provided by the server instead of measuring the quality of user
experience.

One healthy server should ensure that each video segment
is transmitted to the player before the previous segment has
completed its playback. Accordingly, we consider that the
player requests each video segment Vi+1 at latest when the
previous video segment Vi starts playback. Thus, it is a fair
assumption to consider that the server is failing to provide the
service correctly when the gap defined as in (2) is negative.

gap = 10 − (Rrec(Vi+1) −Rsend(Vi+1)) (2)

Rrec(Vi+1) represents the reception time of the next video
segment and Rsend(Vi+1) the transmission time of the request

of the same video segment. We assume video segments with
duration of 10 seconds and that the player issues the request
for a specific video segment when it starts the playback of the
previous one (worst scenario). As a deduction, the player will
receive the data for the requested segment after its playback
time when the gap is negative.

Video segments with time lengths of 10 seconds are typical
in ABR services. Smaller segment sizes have a disadvantage
because of the: (1) high number of I-frames, demanding more
bits in the overall bitstream [26]; and (2) small Groups of
Pictures (GOP), providing a lower encoding performance and
quality [27]. On the other hand, video segments larger than 10
seconds increase the adaptation time unnecessarily. However,
our approach can be used with video segments of other sizes.

F. Delimitation of the Server Warm-up Period

The server warm-up period should be respected to avoid
failures caused by the transition from the primary VC to
the secondary VC. We analyze the request-response delays to
determine when the secondary server is ready to replace the
primary server. Figure 4 relates the running standard deviation
[28] of request-response delays with the number of video
requests handled by the server after the reboot. These values
are the result of experimental tests ran using different workload
levels and video configurations. It is noticeable a pattern of
large standard deviations of the request-response delay during
the server warm-up period. The variability of these values is
dictated by the large delays of some request-responses.

Request-responses with large delays can be responsible for
user-visible failures during the server warm-up period. Fig.
5 shows the gap between the length of each video segment
streamed (10 seconds) and its download delay, calculated as
in (2). It exposes several requests with negative gaps during
the server warm-up period, representing potential failures
experienced by streaming users.

It is noticeable that the variability of request-response delays
stabilizes after several requests have been handled by the
server. We use that characteristic to determine the end of
the server warm-up period. Accordingly, the server warm-up
period is delimited through analysis of variance of request-
response delays.

We use the Kruskal-Wallis method to evaluate if groups of
n samples of request-response delays belong to the same sta-
tistical distribution. It it is an efficient non-parametric method
(does not assume that the data are normally distributed) used
to test whether several groups of samples originate from the
same distribution. The test statistic is given by (3), being ni

the number of observations of group i, rij the rank of the
observation j from group i, r̄i and r̄ calculated as in (4) and
N the total number of observations.

K = (N − 1)

∑g
i=1 ni(r̄i − r̄)2∑g

i=1

∑ni

j=1 (rij − r̄)2
(3)

r̄i =

∑ni

j=1 rij

ni
r̄ =

1

2
(N + 1) (4)



0 500 1000 1500 2000 2500

0
5

10
15

Number of Videos Streamed

S
TD

E
V

 o
f R

eq
ue

st
 R

es
po

ns
e 

D
el

ay
s

Fig. 4: Relation between the standard deviation of request-
response delays and the number of complete videos streamed
after the reboot.

0 200 400 600 800

-2
0

-1
5

-1
0

-5
0

5
10

Number of Videos Streamed

G
ap
=(
10
-D
el
ay
)

Fig. 5: Difference between the length of video segments (10
seconds) and each request-response delay, after the reboot.

The evaluation of our server warm-up approach depends on
the observation that the Kruskal-Wallis test rejects the null
hypothesis that statistical distributions of groups of request-
response delays are similar during and after the server warm-
up period.

25%

50%

75% 25%

50%

75%

100%0%

100% 0%

Primary
VC

Secondary
VC

Pr
og

re
ss

iv
e 

D
ec

re
as

e 
of

 L
oa

d

Pr
og

re
ss

iv
e 

In
cr

ea
se

 o
f L

oa
d

Compare 
distributions of 
request-response 
delays

Fig. 6: Distribution of load between the primary VC and sec-
ondary VC and comparison between the statistical distributions
of request-response delays of different server load levels.

G. Server Warm-up Process

During recovery, the primary server redirects the load pro-
gressively to warm-up the secondary server. At each warm-up
stage, the secondary server receives more L% of the primary
server’s requests (randomly selected) and the resulting load
level is only increased again after stabilization of the request-
response delays. This incremental process intends to avoid
transient failures during the server warm-up period and to
warm-up the secondary server with a realistic workload taken
from the primary server.

Fig. 6 shows the distribution of the load between the primary
and secondary servers along time, during the warm-up period
of the secondary server. The primary server controls the
warm-up process by redirecting requests and deciding when
to increase the number of redirected requests. That decision
is based on the analysis of server request-response delays
gathered from the logs of the secondary server.

The Kruskal-Wallis test is used to compare each group of
request-response delays gathered during the server warm-up
for the current server load, with a group of request-response
delays belonging to a lower server load level already validated
by the warm-up process. When the Kruskal-Wallis test does
not reject the null hypothesis that the distributions of both
groups of request-response delays are similar, the server is
considered warmed-up for that load level. Then, the server
load is increased in the secondary server and the same process
repeats.

When the primary server is redirecting requests correspond-
ing to 25%(N/4) of its load to the secondary server, the
request-response delays of the lower server load level are
unavailable for comparison. During that period, the Kruskal-
Wallis test is applied to successive groups of request- response
delays of the secondary server for that load level. We use
this technique based on the hypothesis that the distribution
of groups of successive request-response delays are different
during the warm-up phase.

The server warm-up finishes when more than 3N/4 of the



VC1

Lighttpd
+

mod_h264

rsync

OpenVZ

Primary
XEN VM

OS

VC1

Lighttpd
+

mod_h264

OpenVZ

Secondary
XEN VM

OS

Access.log

wget

Fig. 7: Experimental testbed.

requests are being redirected to the secondary server or when
100% of the primary server’s load is being redirected to the
secondary server (when the number of requests received by the
primary server is less than 3N/4 of its maximum capacity).

We store the access log of the secondary server in a
folder shared between both VCs, to provide data for analysis
during the reboot of VCs (Fig. 3). For operating system
reboots, the content of the access log of the secondary server
is synchronized between hosts using rsync [29], at each t
seconds.

VI. EXPERIMENTAL WORK

This section presents the experimental design followed for
evaluation of our recovery approach.

A. Testbed

The experimental testbed is composed by four XEN virtual
machines connected by a 1Gbps Ethernet Network (Fig. 7).
Two of these virtual machines are used for workload gener-
ation using a Bash script that issues requests using the wget
tool [30]. The other virtual machines contain the VCs that
run the web servers. Each of these machines has 2 CPUs @
2.00GHz, 4GB Memory and runs the Linux CentOS version
2.6.32 − 358.6.1.el6.x86 64. The two server machines have
installed the:

• OpenVZ infrastructure for Container-based Virtualization;
• Lighttpd web server 1.4.30. This web server have been

used by Youtube for several years to deliver videos [31];
• H264 Streaming Module (mod h264 streaming version

2.2.7) for Lighttpd. This module performs bandwidth
control and supports Adaptive Bitrate streaming by han-
dling requests for specific video segments.

B. Workloads

Typical video-streaming workloads are characterized by the
number of connections, video encoding bitrates, duration of
videos, inter-arrival request times, and user abandonment of
videos in the middle of playback.

The workload adopted for experimental evaluation has 50
H.264 videos, encoded with bitrates of approximately 300
Kbps, 900 Kbps and 2 Mbps, providing a bitrate amplitude
similar to that encountered in typical workloads [32][33]. The
number of connections varies sinusoidally between 0 and n,
being n the server capacity.

According to [34][32], approximately 90% of Internet
videos have a duration between 10 seconds and 16 minutes.
We adopt a similar configuration using videos with durations
ranging from 10 seconds to 1000 seconds.

Request inter-arrival times have been modeled by a Poisson
process [35] for several years for web workloads in gen-
eral [36][37] and specifically for video-streaming workloads
[38][39][40]. Similarly, our workload represents the request
inter-arrival times by a Poisson distribution.

Workload studies providing user abandonment statistics are
limited in number. In the Youtube service, approximately one
quarter of the transactions run until the end [41]. However,
to represent user abandonment of visualization of videos, we
use the statistics provided by a recent study [33]. Accordingly,
we force randomly 40% of the videos to terminate at 10% of
playback time, plus 20% of videos at 20% of playback time
and finally, plus 30% at 50% of playback time.

C. Evaluation Metrics

Our recovery approach is evaluated for its efficacy and
efficiency. Thus, the experimental work should provide the:

• Total recovering time;
• Time required to instantiate the secondary VC in the same

or in another host;
• Number of failed requests served by the secondary host.

This value represents the efficacy of the: (1) recovery
approach in avoiding failures caused by the recovery
process; and (2) analysis of variance of request-response
times in determining the server warm-up period;

• Time required by the secondary VC to take the IP of the
primary VC. This metric represents the service downtime.

Despite not impacting the service directly, the total recov-
ering time has a direct impact on the risk of failure. Typi-
cally, performance anomalies will lead to failure conditions
experienced by streaming users and increase their severity in
shorter or longer periods. Consequently, the occurrence of hard
failures during the recovery process would avoid completing
the warm-up phase in the secondary VC. The reason is that
the secondary VC is forced to take the IP of the primary VC
and handle its entire load. So, to minimize the risk of hard
failures, the recovery time should be minimized as well.

The number of failed requests is equivalent to the number of
requests with negative gaps, defined as in (2). These requests
represent potential interruptions of video playback, seeing that



the gap represents the time distance between the reception of
one video segment and its playback time, in the worst-case
scenario. Therefore, to avoid failures, the downtime created by
the recovery process should be smaller than the gap of each
video segment experienced without recovery. However, since
the gap varies for each request, we consider enough to have
service downtimes significantly smaller than the time length
of segments (10 seconds) to reduce the chance of being larger
than the gaps. The service downtime is the time required by the
secondary VC to take the IP of the primary VC — and vice-
versa in the case of operating system reboots — considering
that the other recovery-related operations are performed while
the primary server is running.

VII. EXPERIMENTAL RESULTS

This section presents the experimental results obtained for
the evaluation of our recovery approach.

A. Comparison between Reboot Techniques

We studied three techniques to reboot the server application:
(1) terminate the respective process; (2) restart the respective
VC; and (3) replace the respective VC by a fresh VC in the
same host. We run the tests 50 times using the workload
presented in Section VI-B to have statistical significance.

Table I presents the time required for executing each reboot
technique. It shows that the technique (3) is the most efficient
— it restarts the server 50% of times in less than 1 second.
This observation explains the selection of this technique to
restart the server application in our recovery approach.

Technique 5th 50th 95th
Restart	  the	  video-‐streaming	  application	  process 2.4 3.1 3.7
Restart	  the	  virtual	  container 10.2 11.5 12.3
Start	  a	  fresh	  replica	  of	  the	  virtual	  container 0.8 0.9 1.4

Percentiles	  in	  Seconds

TABLE I: Downtime generated by reboot techniques

B. Server Warm-up Time

Fig. 8 and Fig. 9 show the p-values of the Kruskal-Wallis
test using groups of 20 samples, segmented by the proportion
of requests redirected to the secondary server. The primary
server increases the number of redirections by N/4 when
the p-value does not rejects the null hypothesis that the
distributions of groups of request-response delays belonging
to the current server load and to the server load immediately
below it (already validated by the warm-up process) have
similar statistical distributions. Assuming a significance level
of 95%, the null hypothesis is rejected for p-values lower
than 0.05. Accordingly, the load of the secondary server is
increased when the p-value increases above 0.05.

Fig. 8 shows that the server warm-up time is approximately
178 seconds for a operating system reboot. This value contrasts
with the 70 seconds of server warm-up time (Fig. 9) required
for a VC reboot. The smaller warm-up times observed for VC
reboots are expected, since the VC state are renewed in the
same host, preserving the kernel structures and caches.

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p-
va
lu
e

N/4 N/2 3N/4 N

p=0.05

Fig. 8: p-values of the Kruskal-Wallis test for the operating
system reboot. N represents the server capacity.

20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

time

p-
va
lu
e

N/4 N/2 3N/4 N

p=0.05

Fig. 9: p-values of the Kruskal-Wallis test for the VC reboot.
N represents the server capacity.

All requests handled during the operating system and VC
reboot activities have positive gap values. That means that all
requests were processed without failures.



0
10
0

20
0

30
0

40
0

se
co

nd
s 

(a
cc

um
ul

at
ed

)

S
ta

rt 
V

C

W
ar
m
-u
p

S
us

pe
nd

 V
C

Ta
ke

 IP

S
ta

rt 
V

C

W
ar
m
-u
p

S
us

pe
nd

 V
C

Ta
ke

 IP

S
ta

rt 
V

C

W
ar
m
-u
p

S
us

pe
nd

 V
C

Ta
ke

 IP

VC Reboot OS Reboot Fallback

1

70 71 72 73

251 252 253 254+r

432+r 433+r 434+r

R
eb

oo
t t

he
 M

ac
hi

ne

Fig. 10: Cumulative time required to recover the server.

C. Recovery Time and Downtime

Fig. 10 presents the time required to execute each recovery
step. It is required 72 seconds to recover the VC and, if the
failure condition persists, 253 seconds to continue the service
into the secondary host after rebooting the VC. The entire
reboot lifecycle is completed after 434 seconds, plus the time
required to perform a operating system reboot in the primary
host. The service downtime, represented by the time required
by the secondary VC to take the IP of the primary VC, is less
than 1 second (rounded to 1 second).

D. Discussion of Results

Experimental results have shown that our reboot-based
approach for recovery of performance anomalies in video
servers can be executed with user-visible downtime smaller
than 1 second. The downtime represents the time required
by the secondary VC to take the IP of the primary VC.
Downtimes of that order are negligible, considering that, in
the worse scenario, the request has to be downloaded in less
than 10 seconds to avoid playback interruptions (one order of
magnitude higher than the expected downtime). Similarly, the
delay added by the redirection process during the warm-up
period — forcing the player to issue each request twice —
is not significant. It is known that the round-trip time of one
typical request in the Internet is in the order of milliseconds.

Our recovery approach assumes that performance anomalies
are not the cause of service failures before and during the
recovery process. That means that during 72 seconds for VC
recovery and 434 seconds for operating system recovery (in the
worst-case scenario, when the server is running at full capac-
ity), the primary server should be able to handle the requests
not redirected to the secondary server. This is an important
assumption because most of the time spent by the recovery

process is spent warming-up the server. Otherwise, replacing
the primary VC by the secondary VC without warming-up
the server, when the primary server is experiencing severe
failures, can impact less the service quality than maintaining
the primary server active during the warm-up period. On
the other hand, by redirecting part of the primary server’s
load to the secondary server during the warm-up phase, the
service quality provided by the primary server could return
to normality — e.g., the utilization of an exhausted resource
can decrease below its limit. For the aforementioned reasons,
the server warm-up process should be tried before replacing
the primary VC by the secondary VC. Then, if failures still
occur during the warm-up phase, the secondary VC replaces
the primary VC immediately.

VIII. CONCLUSION

This paper addresses the problem of recovering HTTP
streaming servers from performance anomalies. Recovery is
performed by means of rebooting the server and, if necessary,
the operating system. The main challenge of this process
involves implementing the recovery process with negligible
service downtimes to avoid the large costs attached to aban-
donment of video-streaming users.

We use Container-based Virtualization technology to: (1) in-
stantiate the rebooted server replica that will replace the faulty
server, when an operating system reboot is not necessary; and
(2) ensure service continuity when an operating system reboot
is required, by transferring the server temporarily to another
host with enough resources. We also use analysis of variance
of request-response times to determine when the server is
properly warmed-up after a reboot.

The experimental evaluation of our approach has shown
that through analysis of variance of request-response times,
it is possible to delimit the server warm-up period during the
recovery cycle. It also showed that our approach requires 72
seconds to recover the server by rebooting the VC, which
contrasts with the 434 seconds required for operating system
recovery. Most of that recovery time is spent warming-up the
server. During the recovery period the server continues serving
requests, until being replaced by the rebooted replica with
negligible service downtimes (less than 1 second).

Despite our approach has been tested with ABR streaming
services, we believe it can be applied to other HTTP-based
services. However, the characteristics of these services may
present several challenges. For example, the server downtime
and redirection of connections can impact the service quality
in interactive applications. As well, the size of each request
can challenge the use of analysis of variance of response times
for delimiting the server warm-up period.

As future work, we plan to design and evaluate a service that
shares information about resource beancounters to support the
selection of secondary hosts during the execution of operating
system recovery actions.

ACKNOWLEDGMENT

This work was partially supported by FCT-Portugal under grant
SFRH/BD/35784/2007 and CISUC (Centre for Informatics and Sys-



tems of University of Coimbra).

REFERENCES

[1] D. A. Patterson, “Recovery oriented computing: A new research agenda
for a new century.” in HPCA, 2002, p. 247.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” Dependable and
Secure Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11–33, Jan
2004.

[3] M. Grottke, R. Matias, and K. Trivedi, “The fundamentals of software
aging,” in Software Reliability Engineering Workshops, 2008. ISSRE
Wksp 2008. IEEE International Conference on, Nov 2008, pp. 1–6.

[4] L. Li, K. Vaidyanathan, and K. Trivedi, “An approach for estimation
of software aging in a web server,” in Empirical Software Engineering.
Proceedings of the International Symposium on, 2002, pp. 91 – 100.

[5] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Analysis of
software aging in a web server,” Reliability, IEEE Transactions on,
vol. 55, no. 3, pp. 411 –420, sept. 2006.

[6] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler,
P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer,
N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft, “Recovery oriented
computing (roc): Motivation, definition, techniques,,” Berkeley, CA,
USA, Tech. Rep., 2002.

[7] G. Candea and A. Fox, “Recursive restartability: turning the reboot
sledgehammer into a scalpel,” Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on, pp. 125–130, May 2001.

[8] G. Candea, E. Kiciman, S. Kawamoto, and A. Fox, “Autonomous
recovery in componentized internet applications,” Cluster Computing,
vol. 9, no. 2, pp. 175–190, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10586-006-7562-4

[9] K. Yamakita, H. Yamada, and K. Kono, “Phase-based reboot: Reusing
operating system execution phases for cheap reboot-based recovery,” in
Dependable Systems Networks (DSN), 2011 IEEE/IFIP 41st Interna-
tional Conference on, June 2011, pp. 169–180.

[10] H. Yamada and K. Kono, “Traveling forward in time to
newer operating systems using shadowreboot,” in Proceedings
of the 9th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, ser. VEE ’13. New York,
NY, USA: ACM, 2013, pp. 121–130. [Online]. Available:
http://doi.acm.org/10.1145/2451512.2451536

[11] V. Goyal, E. W. Biederman, H. Nellitheertha et al., “Kdump, a kexec
based kernel crash dumping mechanism,” in Proceedings of the Linux
Symposium, Ottawa, 2005.

[12] C. Cunha and L. Moura e Silva, “Shstream: Self-healing framework for
http video-streaming,” in Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on, May 2013, pp. 514–
521.

[13] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[14] T. Stockhammer, “Dynamic adaptive streaming over http –: standards
and design principles,” in Proceedings of the second annual ACM
conference on Multimedia systems, ser. MMSys ’11. New York, NY,
USA: ACM, 2011, pp. 133–144.

[15] G. Candea and A. Fox, “Designing for high availability and measurabil-
ity,” in Proceedings of the 1st Workshop on Evaluating and Architecting
System Dependability, 2001.

[16] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot-a technique for cheap recovery.” in OSDI, vol. 4, 2004,
pp. 31–44.

[17] A. Bovenzi, J. Alonso, H. Yamada, S. Russo, and K. Trivedi, “Towards
fast os rejuvenation: An experimental evaluation of fast os reboot
techniques,” in Software Reliability Engineering (ISSRE), 2013 IEEE
24th International Symposium on, Nov 2013, pp. 61–70.

[18] A. Depoutovitch and M. Stumm, “Otherworld: Giving applications a
chance to survive os kernel crashes,” in Proceedings of the 5th European
Conference on Computer Systems, ser. EuroSys ’10. New York, NY,
USA: ACM, 2010, pp. 181–194.

[19] M. Fuad, D. Deb, and M. Oudshoorn, “Adding self-healing capabilities
into legacy object oriented application,” in Autonomic and Autonomous
Systems, 2006. ICAS ’06. 2006 International Conference on, July 2006,
pp. 51–51.

[20] A. Carzaniga, A. Gorla, and M. Pezz, “Healing web applications
through automatic workarounds,” International Journal on Software
Tools for Technology Transfer, vol. 10, no. 6, pp. 493–502, 2008.
[Online]. Available: http://dx.doi.org/10.1007/s10009-008-0088-8

[21] G. Portokalidis and A. Keromytis, “Reassure: A self-contained mecha-
nism for healing software using rescue points,” in Advances in Informa-
tion and Computer Security, ser. Lecture Notes in Computer Science,
T. Iwata and M. Nishigaki, Eds. Springer Berlin Heidelberg, 2011, vol.
7038, pp. 16–32.

[22] T. Yoshimura, H. Yamada, and K. Kono, “Can linux be rejuvenated
without reboots?” in Software Aging and Rejuvenation (WoSAR), 2011
IEEE Third International Workshop on, Nov 2011, pp. 50–55.

[23] P. Padala, X. Zhu, Z. Wang, S. Singhal, K. Shin et al., “Performance
evaluation of virtualization technologies for server consolidation,” HP
Laboratories Technical Report, 2007.

[24] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the
internet,” Multimedia, IEEE, vol. 18, no. 4, pp. 62 –67, april 2011.

[25] (2012, Apr.) Openvz. http://wiki.openvz.org/Main Page.
[26] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive

streaming over http dataset,” in Proceedings of the 3rd
Multimedia Systems Conference, ser. MMSys ’12. New York,
NY, USA: ACM, 2012, pp. 89–94. [Online]. Available:
http://doi.acm.org/10.1145/2155555.2155570

[27] E. Schonfeld, “Netflix now the largest single source of internet traffic
in north america,” 2011, (Accessed: 2015-03-05). [Online]. Available:
http://techcrunch.com/2011/05/17/netflix-largest-internet-traffic/

[28] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd
Ed.): Seminumerical Algorithms. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

[29] “rsync,” (Accessed: 2014-09-30). [Online]. Available:
http://rsync.samba.org/

[30] Gnu wget. (Accessed: 2014-09-30). [Online]. Available:
https://www.gnu.org/s/wget/

[31] C. Do Cuong, “Seattle conference on scalability: Youtube scalability,”
Video, June, 2007.

[32] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of youtube
network traffic at a campus network – measurements, models, and
implications,” Computer Networks, vol. 53, no. 4, pp. 501 – 514, 2009,
content Distribution Infrastructures for Community Networks.

[33] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao,
“Youtube everywhere: Impact of device and infrastructure synergies
on user experience,” in Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, ser. IMC ’11. New
York, NY, USA: ACM, 2011, pp. 345–360. [Online]. Available:
http://doi.acm.org/10.1145/2068816.2068849

[34] P. Ameigeiras, J. J. Ramos-Munoz, J. Navarro-Ortiz, and J. Lopez-Soler,
“Analysis and modeling of youtube traffic,” Transactions on Emerging
Telecommunications Technologies, vol. 23, no. 4, pp. 360–377, 2012.

[35] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical distribu-
tions. John Wiley & Sons, 2011.

[36] M. F. Arlitt and C. L. Williamson, “Internet web servers: Workload char-
acterization and performance implications,” IEEE/ACM Trans. Netw.,
vol. 5, no. 5, pp. 631–645, Oct. 1997.

[37] H. Gupta, A. Mahanti, and V. Ribeiro, “Revisiting coexistence of
poissonity and self-similarity in internet traffic,” in Modeling, Analysis
Simulation of Computer and Telecommunication Systems, 2009. MAS-
COTS ’09. IEEE International Symposium on, Sept 2009, pp. 1–10.

[38] X. Kang, H. Zhang, G. Jiang, H. Chen, X. Meng, and K. Yoshihira,
“Measurement, modeling, and analysis of internet video sharing site
workload: A case study,” in Web Services, 2008. ICWS’08. IEEE
International Conference on. IEEE, 2008, pp. 278–285.

[39] T. Mori, R. Kawahara, H. Hasegawa, and S. Shimogawa, “Characteriz-
ing traffic flows originating from large-scale video sharing services,”
in Traffic Monitoring and Analysis, ser. Lecture Notes in Computer
Science, F. Ricciato, M. Mellia, and E. Biersack, Eds. Springer Berlin
Heidelberg, 2010, vol. 6003, pp. 17–31.

[40] V. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang, “Vivisecting youtube:
An active measurement study,” in INFOCOM, 2012 Proceedings IEEE,
March 2012, pp. 2521–2525.

[41] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characteriza-
tion: A view from the edge,” in Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’07. New York, NY,
USA: ACM, 2007, pp. 15–28.


