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1 Introduction 5

Let us assume that the p-values fpkgnkD1 are known from testing H0k vs. HAk , 6

k D 1; : : : ; n, in n independent studies on some common issue, and our aim is 7

to achieve a decision on the overall question H!0 W all the H0k are true vs: H!A W 8

some of the HAk are true. As there are many different ways in which H!0 can be 9

false, selecting an appropriate test is in general unfeasible. On the other hand, 10

combining the available pk’s so that T .p1; : : : ; pn/ is the observed value of a 11

random variable whose sampling distribution under H!0 is known is a simple 12

issue, since underH!0 , p D .p1; : : : ; pn/ is the observed value of a random sample 13

P D .P1; : : : Pn/ from a standard uniform population. In fact, several different 14

sensible combined testing procedures are often used [6, 11]. 15
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Therefore an important issue is to test whether a given sequence fpkgnkD1 is or is 16

not a sample from a standard uniform population. Recently Paul [10] discussed newAQ2 17

characterizations of the uniform population, but as they are formulated in terms of 18

expected values, they did not lead directly to new simple tests of uniformity. Gomes 19

et al. [5] exploited the possibility of using computationally augmented samples 20

to test uniformity, with the surprising result that power can decrease with sample 21

augmentation in the class of alternatives they used. Sequeira [12] explains why this 22

is so, and in Sect. 2 below we further discuss the question. In this chapter we use 23

Sukhatme’s transformation to suggest new ways of dealing with the matter. 24

Sukhatme’s [13] transformation, from which Rényi’s representation of expo- 25

nential order statistics can easily be derived, appears in David and Nagaraja ([2], 26

p. 17–18) and in Johnson et al. ([8], p. 305), with slightly different presentations, 27

applied to the study of exponential and of uniform order statistics, respectively. 28

Durbin [4] used ordered spacings of the uniform to investigate the construction of 29

exact tests. In Sect. 3 we use a Sukhatme’s like transformation to augment the set 30

of order statistics from a uniform parent, and in Sect. 4 we investigate power issues 31

when they are used in testing uniformity. 32

2 Uniformity Versus Mixtures of Uniform and Beta(1,2) 33

Gomes et al. [5] introduced the family fXmgm2Œ#2;2! of absolutely continuous 34

random variables, with probability density function fXm.x/ D
!
mx ! m#2

2

"
I.0;1/.x/ 35

(the uniform density corresponds to m D 0; for m 2 .0; 2!, Xm is a 36

convex mixture of Beta(1,1) and Beta(2,1), and for m 2 Œ!2; 0!, Xm is 37

a mixture of Beta(1,1) and Beta(1,2)). Observe that for all m 2 Œ!2; 0/, 38

P ŒXm " x! ! P ŒU " x! D m
2
x .x ! 1/ > 0 for all x 2 .0; 1/, and thus pseudoran- 39

dom numbers generated by Xm tend to be closer to 0 than pseudorandom numbers 40

generated by a standard uniform random variable U . Thus this family can give 41

important hints on nonuniformity of the set of p-values, cf. the concepts of random 42

p-values in Kulinskaya et al. [9] and of generalized p-values in Hartung et al. [6]. 43

Observe also that for m 2 .0; 2!, Xm tends to take values closer to 1 than the 44

X0 _ Uniform.0; 1/ random variable, and hence in that range of values it provides 45

a suitable alternative in the case of right one-tailed alternative tests. Moreover, the 46

inverse of the corresponding distribution function is 47

F#1Xm .u/ D
m
2

! 1C
q!

m
2

! 1
"2 C 2mu

m
48

and the generation of pseudo-random numbers from Xm for simulation studies is 49

therefore straightforward. 50

Let U and X be two independent standard uniform random variables. The 51

random variables V D U C X ! IŒU C X !, where IŒx! denotes the largest integer 52

not greater than x, and W D min
!
U
X
; 1#U
1#X

"
are uniform and independent of X [3]. 53
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This fact was used by Gomes et al. [5] for computationally augmenting samples and 54

to assess the power of detecting non-uniformity when the sample comes in fact from 55

Xm, m 2 Œ!2; 0!, with the strange result that power does not improve for increased 56

samples. 57

The explanation is however simple: if Xm and Xp are two independent random 58

variables, with m;p 2 Œ!2; 2!, then min
#
Xm
Xp
; 1#Xm
1#Xp

$
dD Xmp

6
[1]. Hence, in case 59

the algorithm uses uniform pseudorandom numbers to augment the sample, the 60

augmented slice will in fact be a uniform subsample, and power decreases. Brilhante 61

et al. [1] present better results using left-skewed parent pseudorandom numbers. 62

Still, the use of the family fXmgm2Œ#2;2! has many advantages, and instead of 63

augmenting the sample externally, as in the above-mentioned papers, by using 64

Vm D U CXm ! IŒU CXm! and Wm D min
#
U
Xm
; 1#U
1#Xm

$
, with the spurious effect 65

of always generating uniform pseudo p-values, we can use an alternative approach 66

when the purpose is to test the null hypothesis of uniformity vs. Xm parent: 67

• Choose at random one pj 2 fpkgnkD1. 68

• Generate n ! 1 pseudo p’s of the form min
#
pj
pk
;
1#pj
1#pk

$
; k ¤ j . 69

3 Order Statistics, Spacings and Sukhatme’s Transformation 70

Let X D .X1;X2; : : : ; Xn/ be a random sample from the absolutely con- 71

tinuous positive random variable X with probability density function fX and 72

.X1Wn; X2Wn; : : : ; XnWn/ the corresponding vector of ascending order statistics. For 73

convenience we assume that left-endpoint ˛X D 0 and we define X0Wn D ˛X D 0. 74

The joint probability density function of the spacings Sk D XkWn ! Xk#1Wn, k D 75

1; : : : ; n, is 76

f.S1;S2;:::;Sn/.s1; s2; : : : ; sn/ D nŠ f.X1;X2;:::;Xn/.s1; s1 C s2; : : : ; s1 C # # # C sn/ 77

(sk > 0, k D 1; : : : ; n, and if the right-endpoint !X is finite,
Pn

kD1 sk < !X ; in 78

this case we can consider the rightmost spacing SnC1 D !X ! XnWn, but this can 79

be expressed as a function !X ! Pn
kD1 Sk). Hence, the joint probability density 80

function of the ascending reordering of those n spacings is 81

f.S1Wn;S2Wn;:::;SnWn/.y1; y2; : : : ; yn/ D .nŠ/2f.X1;X2;:::;Xn/.y1; y1Cy2; : : : ; y1C # # #Cyn/ 82

where 0 < y1 < : : : < yn and
Pn

kD1 yk < !X . 83

Now define 84

Wk D .nC 1 ! k/.SkWn ! Sk#1Wn/; k D 1; : : : ; n; 85

(similar to Sukhatme’s transformation, as defined in David and Nagaraja [2], but 86

applied to ascendingly ordered spacings), again with the convention S0Wn D 0. 87
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The joint probability density function of .W1;W2; : : : ;Wn/ is 88

f.W1;W2;:::;Wn/.w1;w2; : : : ;wn/ D nŠf.X1;X2;:::;Xn/
!w1
n
; 2w1
n

C w2
n!1 ; : : : ;w1 C # # # C wn

"
89

wk > 0, k D 1; : : : ; n, (observe that the k-th argument is 90

kw1
n

C .k ! 1/w2
n ! 1

C # # # C .k C 1 ! j /wj
nC 1 ! j C # # # C wk

nC 1 ! k ; k D 1; : : : ; n/; 91

and the joint probability density function of the vector of partial sums Yk D 92Pk
jD1 Wj , k D 1; : : : ; n, is 93

f.Y1;Y2;:::;Yn/.y1; y2; : : : ; yn/ D nŠf.X1;X2;:::;Xn/

#
y1
n
; : : : ;

kX

jD1

.kC1!j /.yj!yj!1/
nC1!j ; : : : ; yn

$
94

with 0 < y1 < : : : < yn and the convention y0 D 0. 95

If X _ Uniform.0; !X/, then 96

f.X1;X2;:::;Xn/

#
y1
n
; : : : ;

kX

jD1

.kC1!j /.yj!yj!1 /
nC1!j ; : : : ; yn

$
D 1

!nX
D f.X1;X2;:::;Xn/.y1; y2; : : : ; yn/; 97

and hence .Y1; Y2; : : : ; Yn/
dD .X1Wn; X2Wn; : : : ; XnWn/. 1

98

This suggests that uniformity can be investigated testing whether fXkWngnkD1 and 99

fYkgnkD1 can be considered samples from the same distribution. Unfortunately, under 100

the null hypothesis that the parent distribution is standard uniform, the two vectors 101

are not independent since we can re-express Yk D Pk
jD1 Sj Wn C .n ! k/SkWn; and 102

consequently Yn D XnWn. Thus, the Smirnov two-sample test is of no use in the 103

present situation. 104

However, the observation of Fig. 1, where we compare the empirical distribution 105

function (edf) corresponding to the order statistics xkWn (black) and the yk (gray), in 106

case of uniform and Beta(1,2) parents, suggests that D!n D supx jF !n .x/ !G!n .x/j, 107

where F !n stands for the order statistics edf andG!n for the accumulated yk edf, will 108

be greater under the alternative HA W X nonuniform with support (0,1) than under 109

the null hypothesisH0 W X _ Uniform.0; 1/. 110

1Observe that if !X < 1, we can consider n C 1 spacings, with SnC1 D !X # XnWn; of
course in this situation SnC1; SnC1WnC1 and WnC1 (where in this case it is convenient to use the
transformation

Wk D .nC 2# k/.SkWnC1 # Sk!1WnC1/;

as in Johnson et al. [8], p. 305) can be expressed as simple functions of the predecessor members

of the sequence. We still get the result that .Y1; Y2; : : : ; Yn/
dD .X1Wn; X2Wn; : : : ; XnWn/ in case of

standard uniform parent X .
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For uniformity testing purposes we present in Table 1 the upper critical points of 111

D!n , n D 3.1/30.5/100, when the underlying parent is standard uniform .U
dDX0/. 112

These points were obtained by generating 10,000 independent replicates of the 113

sample .D!n;1;D
!
n;2; : : : ;D

!
n;50/ and defining the quantile of order p of D!n as the 114

mean of the samples quantiles for p D 0:9, 0.925, 0.95, 0.975, 0.99, 0.995, 0.999. 115

We also performed a simulation study of the proportion of rejections of unifor- 116

mity when the underlying parent was Xm, m 2 Œ!2; 0! and when making pairwise 117

comparisons of the order statistics fxkWng edf and the fykg edf (the process of 118

generating fykg was iteratively repeated 10,000 times). Observe that the rationale 119

for this procedure relies on the fact that if the original observations fpkg are indeed 120

uniform, the “Sukhatme’s” fykg would be order statistics of standard uniform, and 121

hence repeating Sukhatme’s algorithm we would obtain again a set of order statistics 122

of standard uniform. 123

From Fig. 2 we observe that the proportion of rejections of uniformity increases 124

with n. However, the extended Sukhatme’s like transformed data performs badly 125

in detecting departures from uniformity when n < 20. This situation can obviously 126

constitute a problem when combining p-values in meta-analytical syntheses since 127

the number of available (reported) p-values is usually small. 128

Another way of assessing the usefulness of this extended Sukhatme’s transfor- 129

mation in testing uniformity is by calculating the area limited by the edf’s F !n and 130

G!n , since under the validity of the null hypothesis X _ Uniform.0; 1/, the area 131

between the two curves should be zero—big area values should indicate a departure 132

from uniformity. In Table 2 we compare the areas obtained by simulation (10,000 133

runs) for some values of n when the underlying parents are standard uniform and 134

Beta(1,2). Analyzing Table 2 we see that the area is indeed inferior for the standard 135

uniform parent, except for some few cases. However, the differences between the 136

two areas can be very small, which can difficult the task of testing uniformity with 137

this procedure. 138
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Table 1 Critical points of D"
n when the underlying parent is Uniform (0,1)a

t18.1n 0.9 0.925 0.95 0.975 0.99 0.995 0.999

t18.23 0.667 0.667 0.667 0.667 0.667 0.667 0.667
t18.34 0.605 0.656 0.703 0.734 0.747 0.747 0.747
t18.45 0.600 0.610 0.634 0.682 0.753 0.753 0.753
t18.56 0.548 0.580 0.62 0.666 0.736 0.736 0.736
t18.67 0.542 0.563 0.589 0.632 0.712 0.712 0.712
t18.78 0.509 0.529 0.558 0.605 0.686 0.686 0.686
t18.89 0.484 0.509 0.540 0.582 0.660 0.660 0.660
t18.910 0.470 0.491 0.518 0.558 0.635 0.635 0.635

t18.1011 0.454 0.472 0.498 0.537 0.612 0.612 0.612
t18.1112 0.436 0.455 0.482 0.520 0.592 0.592 0.592
t18.1213 0.422 0.441 0.466 0.503 0.574 0.574 0.574
t18.1314 0.410 0.429 0.452 0.487 0.557 0.557 0.557
t18.1415 0.398 0.415 0.438 0.472 0.539 0.539 0.539
t18.1516 0.387 0.404 0.427 0.460 0.525 0.525 0.525
t18.1617 0.377 0.393 0.416 0.447 0.511 0.511 0.511
t18.1718 0.368 0.385 0.406 0.437 0.498 0.498 0.498
t18.1819 0.359 0.376 0.396 0.427 0.486 0.486 0.486
t18.1920 0.352 0.367 0.387 0.416 0.474 0.474 0.474
t18.2021 0.345 0.360 0.379 0.408 0.463 0.463 0.463
t18.2122 0.337 0.352 0.371 0.399 0.453 0.453 0.453
t18.2223 0.331 0.345 0.363 0.391 0.444 0.444 0.444
t18.2324 0.325 0.339 0.357 0.384 0.435 0.435 0.435
t18.2425 0.319 0.332 0.350 0.376 0.427 0.427 0.427
t18.2526 0.313 0.326 0.344 0.370 0.419 0.419 0.419
t18.2627 0.308 0.321 0.338 0.363 0.411 0.411 0.411
t18.2728 0.302 0.315 0.332 0.357 0.404 0.404 0.404
t18.2829 0.298 0.311 0.327 0.352 0.400 0.400 0.400
t18.2930 0.293 0.306 0.322 0.345 0.392 0.392 0.392
t18.3035 0.273 0.285 0.300 0.321 0.363 0.363 0.363
t18.3140 0.257 0.268 0.282 0.302 0.341 0.341 0.341
t18.3245 0.243 0.253 0.267 0.286 0.322 0.322 0.322
t18.3350 0.231 0.241 0.254 0.272 0.306 0.306 0.306
t18.3455 0.221 0.230 0.242 0.260 0.292 0.292 0.292
t18.3560 0.212 0.221 0.232 0.249 0.280 0.280 0.280
t18.3665 0.204 0.212 0.224 0.239 0.269 0.269 0.269
t18.3770 0.197 0.205 0.216 0.231 0.260 0.260 0.260
t18.3875 0.190 0.198 0.209 0.223 0.251 0.251 0.251
t18.3980 0.185 0.193 0.202 0.217 0.244 0.244 0.244
t18.4085 0.179 0.186 0.196 0.210 0.236 0.236 0.236
t18.4190 0.174 0.182 0.191 0.204 0.229 0.229 0.229
t18.4295 0.170 0.177 0.186 0.199 0.223 0.223 0.223
t18.43100 0.166 0.172 0.181 0.194 0.217 0.217 0.217

aThe standard errors of the critical points are less than or equal to 0.001
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Fig. 2 Proportion of
rejections of uniformity at
level 0.05 using Sukhatme’s
like transformation when the
underlying parent is Xm,
m 2 Œ#2; 0!

Table 2 Area limited by the
functions F "

n and G"
n when

the underlying parents are
Uniform(0,1) and Beta(1,2)

Beta(1,2) Uniform(0,1)

n Area s.e. Area s.e.

5 0.0366 0.00188 0.0333 0.00179
10 0.0848 0.00279 0.1027 0.00304
15 0.0794 0.00270 0.1216 0.00327
20 0.0860 0.00280 0.0820 0.00274
25 0.0620 0.00241 0.0608 0.00239
30 0.0823 0.00275 0.0495 0.00217
35 0.0699 0.00255 0.0526 0.00223
40 0.0742 0.00262 0.0411 0.00199
45 0.0665 0.00249 0.0450 0.00207
50 0.1005 0.00301 0.0319 0.00176
55 0.0927 0.00290 0.0370 0.00189
60 0.0774 0.00267 0.0376 0.00190
65 0.0830 0.00276 0.0247 0.00155
70 0.0648 0.00246 0.0425 0.00202
75 0.0371 0.00189 0.1369 0.00344
80 0.0682 0.00252 0.0388 0.00193
85 0.0702 0.00256 0.0403 0.00197
90 0.0901 0.00286 0.0395 0.00195
95 0.0701 0.00255 0.0358 0.00186
100 0.0730 0.00260 0.0498 0.00218

4 Conclusion 139

It seems worth to point out that the entropy of Xm, m 2 Œ!2; 2!, is 140

H.Xm/ D !
Z 1

0
fXm.x/ ln.fXm.x//dx D 0:5C ln.2/C

ln
h#

2!m
2Cm

$mi

8 ! ln.4#m2/
2 C

ln
#
2!m
2Cm

$

2m ; 141
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Fig. 3 Comparison of the
proportion of rejections of
uniformity using Sukhatme’s
like method and the method
described in Sect. 2

(for a detailed study of entropy, cf. [7]), whose graph is concave, and hence the 142

entropy of min
#
Xm
Xp
; 1#Xm
1#Xp

$
dD Xmp

6
is, for m;p 2 Œ!2; 2!, nearer to the entropy 143

of X0 than to the entropy of Xm and Xp . We would thus expect that Sukhatme’s 144

like method of sample augmentation would provide better results than the method 145

explained in Sect. 2. Observe however that further investigation of the matter seems 146

to indicate the reverse, as shown in Fig. 3 (the solid lines correspond to Sukhatme’s 147

like method and the dashed lines to the method described in Sect. 2). The generalAQ3 148

question of comparing analytically edfs of correlated samples remains unsolved, 149

even for simple forms of weak dependence only simulation results in well-defined 150

situations seem feasible. 151
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