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Abstract

In bilateral Negotiation Analysis, the literature often considers the case of complete information.

In this context, since the negotiators know the value functions of both parties, it is not difficult to

calculate the Pareto frontier and the Pareto efficient solutions for the negotiation. Thus rational

negotiators can reach agreement on this frontier. However, these approaches are not applied in

practice when the parties do not have complete information. The research question of our work is “It

is possible to help negotiators achieving an efficient solution if they do not have complete information

regarding the different parameters of the model?”. We propose to obtain information regarding the

preferences of negotiators during the negotiation process, in order to be able to propose alternatives

close to the Pareto frontier. During this work we will present three approaches to help a mediator

proposing a better solution than the compromise the negotiators have reached or are close to reach.

Key words: Incomplete Information, Negotiation, Mediation, Integrative Negotiation, “Dance of the
Packages”

1 Introduction

A large majority of the most complex decisions is taken and implemented by groups of people. Jelassi
et al. [11] distinguished between four types of procedures for deciding when several decision makers
are involved: (i) individual decision-making in a group setting, (ii) hierarchial or bureaucratic decision
making, (iii) group decision-making or one-party decision-making, and (iv) multi-party decision-making
or negotiation. In the first situation, one decision maker has the responsibility for the decision, but
utilizes knowledge of experts, advisers or stakeholders during the process. In hierarchial decision making,
there are two cases to consider: centralized and decentralized. In the centralized setting, there is one set
of objectives representing the interests of a top-level decision maker, who has full control over the lower-
level members. In the decentralized case, each member independently controls subsets of the decision
variables and objectives and is responsible for his decision which serves as input to the higher level. In
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group decision-making, each group member participates in the process and is partly responsible for the
final decision. There usually is an overall goal which is accepted by all the members, but they differ in
the ways of how this goal should be achieved. In negotiation, each decision maker represents one party
and is responsible for the decision before this party and not before the other one(s). There is a conflict
of interests because parties have separate and conflicting objectives and they have different needs which
they want to satisfy. Negotiation is the chosen way to resolve a conflict out of necessity and not out
of effectiveness or efficiency. Note that, although the distinction between group decision-making and
negotiation is not always clear, it is possible to point out some differences (see for example [6]). In this
work we will be concerned with negotiation, more specifically bilateral (two-party) negotiation.

In negotiations usually there exists the possibility to bring in the help of a third party, as a mediator
or an arbitrator. A mediator is a person who should be acceptable, impartial, and neutral and, despite
not having power of authoritarian decision, should assist the negotiation of the other parties, establishing
a positive climate. An arbitrator is a neutral and impartial person who takes a decision in the negotiation
process by comparing previous results, using justice criteria or by other methods. An arbitrator’s decision
may be binding or not binding.

The general goal of our work is to contribute new methodologies to support a mediator in advising
negotiators (Raiffa’s externally prescriptive perspective [23]). However, the methodology developed in
this work can also be adapted to support one of the parties based on a description of the other party’s
behavior (Raiffa’s asymmetrically descriptive-prescriptive perspective).

We consider integrative negotiations over multiple issues, which are the ones most likely to benefit
from the efforts of a mediator. Integrative (or win-win) negotiation (see for example [32]) assumes the
integration of resources and capabilities of parties to generate more value. This contrasts with distributive
(or win-lose) negotiation where the aim is typically the division of a single good and the main concern of
negotiators is to get the largest possible share of the “pie”. In integrative negotiation, successful strategies
include cooperation, information sharing and joint resolution of problems. A typical form of negotiation
between two parties is the “dance of packages” [23], in which offers and counter-offers are successively
presented by both parties. Imagine that party 1 prepares a proposal that he finds appealing and hopes
the party 2 would accept. Then, party 2 will answer with a complete proposal of his own. As one would
expect, party 1’s initial proposal might be wonderful for party 1 and unacceptable for party 2. The
counter-offers from party 2 might have the opposite characteristics. Now there are two proposals on the
table, and each side describes the merits of its own offer and possibly criticizes the other. The dance of the
packages proceeds by making concessions seeking a compromise. In a slight variation of this procedure,
the parties might not offer proposals in sequence, and instead both of them might simultaneously put
offers on the table.

According to Raiffa [23], in integrative negotiation it is necessary to construct and evaluate proposals
covering various issues. The construction of these proposals consists in the identification of issues to solve,
in the specification of the possible levels of resolution for each subject, and in the specification of the
scores of each possible combination of levels (scores which can be obtained through an aggregation method,
e.g. the additive value model). The existence of a value-based evaluation model allows that each party
evaluates their potential proposals, evaluates the other party’s proposals, and evaluates their BATNA
(best alternative to a negotiated agreement), it also allows that someone with complete information can
say whether an agreement is Pareto efficient or not. Recall that a solution is Pareto efficient if it is
not possible to move improve the position of one party without worsening the value to one of the other
parties.

In bilateral Negotiation Analysis, the literature often considers the case with complete information.
If the mediator knows the value functions of both parties, then he can calculate the set of Pareto efficient
solutions. Thus, the mediator can suggest an agreement from this set, where the choice among the Pareto
efficient solutions can be based on additional criteria like the fairness of the proposed compromise.

However, these approaches are not applied in practice where neither the parties nor an outside me-
diator have complete information about the preferences of all parties (see for example [17]). In many
cases, parties might not even have complete information about the parameters describing their own pref-
erences, because the assumption that parameter values can be precisely elicited is often unrealistic or, at
least, there may be advantages in working with less precise information (see for example [16] and [33]).
For a mediator in a negotiation, obtaining information about the value functions of the parties is even
more difficult, since parties might have incentives to strategically distort the preference information they
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provide [29].
Some approaches in the literature deal with incomplete information in the context of negotiation

problems. An important objective in negotiation processes is to achieve a win-win solution (or integrative
solution), a solution that improves the position of both parties with respect to the present situation.
According to the Dual Concern model [22, 27], these solutions can be achieved if negotiators have a high
concern about the both their own preferences and the preferences of their opponents, which requires also
information about the opponent’s preferences. Typically, this information is not complete [30].

Clímaco and Dias [4] proposed an extension of the methodology of the software VIP-G [6] for bilateral
negotiation processes, based on the concept of convergence paths in the weights space. While assuming
that negotiators make decisions based on their value functions, constructing these functions is not trivial
when there are multiple attributes. Lai et al. [17] presented a model that considers Pareto efficiency
and computational efficiency, for situations where information is incomplete, the value functions are not
linear and are not explicitly known. The authors refer that one of the main problems associated with
multi-attribute negotiation is the difficulty of making decisions in an n-dimension space. To reduce this
problem, a process was proposed that enables negotiators, in each period, to negotiate based on a line,
called negotiation base line. To implement this model, a mediator needs to be available. Though it is
not difficult to involve such a mediator in automated negotiations between software agents, there may
exist situations where a mediator is not trusted or hard to be implemented. Thus, Lai and Sycara [18]
focused on developing mechanisms for Pareto-efficient multi-attribute negotiations without the presence
of a mediator.

Ehtamo et al. [7] presented a class of methods called constraint proposal methods, which are in-
teractive methods to find Pareto efficient solutions through common tangent hyperplanes. This process
supports negotiations of two parties with two or more continuous issues. A mediator tries to find a
hyperplane, through some reference points, so that the most preferred alternative for both parties in this
hyperplane coincide. Heikanen [9] proposed an interactive process to determine Pareto efficient solutions
in negotiations with multiple parties about continuous issues, with help from a mediator. In this method
it is not required that negotiators know the value functions of other parties or that someone outside the
negotiation knows all the value functions.

In this paper we assume that the preferences of both parties can be roughly modelled by an additive
value function, as in Raiffa’s Negotiation Analysis [23]. However, we do not make the assumption that
each party’s value function is precisely known, i.e., we will not assume that the parties will indicate
explicitly the parameters values that fully define their model. The information that is available about the
negotiator’s preferences can come from one of two sources: incomplete information obtained implicitly
through the offers or the decisions and incomplete information explicitly provided by the negotiators (e.g.
intervals of parameter values). The information we will use is mainly based on comparisons of proposals
that are implicitly or explicitly made by the parties. We will consider different levels of such incomplete
information, in particular the case where some parameters of the evaluation model are known (value
functions, weights of the value functions), and the case where no parameters of the model are exactly
known.

The main contribution of this paper is to propose and compare three new approaches to support a
mediator under incomplete information: the first is based on robust conclusions, the second is based
on inferred approximations, and the third uses a domain-based analysis. These approaches will allow
the mediator to assess how each proposal he may put forward would be received by the parties, namely
if they would consider it as better than the ones they have already considered (or even accepted as a
compromise), and to know which would the most promising proposals be according to some well-known
arbitration criteria.

We envision two scenarios in which these methods could be applied:

1. The parties have reached a potential compromise and want to improve it.

2. The parties have not (yet) reached a compromise. There are two offers on the table, which provide
different utilities to the two parties.

In the latter case, each party can at least obtain the utility which it would receive from the current offer
made by the opponent. We therefore consider the utility levels offered by each parties’ proposal to the
other side as the status quo in such negotiations.
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This paper is structured as follows. In section 2 we will present a framework for negotiations under
incomplete information. In section 3 we will propose three different approaches to suggest potential
agreements. In section 4 we will present an illustrative example where we use the approaches presented
in section 3. We will finish in section 5 with some conclusions and thoughts on future research.

2 A Framework for negotiations under incomplete information

2.1 Information levels

In this paper, we consider several different levels of information about the negotiators’ preferences over
multiple issues that might be available to an outside mediator. To formally characterize this information,
we assume that the true (but possibly unknown) preferences of a negotiator can be represented by an
additive value function of the form

V k(x) =

n
∑

j=1

V k
j (x) = wk

1vk
1 (x1) + wk

2vk
2 (x2) + ... + wk

nvk
n(xn) (1)

where V k
j (x) = wk

j vk
j (x), vk

j (x) represents the value of the proposal x related to the jth issue and wk
j

represents the scale coefficient or “weight” of the value function vk
j (.), for party k, and n represents the

number of issues. Without loss of generality, we further assume that the value function is standardized
so that:

0 ≤ wk
j ≤ 1, j = 1, ...n and

n
∑

j=1

wk
j = 1 (2)

and
0 ≤ vk

j (x) ≤ 1. (3)

An additive value function imposes certain restrictions on the preferences that can be represented,
most notably preferential independence between the issues being considered [12, 31]. While the additive
form allows us a certain simplification in the models we are going to formulate (like the use of linear
programming rather than nonlinear programming), our approach does not rely very strongly on additivity
of the value function and can with some adaptations also be extended to other forms like bilinear or
multilinear functions [12].

Function (1) allows for a classification of different types of information levels. As a benchmark, we
consider the case of complete information in which all components of the value function are assumed to
be known. By relaxing this assumption, we consider three possible levels of incomplete information:

1. The weights wk
j are unknown, while the values vk

j (xj) are known.

2. Both weights and values are unknown, but the value function vk
j (x) is assumed to be approximately

linear; hence, exact (but approximate) values can be used.

3. Both weights and values are unknown, and no further assumptions about the shape of the value
function vk

j (x) are made.

In case 2, we essentially replace the true values vk
j (xj) by their linear approximation

vlin(xj) =
xj − xj

xj − xj

(4)

where xj and xj represent the best and worst possible outcome in attribute xj , respectively.
In case 3, we restrict possible value functions by a lower and an upper bound. If we can exclude

increasing marginal values (which is reasonable and can easily be assessed by asking simple questions
to each party) the lower bound will be formed by the linear function (4) and the upper bound will be
formed by a concave value function

vcon(xj) = a + b(−e−c∗xj) (5)
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where parameters a and b are chosen to scale the function to values between zero and one, and parameter
c determines the degree of concavity of the function. Values are thus restricted to vlin(xj) ≤ v̂(xj) ≤
vcon(xj), where we use v̂ to indicate that this is an approximation of the unknown true value. For
example, in Figure 1 we would consider that m ≤ v̂price(11) ≤ M .

Figure 1: Shape of a value function of the issue price (for a seller).

2.2 Representation of incomplete information

In all three cases outlined above, the mediator is not necessarily completely ignorant about the weights
and/or values, but might be able to get at least some information about them. Such information can be
obtained in two ways: (i) it can explicitly be provided by the negotiators, or (ii) it can be inferred from
observing their behavior during the process of the negotiation, in particular from the offers that each of
them makes and their reactions to offers from the opponent.

In both cases, the information obtained by the mediator is most likely in the form of statements of
preference or indifference between different alternatives, where each alternative is characterized by a value
for each issue. If information is directly provided by the negotiators, the mediator could ask whether they
would consider another alternative to be about as good as a proposed alternative, or when the mediator
makes a proposal, he could also ask if this proposal is indeed better than an offer already on the table,
thus inferring the direction of preference between these two alternatives.

In a “Dance of packages” negotiation process, preferences between alternatives can also be inferred from
the offers made by negotiators during the process [30]. For instance, in a scenario where the negotiators
have already reached a tentative compromise and wish to improve upon it, one can safely assume that a
negotiator will prefer that compromise to all other offers made by the opponent during the negotiation.
Otherwise, it would in most cases be possible to revert to that previous offer from the opponent (which
the opponent could hardly reject, since it was him who originally proposed it). Furthermore, in a “Dance
of packages” negotiation process, negotiators typically start with offers very favorable to themselves and
then successively make concessions in the course of the negotiation. Thus we can assume that a negotiator
prefers all offers made by himself to the compromise and also prefers his earlier offers to the offers he
made later in the process. From transitivity, it also follows that a negotiator will prefer all offers made
by himself to all offers made by the opponent. This last condition will hold also if no compromise has
been reached (yet).

Information about preferences of negotiators will therefore be available in the form of statements
of preference or indifference between alternatives. A statement that alternative x(1) is preferred to
alternative x(2) can be represented by the condition (see, e.g., [10, 30]):

n
∑

j=1

V k
j (x

(1)
j ) ≥

n
∑

j=1

V k
j (x

(2)
j ), (6)
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while a statement of indifference can be represented by the constraint
∣

∣

∣

∣

∣

∣

n
∑

j=1

V k
j (x

(1)
j ) −

n
∑

j=1

V k
j (x

(2)
j )

∣

∣

∣

∣

∣

∣

≤ ǫ (7)

where ǫ is a suitably small tolerance value.
The specification of V k

j depends on the information level being considered. For the case of unknown
weights and known values, it is defined as

V k
j (xj) = wk

j vk
j (xj) (8)

i.e. the unknown weight is combined with the known value function of negotiator k. In the case of
unknown weights and the value function considered as linear it is defined as

V k
j (xj) = wk

j vlin
j (xj). (9)

In these two cases, the constraints are linear and define a feasible set of weights Wk (a polytope)
which can be considered as possible preference parameters of negotiator k.

In the third case, with unknown weights and unknown values, the values for V k
j (xj) can directly be

used as variables in the model, as in [8]. Let sj denote the number of different values for xj considering
all the potential alternatives x(1), ..., x(m) (m denoting the number of alternatives). Let us define a

vector of s1 + ...+ sn variables vk
i,j = V k

j (x
(i)
j ). These variables can be used in constraints of type (6) and

(7). Furthermore, if xk
j represents the best possible outcome in attribute xj for party k, then considering

vk
j (xk

j ) = 1 we will have V k
j (xk

j ) = wk
j .

If we assume that values are ordered in decreasing order of preference, i.e. that vk
1,j represents V k

j (xk
j ),

we can express (2) as:

1 ≥ wk
j = vk

1,j > vk
2,j > . . . > vk

sj ,j ≥ 0 and

n
∑

j=1

vk
1,j = 1. (10)

Thus, we are dealing with linear problems even in the case where both the weights and the values are
unknown.

When each attribute’s value function is considered to be known or is replaced by a linear approxi-
mation, the constraints (6), (7), and (2) (plus possibly other ones) define a polytope Wk of admissible
weights. When each attribute’s value function is considered to be unknown, the constraints (6), (7), and
(10) (plus possibly other ones) define a feasible set of values we denote by Mk (also a polytope). In
either case, the polytope can be considered as the set of possible preference parameters of negotiator k.
It should be noted that we assume here that all actions of a negotiator, and all preference statements
provided by a negotiator, are consistent with a true value function of the form (1). If this is not the
case, and constraints derived from the negotiator’s choices contradict each other, these sets might become
empty.

In the next section will use a general notation (w, v) ∈ (Wk, Mk) with the following meaning:

(w, v) ∈ (Wk, Mk) ⇔







(wk
1 , ..., wk

n) ∈ Wk if vk
j (.) is known or is replaced

by a linear approximation.
(vk

1,1, ..., v
k
s1,1, ..., v

k
sn,n) ∈ Mk if vk

j (.) is unknown.
(11)

2.3 Criteria for selecting alternative solutions

The mediator can use information of one of the types presented above to suggest one or several alternative
solutions to the negotiators, with a good potential to be accepted by both. To guide these proposals,
several criteria can be applied. We start by presenting these criteria, and then in the next section we will
present three different approaches how such proposals can be obtained.

If several alternatives are to be proposed, the dominance criterion is a natural starting point. In
this case, the mediator could identify all alternatives which dominate the currently proposed compromise
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x(c) or the status quo of the negotiation (we are using this term for the case of two offers on the table).
Conversely, alternatives which are dominated by the proposed compromise or the status quo can be
eliminated from further consideration.

Let x(r) denote the reference (or reservation) point below which the negotiators will not accept any
alternative. If a compromise has been reached then x(r) = x(c). If a compromise has not been reached
and the two last offers on the table (the status quo) are x(o1) (offered by negotiator 1) and x(o2) (offered
by negotiator 2), then x(r) will refer to the (V 1(x(o2)), V 2(x(o1))) point in the value space, i.e., a fictitious
alternative yielding for each negotiator the amount that was offered by the opponent. The alternatives
to be proposed by the mediator should, for both negotiators, be better than x(r). Since preference
information is incomplete, one can distinguish here between alternatives which surely dominate x(r) (i.e.
which are better for both parties under all preference parameters still considered possible), alternatives
which possibly dominate x(r) (i.e. which are better for both parties for at least one vector of preference
parameters for each party), and alternatives that cannot dominate x(r).

As a second criterion, the alternatives to be proposed should also be Pareto efficient concerning the
value they yield to each party. Once again, under incomplete information we can talk about alternatives
that are surely efficient, alternatives that are possibly efficient, and alternatives that cannot be efficient
(because they are surely dominated by another alternative).

If the negotiator wants to present only one (or a small number) of alternatives, additional criteria
can be used to guide this selection. Several such criteria can be developed, depending on whether the
mediator is more interested in finding an efficient solution (which maximizes total value creation) or an
equitable solution, which tries to balance the interests of the parties involved. In this paper, we consider
the following mediation criteria [23]:

1. The max-sum criterion, which maximizes the sum of values of both parties and thus selects the
alternative which is best according to total efficiency.

2. The max-min PoP criterion, which maximizes the minimum payoff, i.e. the payoff to the negotiator
who receives the lowest payoff from the negotiation result. To make payoffs comparable between ne-
gotiators, they are standardized within the possible range by calculating the Proportion of Potential
(PoP).

Thus, the max-sum criterion selects the alternative (x) which maximizes

V 1(x) + V 2(x) (12)

and the max-min PoP criterion maximizes

min
k

V k(x) − V k
min

V k
max − V k

min

(13)

where V k
max is the best payoff that player k could achieve considering the set of alternatives being con-

sidered (better for both parties than x(r)), and V k
min is a lower limit on the payoffs considered for player

k for the same set of alternatives.
Naturally, other mediation criterion that can be used, e.g., maximizing the product of excesses rela-

tively to x(r), or the Nash bargaining solution. Although generalization to those other criteria is straight-
forward, we will restrict our analysis in this paper to the max-sum criterion and the max-minPoP criterion,
because they lead to linear programming models while other criteria would require nonlinear models.

When we consider incomplete information on preferences we can distinguish different classes of al-
ternatives: Alternatives that are surely optimal for a criterion maximize that criterion for all possible
preference parameters. Alternatives that are potentially optimal maximize the criterion for some of
the possible preference parameters, while the maximum is obtained with another alternative for some
other possible parameter values. Alternatives are called surely sub-optimal if no preference parameter
(w, v) ∈ (Wk, Mk) exists at which the alternative maximizes the criterion under consideration.

7



3 Approaches to suggest potential agreements

3.1 Extreme parameters approach

As a first approach, we formulate optimization models to detect which alternatives surely meet the
mediator’s requirements described in the previous section, as well as which alternatives surely do not
meet these requirements. Other alternatives can exist that will meet each requirement, or not, depending
on the parameter values. We call this first method the “extreme parameters” approach, because we are
looking for parameter values which lay on the boundary of the feasible set, leading to extreme value
differences.

To find out whether an alternative is surely better or surely worse than the reference, a Linear Program
(LP) can be solved. Recall that V k(x) is the value of alternative x for negotiator k (k = 1, 2). Let mk

ij

denote the solution of the following LP:

max{V k(x(i)) − V k(x(j))}
(w, v) ∈ (Wk, Mk)

(14)

Whenever mk
ij < 0, there is no possible combination of parameters which would make alternative x(i)

at least as good as x(j) for negotiator k, thus we can say that x(j) is surely better than x(i) (or x(i) is
surely worse than x(j)) with respect to the available information about negotiator k’s preferences.

Given the sets of feasible parameter values (W1, M1) and (W2, M2), it is possible to determine, for
each negotiator, which alternatives are surely better than the reference x(r) and which alternatives are
surely worse than this reference. The mediator would like to propose an alternative x(i) such that m1

ri < 0
and m2

ri < 0. The problem is that it can happen that there are no alternatives that are surely better
than the reference for both negotiators. Nevertheless, this approach is a good starting point: if there are
alternatives that are surely worse than the reference point for one of the negotiators, then the mediator
can discard these alternatives, i.e., we can eliminate the alternatives x(i) for which m1

ir < 0 or m2
ir < 0.

These calculations are analogous to those proposed by Dias and Clímaco [5] to obtain binary robust
conclusions. Hence, only the alternatives that are potentially at least as good as the reference for both
negotiators are candidates to be proposed to them.

The LP (14) can also be used to compare any other pairs of alternatives, besides pairs containing the
reference x(r). This allows to check for Pareto efficiency. For a pair (x(i), x(j)), if m1

ji < 0 and m2
ji < 0,

then x(j) is surely worse than x(i) for both negotiators and hence x(j) is surely not Pareto efficient. Thus,
it can also be discarded.

Let P denote the index set of the remaining candidate alternatives, after discarding alternatives
surely worse than the reference point for any of the negotiators and alternatives surely not belonging to
the Pareto frontier. To discriminate between alternatives in P the mediator might also try to identify
which ones can be potentially optimal according to a mediation criterion. For the max-sum criterion the
following LP is solved for each alternative x(i) ∈ P :

max δ

V 1(x(i)) + V ′2(x(i)) − [V 1(x(j)) + V ′2(x(j))] − δ ≥ 0, ∀j ∈ P, j 6= i
(w, v) ∈ (W1, M1)
(w′, v′) ∈ (W2, M2)
δ free

(15)

If this LP yields δ ≥ 0 at the optimal solution then x(i) is potentially optimal according to the max-
sum criterion; otherwise, it cannot be the best one according to that criterion. Let us note that if we
tried to maximize the sum of the values, this would not lead to acceptable results (for more details see
Appendix A). To perform a similar analysis considering another mediation criteria requires introducing
binary variables (for the criterion of maximizing the minimum PoP) or nonlinear programming (for
criteria involving products).

3.2 Central parameters approach

A second approach the mediator might follow, pursuing the objective of finding good potential alterna-
tives, consists in inferring a representative combination of parameter values from (W1, M1) and (W2, M2),
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and then use these surrogate values to find alternatives that are better than the reference point for both
negotiators, are efficient, and optimal according to a mediation criterion. Of course, the conclusions that
hold for such a surrogate parameter vector do not necessarily hold for the true parameter values that
would be set in the course of a thorough and explicit elicitation process. Nevertheless, studies in the
context of additive value functions (e.g., [1, 24]) show that using a combination of parameter values that
is central with respect to the feasible set boundaries yields good approximations. The more information
the mediator has, in terms of constraints to the parameter values, the more accurate this approximation
will be.

One possible approach to find a central combination of parameter values is to solve a LP of the max-
min type to find a point such that the smallest slack in a constraint of the form (6) is as large as possible.
This is an approach used for inferring parameters of multicriteria aggregation approaches (e.g., [10, 21]).
Let Ak denote a coefficient matrix and let b denote a right-hand side vector such that (w, v) ∈ (Wk, Mk)
if and only if Ak.(w, v) ≤ b. Let s be a vector containing one constant per constraint, equal to 1 if the
constraint is of type (6) and equal to 0 otherwise. The following LP can then be used to infer a central
parameter vector with respect to the inequality preference statements, for k ∈ {1, 2}:

max∆k

Ak.(w, v) + s∆k ≤ b
(16)

The variables of this problem are the ∆k scalar (representing the smallest slack to be maximized),
the weights, and possibly the values. The optimal solution will be a kind of “safest” vector, which is as
far as possible from any boundary. Because of that, our objective is to maximize the slack. Note that
all constraints are formulated in terms of multi-attribute value, which is scaled between zero and one,
and thus have a comparable magnitude. This makes it possible to compare deviations across constraints
without further rescaling.

A different approach for obtaining a central combination of parameter values is to compute the
centroid of (Wk, Mk) in an exact manner or using an approximation. Exact methods exist for some types
of polytopes [25]. An approximation to the centroid of any polytope can however be easily obtained using
Monte-Carlo simulation, as in the computation of central weights used in the SMAA method [15].

Let (w1, v1)∗ denote the central parameter vector obtained for negotiator 1, and let (w2, v2)∗ denote
the analogous result obtained for negotiator 2. Using (w1, v1)∗ and (w2, v2)∗ as surrogate parameter
values it is possible to compute which alternatives are better than the reference point for both negotiators,
and which one among those maximizes the mediation criterion. In contrast to the extreme parameters
approach, maximizing the minimum PoP or criteria involving products is straightforward in the central
parameters approach, because it is only necessary to compute the respective objective function for each
alternative using one parameter vector. In addition to the optimal alternative for the mediation criterion,
the set of all other efficient solutions for the central parameter vector can also be determined easily.

Since the parameter vector used in this approach is only an approximation, it might not reflect the
true preferences of negotiators. Thus, a situation can arise in which an negotiator finds an alternative
x proposed by the mediator unacceptable. From such a statement, the mediator can conclude that
alternative x has inferior value than the reference point x(r) for negotiator k. In this case it is possible to
change (Wk, Vk) by introducing this new information in the form of a constraint V k(x) < V k(x(r)) and
compute new central parameter values for the new smaller polytope.

3.3 Domains approach

The domain criterion, introduced by Starr [26], uses the volume of parameters space in which an alterna-
tive remains optimal to indicate the sensitivity of a solution. The use of this criterion for multi-attribute
decision problems was proposed by Charnetski and Soland [3], who used Monte Carlo simulation to ob-
tain approximations for the volume of the domain. SMAA methods [16] are also based on exploring the
weight space in order to describe the preferences that would make each alternative the most preferred
one, or that would give a certain rank for a specified alternative. The method proposed by Vetschera [30]
to measure the extent to which information about the preferences is available during the negotiation is
also based on the domain criterion.

Our third approach also consists in exploring the parameter space in order to measure the relative
volume of the feasible set of parameter values where some conditions are verified. Let S denote the set
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of feasible parameter values for the two parties given the information currently available:

S = {(w1, v1, w2, v2) ∈ (W1, M1) × (W2, M2)}.

Let S(C̃) denote the subset of S where condition C̃ holds:

S(C̃) = {(w1, v1, w2, v2) ∈ (W1, M1) × (W2, M2) : C̃ is true}.

Let V ol(S(C̃)) denote the volume of set S(C̃) and let V ol(S) denote the volume of set S. The
expression

V ol(S(C̃))/V ol(S)

then denotes the relative volume of the subset in which condition C̃ holds as compared to the volume
of the entire feasible region. If we further assume that parameter vectors are uniformly distributed, this
ratio can be interpreted as the probability that condition C̃ is fulfilled for any randomly drawn feasible
parameter vector.

The relative volume of the parameter set in which each alternative x(i) is at least as good as the
reference for both negotiators can be computed as

V ol
(

S
(

V 1(x(i)) ≥ V 1(x(r)) ∧ V 2(x(i)) ≥ V 2(x(r))
))

/V ol(S).

Note that this relative volume is equal to zero for alternatives that are surely worse than x(r), and is equal
to one for alternatives that are surely better than this reference. This approach therefore complements
the extreme values approach by providing additional information about alternatives which are between
the two extreme cases of being definitely better or definitely worse than the reference alternative and
indicates the probability that, given the preference information collected so far from the negotiators, both
negotiators will prefer alternative x(i) over the reference alternative.

It is also interesting to determine the relative volume of the parameter set in which each alternative
is Pareto efficient: V ol

(

S(x(i) is efficient)
)

/V ol(S).
The same approach can also be used to determine the relative volume of the subset of parameter

space where each alternative x(i) is optimal according to the different mediation criteria (maximizing the
sum of the values, maximizing the minimal PoP, etc.) as V ol

(

S(x(i) is optimal)
)

/V ol(S). For the sum
of values criterion this relative volume is:

V ol
(

S(V 1(x(i)) + V 2(x(i)) ≥ V 1(x(j)) + V 2(x(j)), ∀j 6= i)
)

/V ol(S).

The domains approach can also be used interactively in a similar way as the central parameters
approach. If a negotiator does not accept one alternative it is possible to redefine S by introducing a new
constraint to eliminate this alternative and calculate again the domain volumes.

As the mediator should be informed of the relative volumes of many different results, we suggest to
use Monte-Carlo simulation to approximate volumes. Exact methods for computing volumes also exist
(see, e.g., [19, 20, 28]), but are more computationally demanding and can be used only for one question
at a time.

The simulation generates a large number niter of random instances of the two negotiators’s parameter
values satisfying all the constraints. For each vector, all properties C̃ of interest can be evaluated simul-
taneously, i.e. which alternatives are better than the reference x(r) for both of the negotiators, which
alternatives are efficient, and which alternative is the best one according to each mediation criterion
(as it is also possible to analyze several mediation criteria simultaneously). Considering the results for
all these instances, it is possible to indicate, for each alternative x, the proportion of instances where
each of the above mentioned conditions was verified for that particular alternative. In order to allow for
(relative) volumes to be interpreted as probabilities, a uniform distribution of parameter vectors must be
used for the simulations. In the experiments described in the next section, scaling weights were generated
according to an uniform distribution using the process described in [2].

When we interpret the volumes as probabilities, it might also be interesting to compute conditional
probabilities, e.g., the probability that an alternative is optimal for a mediation criterion under the
condition that it is better than the reference point and efficient. Such conditional probabilities can also
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be obtained from the simulation by recording the number of instances in which both conditions are
fulfilled and calculating

p(C̃|D̃) = p(C̃&D̃)/p(D̃) (17)

where C̃ and D̃ represent the two conditions to be analyzed.

3.4 Comparison of the three approaches

In the last subsections, we proposed three approaches to help a mediator who observes a dance of the
packages with incomplete information. Table 1 summarizes the different intervention possibilities for a
mediator, which altogether can constitute a process with three steps.

Concept / Approach Extreme Central Domains

Step 1: Comparison to

reference point in

value space

1a. identify alternatives
which are surely
better than the
reference point for
both negotiators

1b. eliminate alternatives
which are surely
worse than the
reference point for
one negotiator (or
both)

1’. identify alternatives
which are better
than the reference
point for both
negotiators, as-
suming the central
parameter values
(LP solution or
centroid)

1”. find the probability
that each alterna-
tive is better than
the reference point
for both negotiators

Step 2: Pareto Effi-

ciency

2a. identify alternatives
which are surely
Pareto efficient

2b. eliminate alternatives
which are surely not
Pareto efficient

2’. identify alternatives
which are Pareto
efficient, assum-
ing the central
parameter values
(LP solution or
centroid)

2”. find the probability
that each alterna-
tive is Pareto effi-
cient

Step 3: Optimal alter-

native using me-

diation criterion

3a. identify alternatives
which are surely
optimal for the
mediation criterion
(for all parameter
vectors)

3b. identify alternatives
which might be
optimal for the
mediation criterion
(at least for one
parameter vector)

3’. identify alternatives
which are optimal
for the mediation
criterion, assum-
ing the central
parameter values
(LP solution or
centroid)

3”. find the probability
that each alterna-
tive is optimal for
the mediation crite-
rion

Table 1: Summary of the different analyses that can be performed

The rows of Table 1 express the complementary concerns of a mediator. A mediator would like to
propose an alternative likely to be accepted, hence better than the reference point for both negotiators.
Three approaches can then be used:

• The extreme parameters approach will compute exactly which alternatives are surely better (i.e.
better for all parameter vectors) than the reference point for both negotiators simultaneously (anal-
ysis 1a). However, it might turn out that no such alternatives exist. The same approach can be used
to determine exactly which alternatives are possibly better (i.e. better for at least one parameter
vector) than the reference point for both negotiators simultaneously, allowing to eliminate all those
alternatives that cannot achieve this condition (analysis 1b). The advantage of this approach is
that the conditions of being surely better or surely worse are exactly determined. Its disadvantage
is that it requires solving nalt LPs for each analysis (where nalt represents the number of possible
alternatives, i.e. the number of different combinations of issue levels).
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• The central parameters approach will find which alternatives are better than the reference point for
both negotiators simultaneously, assuming a central parameter vector (analysis 1’). This vector can
be computed solving a LP maximizing the minimum slack or computing a centroid. An advantage of
this approach is that only two LPs need to be solved (one for each negotiator), or only two centroids
have to be computed. Another advantage is that it provides a clear-cut partition of the alternatives
set: those better than the reference, and those worse than the reference. Its disadvantage is that the
central vector is just an approximation, which can be a rather coarse one if information is scarce.
Hence, there is no guarantee that the supposedly better alternatives will really have higher value
than the reference point, for both negotiators.

• The domains approach will compute the probabilities that each alternative is better than the refer-
ence point for both negotiators simultaneously (analysis 1”). Some alternatives will have a very low
probability and might be discarded from further analysis. The advantage of this approach is that
it is straightforward to compute the probabilities using Monte-Carlo simulation, with a confidence
level as high as needed (it is a matter of how many iterations are used for the simulation). Its
disadvantage is that the result will not be as clear cut as in the previous case.

Concerning the second row of Table 1, a mediator would like to propose an alternative on the Pareto
efficient frontier. Again, the same three approaches can then be used:

• The extreme parameters approach will compute exactly which alternatives are surely efficient (anal-
ysis 2a), or surely not efficient (analysis 2b), allowing to eliminate the latter. Its disadvantage is
that it requires solving 2 ∗nalt ∗ (nalt −1) LPs for each analysis (this is a worst case bound, because
as soon as an alternative is deemed surely inefficient it is no longer necessary to include it in the
subsequent comparisons). The advantage of this approach is that the conditions of being surely
efficient or surely inefficient are exactly determined.

• The central parameters approach will find which alternatives are efficient, assuming a central pa-
rameter vector computed solving a LP or computing a centroid (analysis 2’). An advantage of this
approach is that only two LPs or centroid computations are needed. It also provides a clear-cut
partition of the alternatives set between efficient and inefficient ones. Its disadvantage is that the
central vector is just an approximation, and therefore there is no guarantee that the partition is
perfectly accurate.

• The domains approach will compute the probabilities that each alternative is efficient (analysis 2”).
Alternatives with a very low probability of being efficient might be discarded from further analysis.
The advantage and the disadvantage are the same as for analysis 1”.

Finally, concerning the third row of Table 1, a mediator could have the requirement of proposing,
among efficient alternatives, an alternative that would be optimal according to a mediation criterion such
as the sum of the values (pursuing maximal enlargement of the pie) or the minimum PoP (pursuing
equity):

• The extreme parameters approach will compute exactly if there exists an optimal alternative for
all parameter values (analysis 3a), which is not very likely, and will determine exactly which alter-
natives might be optimal (analysis 3b). As an advantage, the conditions of being surely optimal or
potentially optimal are exactly determined. However, the most likely result will be finding a set of
potentially optimal alternatives, with no way of knowing which one is better. Furthermore, the use
of linear programming is limited to the case where the mediation criterion is the sum of values.

• The central parameters approach will find the optimal alternative, assuming a central parameter
vector computed solving a LP or computing a centroid (analysis 3’). An advantage of this approach
is that a single alternative will be identified (except for rare cases where multiple alternative optima
might exist). A second advantage is that it is not computationally difficult to use the minimum PoP
as a mediation criterion, or a criterion involving products. However, as the central vector is just an
approximation, there is no guarantee that the supposedly optimal alternative is indeed optimal.
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• The domains approach will compute the probabilities of each alternative being optimal (analysis 3”).
Alternatives with a very low probability of being efficient might be discarded from further analysis.
The advantage of this approach is that the probabilities can be straightforward to compute using
Monte-Carlo simulation, and the probabilities will allow to identify the most promising alternatives
among the set of potentially optimal ones, even if the the mediation criterion is the minimum
PoP or a criterion involving products. A clear cut result is not very likely, but we still have more
information than in analysis 3b, because we know the probabilities.

All the presented approaches provide interesting and diversified results. The choice of the approaches
to be used depends on the mediator’s goals, but we suggest to use different approaches complementarily
in sequence.

The mediator can start by addressing the concern of finding alternatives that are considered by both
negotiators to be an improvement relatively to the reference point. The mediator can reduce the set
of potentially interesting alternatives, eliminating those surely worse than the reference for one of the
negotiators (analysis 1b), or those with a very low probability of being better than the reference for
both negotiators (analysis 1”). In a second step, the mediator can eliminate alternatives that are surely
inefficient (analysis 2b) or very unlikely to be efficient (analysis 2”), the latter approach being preferable
if there remain many alternatives. To detect efficiency, each of the alternatives that was not eliminated
in the previous step would be compared with the original set of alternatives. Finally, to choose a single
alternative to propose to both negotiators, the mediator can use analysis 3’ to propose the optimal
solution using central parameters, or use analysis 3” to pick the alternative that is optimal with highest
probability. For this purpose, more than one mediation criterion can be considered.

As referred previously, this type of overall approach can be used in an interactive way. If the alternative
proposed by the mediator is accepted, the negotiation ends successfully. However, it can happen that the
alternative proposed by the mediator is not accepted by one negotiator (or both). If a negotiator k states
that a proposed solution x(p) is not better than the reference x(r), then the constraint V k(x(p)) < V k(x(r))
can be added to the definition of (Wk, Mk). Then, the analysis can be repeated to find a new solution.
It might happen that negotiator was insincere (acting strategically) when saying x(p) is not better than
the reference, hoping a better alternative is proposed by the mediator. However, since the mediator
will incorporate the constraint V k(x(p)) < V k(x(r)) that is contrary to this negotiator’s preferences,
possibly excluding the negotiator’s true vector of preference parameters from the feasible region, it might
happen that the following alternatives proposed will not be as good as the previous one. For this reason,
manipulation attempts might eventually lead to miss an opportunity to improve the first proposal by the
mediator.

Considering the three types of approaches corresponding to the three columns of Table 1, it is to be
noted that running a Monte-Carlo simulation can be sufficient to implement them all. Indeed, Monte-
Carlo simulation can be used to compute probabilities (relative domains) for different conditions with
high accuracy. For an accuracy that can be as high as needed (the large the number of iterations, the
higher is the accuracy), the conditions with probability equal to 0 or to 1 will correspond to conditions
that “surely” do not hold or that to conditions that “surely” hold, respectively. This corresponds to
the extreme parameters approach. On the other hand, averaging the instances of random input values
for each parameter generated generated in the simulation over the number of iterations will define an
accurate approximation of the centroid of (W1, M1) and (W2, M2). Using these centroids corresponds to
the central parameters approach.

4 Illustrative Example

4.1 Nelson vs Amstore case

4.1.1 Introduction

To illustrate the approaches presented in last section let us consider an example introduced by Raiffa [23].
In this example, there are two parties in a negotiation: Nelson and Amstore. Nelson has a construction
firm and he negotiates with a retail chain (Amstore) to build a new store for them. There are three
issues: price (10, 10.5, 11, 11.5 or 12 thousand dollars), design (basic or improved) and time (20, 21, 22,
23, 24, 25 or 26 days). Combining these issue levels yields a total of 70 possible alternatives (see Table
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2). For Nelson, price and time are maximizing issues and design is a minimizing one, while for Amstore
it is the opposite. Therefore, the preferred alternative for Amstore is alternative 1 (x(1)), whereas the
preferred alternative for Nelson is alternative 70 (x(70)).

Table 2: Alternatives.

4.1.2 Complete information

Suppose that we have complete information, i.e., the mediator knows the value of each level and knows
the weights of the three issues, for both negotiators (see Table 3). Thus, the value of each alternative is
known. To simplify we multiply the value of each issue level, for each party, by 100. So, the global value
of each alternative, for each party, is a value between 0 and 100. Alternatives 1-5, 9, 15-19, 22-27, 37-42,
51-56 and 67-70 are efficient.

Table 3: Complete Information.

Suppose that Amstore begins proposing alternative 1, Nelson answers proposing alternative 70, Am-
store proposes alternative 8, and so on. The process ends when Nelson proposes alternative 44, which
Amstore accepts (see Table 4). Alternatives 27-28, 37-42, 45-56 and 58-70 are better than the compromise
solution for Nelson and alternatives 1-40 and 43 are better than the compromise solution for Amstore.
Considering the complete information in Table 3 was available, we would know that alternative 44 is in-
efficient, and that alternatives better for both parties than the compromise alternative exist: alternatives
27-28 and 37-40 (see Figure 2). Among these alternatives, only alternative 28 is not efficient.

In this illustration we consider the mediation criteria maximizing the sum of the values and maximizing
the minimal PoP (relatively to the compromise alternative). Between the efficient alternatives that
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Amstore Nelson

x(1) x(70)

x(8) x(67)

x(17) x(53)

x(20) x(42)

x(31) x(46)

x(32) x(44)

Table 4: Sequence of proposals.

Figure 2: Dance of the Packages.

are better for both parties than the compromise solution, depending on the objective, it is possible to
recommend different alternatives. If the objective is to maximize the sum of the values, alternative 39 is
the best one, with a sum of the values equal to 136 (alternative 25 has also sum of the values equal to 136,
but it is not better for both parties than the compromise solution). If the objective is to maximize the
minimal PoP (relatively to the compromise alternative), alternative 38 is the best one, with a minimal PoP
of 0.64. To determine the minimal PoP we used the maximum value attained by each party considering
that the chosen alternative needs to be better for both parties than the compromise solution. In Table 5
it is possible to see the value (value for Nelson, value for Amstore, sum of the values and minimal PoP) of
the alternatives that are better for both parties than the compromise solution. Given these results, and
depending on his judgement, a mediator would propose alternative 38 or alternative 39 to the negotiating
parties.

Nelson Amstore Sum of the values PoP

x(27) 60 67 131 0.07

x(28) 65 60 125 0.14

x(37) 68 64 132 0.36

x(38) 72 63 135 0.64

x(39) 75 61 136 0.54

x(40) 77 57 134 0.23

Table 5: Values of the alternatives that are better for both parties than the compromise solution.
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4.1.3 Incomplete Information

Let us now consider the analysis of a mediator who knows the available alternatives (Table 2) and
witnesses the sequence of proposals (Table 4), but does not know the exact parameter values of each
negotiator displayed in Table 3. We will consider the three levels of uncertainty presented in subsection
2.1: only weights uncertain with known values (level 1), weights uncertain with value function assumed
to be linear (level 2), and uncertain weights and value functions (level 3).

In the second case, we approximate the issue values considering that the value functions of each
negotiator are linear. For Nelson we have, for price: V N

price(10) = 0 and V N
price(12) = 1, thus we can

conclude that V N
price(x) = 0.5x − 5 (so V N

price(10.5) = 0.25, V N
price(11) = 0.5 and V N

price(11.5) = 0.75). For

time: V N
time(20) = 0 and V N

time(26) = 1, thus we can conclude that V N
time(x) = 1

6x− 10
3 (so V N

time(21) = 1
6 ,

V N
time(22) = 1

3 , V N
time(23) = 0.5, V N

time(24) = 2
3 and V N

time(25) = 5
6 ). Similarly for Amstore we have

V A
price(x) = −0.5x + 6 and V A

time(x) = − 1
6x + 13

3 .
In the third case, we consider that value functions lie within two limits, taking the linear function as

a lower limit and the concave function v(x) = a + b(−e−c∗x) as the upper limit. For example, for Nelson
and relatively to price:

{

V N
price(10) = 0

V N
price(12) = 1

⇔

{

a + b(−e−c∗10) = 0
a + b(−e−c∗12) = 1

⇔

{

a = 1
e−10c

−e−12c ∗ e−10c

b = 1
e−10c

−e−12c

We decided to use c = 5 for the upper limit so that the real values belong to the interval with the
linear function as lower limit and the concave function as upper limit, but without considering that value
functions could be extremely concave. Figure 3 shows the true value functions of Nelson and Amstore
and also the inferior and superior limits.

Figure 3: Value functions.

Assuming that a mediator would know the possible alternatives (Table 2), as well as the offers that
had been made leading to a compromise (Table 4), he could set additional constraints. To start with, we
know which are the best and the worst alternatives for Nelson and Amstore:

V N
price(10) + V N

design(improved) + V N
time(20) = 0,

V N
price(12) + V N

design(basic) + V N
time(26) = 100,

V A
price(12) + V A

design(basic) + V A
time(26) = 0,
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V A
price(10) + V A

design(improved) + V A
time(20) = 100.

For the case with unknown values, we assume preferences are monotonous, such that 1:

V N
price(10) < V N

price(10.5) < V N
price(11) < V N

price(11.5) < V N
price(12),

V N
design(basic) > V N

design(improved),

V N
time(20) < V N

time(21) < V N
time(22) < V N

time(23) < V N
time(24) < V N

time(25) < V N
time(26),

V A
price(10) > V A

price(10.5) > V A
price(11) > V A

price(11.5) > V A
price(12),

V A
design(basic) < V A

design(improved),

V A
time(20) > V A

time(21) > V A
time(22) > V A

time(23) > V A
time(24) > V A

time(25) > V A
time(26).

We assume that each proposal presented by a negotiator has for him lower value than the last proposal
presented earlier by himself. We obtain the following restrictions of type (6):

V N (x(70)) > V N (x(67)) > V N (x(53)) > V N (x(42)) > V N (x(46)) > V N (x(44)), (18)

V A(x(1)) > V A(x(8)) > V A(x(17)) > V A(x(20)) > V A(x(31)) > V A(x(32)). (19)

We also assume that a negotiator prefers his proposals to the proposals of the opponent. For Nelson
and Amstore we have 2:

V N (x(44)) > V N (x(32)),

V N (x(44)) > V N (x(31)),
V N (x(44)) > V N (x(20)),

V N (x(44)) > V N (x(17)),
V N (x(44)) > V N (x(8)),

V N (x(44)) > V N (x(1)),

(20)

V A(x(32)) > V A(x(44)),

V A(x(32)) > V A(x(46)),
V A(x(32)) > V A(x(42)),

V A(x(32)) > V A(x(53)),
V A(x(32)) > V A(x(67)),

V A(x(32)) > V A(x(70)).

(21)

To illustrate the use of explicit preference information, suppose that Nelson says that alternative 25
is as good as alternative 36, and alternative 39 is as good as alternative 50. Let us also assume that
Amstore says that alternatives 50 and 42 are equivalent, and the same occurs for alternatives 36 and 37.
We obtain the following restrictions of type (7):

|V N (x(25)) − V N (x(36))| ≤ ǫ, (22)

|V N (x(39)) − V N (x(50))| ≤ ǫ, (23)

|V A(x(50)) − V A(x(42))| ≤ ǫ, (24)

1To ensure that the inequality is strictly we consider that, for example, V N
price(10) < V N

price(10.5) ⇒ V N
price(10) + 1 ≤

V N
price(10.5) .

2Also for constraints (18)-(20) we consider that the inequality is strict.
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|V A(x(36)) − V A(x(37))| < ǫ. (25)

For these constraints we used ǫ = 10.
Our objective is, with the incomplete information indicated above, to try to suggest to the negotiators

one efficient alternative, better for both parties than the compromise alternative. The results obtained
by following the three approaches we proposed are presented in the next sections.

4.2 Extreme Parameters Approach

Remember that in this approach it is necessary to solve 2 × (70 − 1) LPs of the type (14) to check if
there are alternatives that are surely better than the compromise solution and to eliminate alternatives
that are surely worse. The same type of LP can be used to compare any other pair of alternatives
to check Pareto efficiency. Considering the set of the remaining alternatives - set P (after discarding
alternatives surely worse than the compromise solution and alternatives surely not belonging to the
Pareto frontier) it is possible to solve LPs of the type (15) to check if each alternative in P is potentially
optimal according to the criterion of maximizing the sum of the values. We considered the three types of
incomplete information, the constraints regarding the sequence of proposals (constraints of type (6)) and
the constraints (22)-(25) regarding the equivalence of alternatives (constraints of type (7)). In Tables 6
and 7 it is possible to see the alternatives that are surely worse and alternatives that are surely better
than the compromise solution, respectively, considering constraints of type (6) and constraints of type
(6)+(7), and the three types of incomplete information.

Considering that only the weights are uncertain (values known), and considering the constraints
related to the sequence of proposals, the set of the non eliminated alternatives consists of of 24 alternatives
(alternatives 9-14, 22-28, 33-42 and 50), about 34% of the initial number of alternatives. For example,
max{V N (x(1))−V N (x(44))} = −42.1436, so, alternative x(1) can be eliminated, because it is surely worse
than the compromise for Nelson. Considering constraints related to the sequence of proposals and the
equivalence of alternatives the results are very similar. The set of the non eliminated alternatives is made
of 21 alternatives (alternatives 12-14, 22-28, 33-42 and 50). Thus, the additional information obtained
from explicit indifference statements has very little effect in this case.

So far, we have identified alternatives which are potentially (i.e. for at least one parameter vector)
better than the compromise. We now analyze which alternatives are surely (i.e. for all parameter vectors)
better than the compromise (Table 5). We can see that alternatives 27, 37 and 38 are pointed as being
surely better than the compromise solution for Amstore, alternative 40 is pointed as being surely better
than the compromise solution for Nelson, alternative 28 is not pointed as being surely better than the
compromise solution for none of the parties and alternative 39 is pointed as being surely better than the
compromise solution for both parties. As alternative 39 is pointed as being better than the compromise
for both parties, this alternative can be a good suggestion. However, it should be noted that in realty
there are more alternatives which are better than the compromise for both parties. But since there are
still some parameter vector considered possible for which these alternatives appear to be worse than the
compromise, they are not indicated as being surely better than the compromise.

In a second step, we also want to compare all the pairs of the remaining alternatives, to check Pareto
efficiency. For example, considering constraints of type (6)+(7) it is also possible to eliminate alternative
13 (e.g. max{V k(x(13) − V k(x(23))} < 0, k=1,2), alternative 14 (e.g. max{V k(x(14)) − V k(x(23))} < 0,
k=1,2), alternative 34 (e.g. max{V k(x(34))−V k(x(38))} < 0, k=1,2), alternative 35 (e.g. max{V k(x(35))−
V k(x(39))} < 0, k=1,2), alternative 36 (e.g. max{V k(x(36)) − V k(x(26))} < 0, k=1,2) and alternative 50
(e.g. max{V k(x(50)) − V k(x(40))} < 0, k=1,2). None of the alternatives is surely efficient. Between the
15 non-eliminated alternatives of the set P (alternatives 12, 22-28, 33 and 37-42), all can maximize the
sum of the values, because for all x(i) ∈ P , max δ > 0.

The results obtained considering known values are very similar to the ones obtained considering
unknown values (with the main difference that in the two cases where we considered unknown values,
alternative 39 is not pointed as being better than the compromise solution for both parties), we will
not comment the second results in detail. We will only refer that, for example, considering weights
uncertain and value functions with unknown parameters and using the two types of constraints at the
same time, comparing all the pairs of the remaining alternatives, to check Pareto efficiency, did not give
any additional information, because all can be Pareto efficient and all can maximize the sum of the values.
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Table 6: Alternatives that are surely worse than the compromise.

4.2.1 Some comments

In this example changing the type of incomplete information did not affected too much the results.
Furthermore, considering the constraints of type (6) and those of type (7), the results are not also very
different from the ones obtained considering only constraints of type (6). In all the cases there are many
alternatives that can be eliminated because they are surely worse than the compromise one. Only in
the case in which the values were considered known we were able to find one alternative that is surely
better than the compromise alternative for both parties. Note that, even considering known values
and using the two types of constraints, comparing all the pairs of the remaining alternatives, to check
Pareto efficiency, did not help to eliminate a lot of alternatives (considering weights uncertain and value
functions with unknown parameters it was not possible to eliminate any alternative). Comparing the
alternatives which can be better than the compromise and can be Pareto efficient, and trying to see which
of these alternatives can maximize the sum of the values, did not give any additional information. In
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Table 7: Alternatives that are surely better than the compromise.

this case, in the end of the analysis, the mediator would have a set with 15 alternatives to recommend
to the negotiators. Note that this is the case in which more information is required from negotiators.
Even in this case, comparing the non-eliminated alternatives to check Pareto efficiency and seeing what
alternatives can be optimal according the criterion maximizing the sum of the values did not give a lot of
additional information, so we did not repeat this analysis for the other cases. As presented in Section 3.4
this approach can be a good starting point, eliminating alternatives surely worse than the compromise
for both parties. To recommend one alternative, between the remaining alternatives, it is better to use
one of the other two approaches.

4.3 Central Parameters Approach

The central parameters approach consists in inferring a representative combination of the parameters
values, from the sets of admissible values, and use these values to find alternatives that are better for
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both parties than the compromise solution, are efficient and optimal according to a mediation criterion.
In this subsection we consider two cases of central parameter vectors: vectors obtained solving a linear
problem of the type (16) maximizing the minimal slack (therefore called “LP” or “inferred” vectors) and
vectors obtained approximating the centroids (therefore called “centroid” vectors). To approximate the
centroids we averaged 5000 parameter vectors generated in a Monte-Carlo simulation (the same vectors
will be used in Section 4.4).

In Table 8 it is possible to compare the LP weights and the centroid weights, for Nelson and for
Amstore, considering the three types of incomplete information and considering the constraints of type
(6) and (6)+(7). To simplify the comparison of parameter vectors, we also calculated the Euclidean
distance between the true and the LP weights and between the true and the centroid weights.

Table 9 shows the results considering the Central Parameters Approach, using the LP parameter
values and the centroid parameter values. In this table it is possible to see: which alternatives are better
than the compromise solution for Nelson, for Amstore, and for both; which of the alternatives that are
better for both parties than the compromise solution are not efficient; which alternative maximizes the
sum of the values and which alternative maximizes the minimal PoP. The presented results were obtained
without using the process interactively.

Table 8: Comparison of the LP weights and the centroid weights.

4.3.1 Only weights uncertain, values known

In the first case of central parameters vectors, we have inferred the weights solving the LP (16) for each
party. For example, for Nelson we have V N (x(67)) < V N (x(70)) ⇔ wN

1 ∗100+wN
2 ∗100+0.75∗wN

3 ∗100 <
0.6667 ∗ wN

1 ∗ 100 + wN
2 ∗ 100 + wN

3 ∗ 100. So, one of the constraints we include in the linear problem
is: (1 − 0.6667) ∗ wN

1 + 0 ∗ wN
2 + (0.75 − 1) ∗ wN

3 + ∆N ≤ 0 (remember that x(67)=(12, basic, 23) and
x(70)=(11, basic, 26)).
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Table 9: Results of the Central Parameters Approach.

Considering the constraints regarding the sequence of proposals, for Nelson a better approximation
is obtained considering the LP weights, while for Amstore it is the opposite and the centroid weights
provide better results. Using the LP weights, between the alternatives that are efficient and better for
both parties than the compromise solution, alternative 39 is the one which maximizes the sum of the
values and also the minimal PoP. Remember that alternative 39 is in reality better for both parties than
the compromise solution and it is efficient. Alternative 39 is the one which in reality maximizes the sum
of the values and alternative 38 is the one which in reality maximizes the minimal PoP. Alternatives 27,
28 and 37 that in reality are better for both parties than the compromise solution did not appear here
as being better for both parties; the opposite happened with alternative 41. Using the centroid weights,
alternative 25 is the one which maximizes the sum of the values, and alternative 38 is the alternative
which maximizes the minimal PoP. Note that alternative 25 is, in reality, one of the two alternatives
that maximizes the sum of the values, but it is not better for Nelson than the compromise solution,
so probably, Nelson would not accept this alternative. If this happens it is necessary to include the
constraint V N (x(25)) < V N(x(44)) and compute a new centroid. With this new centroid, alternatives 28,
34 and 38-41 are pointed as being better for both parties than the compromise solution. Between these,
the alternative 39 is pointed as maximizing the sum of the values and the minimal PoP.

Considering the constraints regarding the sequence of proposals and the equivalence of alternatives,
and considering the LP weights, the results are exactly the same. It is not surprising that we get the
same results, since we still use the true values here and the constraints regarding the equivalence of
alternatives are based on alternatives which have the same value (based on the true weights, which are
close to the weights we get from the model, and the true values), and we did not include the slack,
∆K , in the equivalence constraints. Considering the centroid weights the results are exactly the same
although the weights are somewhat different. The Euclidean distances are smaller considering both types
of constraints.
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4.3.2 Weights uncertain, value function assumed to be linear

Except for Nelson, and using the LP weights, the Euclidean distances are smaller considering linear value
functions than considering the true values as knwon.

Considering the constraints regarding the sequence of proposals, and using the LP weights, alternative
50 is the one which maximizes the sum of the values, and alternative 39 is the alternative which maximizes
the minimal PoP. Note that alternative 50 is worse for Amstore than the compromise solution and it is
not efficient, so, probably, Amstore would not accept this alternative. If this happens, it is necessary
to include the constraint V A(x(50)) < V A(x(44)), and infer again the weights for Amstore. With these
new weights alternative 39 is the only one pointed as being better for both parties than the compromise
solution. Using the centroid weights, alternative 39 is the one which maximizes the sum of the values,
and alternative 38 is the alternative which maximizes the minimal PoP.

Considering the constraints regarding the sequence of proposals and the equivalence of alternatives,
and using the LP weights, alternative 50 is the one which maximizes the sum of the values, and alternative
39 is the alternative which maximizes the minimal PoP. Using the centroid weights,

alternative 27 is the one which maximizes the sum of the values, and alternative 37 is the alternative
which maximizes the minimal PoP.

4.3.3 Weights uncertain, value function with unknown parameter

In Figure 4 it is possible to compare the true values, the LP and the centroid values, for Nelson and
Amstore, considering the constraints regarding the sequence of proposals. As it is possible to see in the
figures, the centroid value functions are closer to the true value function than the LP value functions (this
is just opposite as for the weights). Note that the shape of the centroid values function did not really
depend on the value of c. Considering another value for c (e.g., c = 20) the centroid value functions are
very similar to those we obtained considering c = 5.

Considering the constraints regarding the sequence of alternatives, and using the LP weights and val-
ues, alternative 24 is the one which maximizes the sum of the values, and alternative 26 is the alternative
which maximizes the minimal PoP. Note that Nelson should not accept these alternatives because they
have inferior value for him than the compromise solution. It is necessary to solve again the linear problem
and infer new weights and new values, including the two additional constraints. Inferring the weights
with the two new constraints, alternative 38 is the only one pointed as being better for both parties than
the compromise solution. Using the centroid weights and values, alternative 25 maximizes the sum of the
values, and alternative 27 maximizes the minimal PoP.

Considering the constraints of type (6)+(7) the values are very similar to the ones obtained considering
only constraints of type (6). Once again, the centroid values are a better approximation than the LP
values. Considering the LP weights and values, the results are equal to the ones obtained considering only
the constraints regarding the sequence of alternatives. Using the centroid weights and values, alternatives
25 and 26 are the ones which maximizes the sum of the values, and alternative 28 is the alternative which
maximizes the minimal PoP. If the objective is to maximize the sum of the values, probably Nelson
would not accept neither alternative 25 nor alternative 26, because these alternatives are worse for him
than the compromise solution. If this happens it is possible to include two new constraints and generate
again the weights and values. The alternatives pointed as being better than the compromise solution are
alternatives 37-41. Between these alternatives, alternatives 38, 39 and 40 maximize the sum of the values
and alternative 39 maximizes the minimal PoP.

4.3.4 Some comments

Considering the values are known, it would always possible to advice negotiators with an efficient alter-
native, better for both parties than the compromise solution. However, in some cases these alternatives
would not be found directly, but it would be necessary to use the process interactively and include new
constraints in the problem after first proposals are rejected by the negotiators. In such cases the in-
formation which is initially available is not sufficient and additional information must be acquired by
interaction with the negotiators. The results considering the centroid weights and the LP weights were
not very different, and using constraints of type (6) or of type (6)+(7) gave exactly the same results.
Using the three types of incomplete information, and inferring the vectors solving the LPs, the set of
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Figure 4: Comparison of the true values, the LP values and the centroid values - value function with
unknown parameter (constraints of type (6)).

alternatives recommended as being better for both parties than the compromise solution did not include
all the alternatives that are in reality better for both parties. This never happened considering the cen-
troid vectors. The results are very similar considering only constraints of type (6) and constraints of
type (6)+(7). Both solving the LPs and approximating the centroids, there are cases where alternatives
that in reality are efficient were pointed as not being efficient. The opposite also happened. Centroid
values seem to be closer to the true parameters than the LP values. This is not really surprising, since
the max-min LP optimizes only the smallest slack, ignoring the slacks for the remaining constraints.

4.4 Domains Approach

Our implementation of the domains approach is based on a simulation, in which one generates a large
number of random instances of the two negotiators’s parameter values, satisfying all the constraints.
In our experiments, we generated 5000 such parameter vectors. For each vector, we determined which
alternatives were better than the compromise solution for both negotiators, which alternatives were
efficient and which alternative was optimal according to each mediation criterion. We considered the
three types of incomplete information and the constraints of type (6) and (7). In all the cases, we started
eliminating not only alternatives for which the probability of being better than the compromise solution
for both parties was equal to 0, but also other alternatives for which this probability was lower than 0.05.

In Table 10 it is possible to see the probability of each alternative being better than the compromise
one for Nelson, for Amstore and for both parties. Since parameter vectors generated for the two parties
are independent random variables, the probability that an alternative is better than the compromise
for both parties is equal to the product of the probabilities for the two parties. Table 11 shows the
probability of each alternative being efficient. For this analysis, we consider an alternative as not efficient
if it is dominated by any other alternative. One could also calculate efficiency considering only dominance
by non-eliminated alternatives, but we consider the fact that an alternative is dominated by any other
alternative as important, even when the dominating alternative is eliminated because e.g. it is worth less
than the compromise to one party.

Tables 12 and 13 refer to the probability of each alternative being the best according the criterion sum
of the values and to the probability of each alternative being the best according the criterion minimal PoP,
respectively. In all these tables we present the results obtained considering constraints of type (6) and
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results obtained considering constraints of type (6) + (7), and the three types of incomplete information.

Table 10: Probability of each alternative being better than the compromise one (not displaying the
alternatives for which the probability of being better, for both parties, than the compromise solution is
lower than 0.05).

Table 11: Probability of each alternative being efficient.

4.4.1 Only weights uncertain, values known

Considering the constraints regarding the sequence of proposals, and eliminating the alternatives with
probability of being better than the compromise solution for both parties lower than 0.05, we reduce
the set of the alternatives to 21 alternatives (30% of the initial number of alternatives). The set of the
non eliminated alternatives is very similar to the one obtained using the extreme parameters approach.
Remember that the alternatives that in reality are better for both parties than the compromise solution
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Table 12: Probability of each alternative being the best according the criterion sum of the values.

Table 13: Probability of each alternative being the best according the criterion minimal PoP (compromise
as reference).

are alternatives 27, 28, 37, 38, 39 and 40. All these alternatives exhibit high probabilities (higher than
0.70) of being better than the compromise solution for both parties. Considering the criterion maximizing
the sum of the values, the two alternatives with highest probabilities are alternatives 25 (with probability
equal to 0.5548) and 39 (with probability equal to 0.3862). Remember that these two alternatives are
the ones that in reality maximize the sum of the values. For alternative 39 the probability of being
better than the compromise solution is equal to 1 and the probability of being efficient is equal to 0.9998.
The probability of alternative 25 being efficient is also equal to 0.9998, but only in 55.48% of the cases
this alternative is better for both parties than the compromise solution. In this case we consider that
alternative 39 is the best option for the mediator to propose. Considering the criterion maximizing
the minimal PoP, alternative 39 has the highest probability (0.4672). Also considering the criterion
maximizing the minimal PoP, the mediator should suggest alternative 39. Note, however, that the
alternative that in reality maximizes the minimal PoP is alternative 38 which presents here a probability,
of maximizing the minimal PoP, equal to 0.2258. The real minimal PoP of alternative 39 is equal to 0.54
(vs. 0.64 for alternative 38).

Considering constraints of type (6) + (7), we retain about 22% of the alternatives (15 alternatives).
All the alternatives that, in reality, are better for both parties than the compromise solution present high
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probabilities (above 0.82). The alternatives that in reality are better for both parties than the compromise
solution are the ones with highest probabilities, which is an improvement to the results obtained when
considering only the sequence of proposals. Considering the criterion maximizing the sum of the values,
the two alternatives with highest probabilities are also alternatives 25 (with probability equal to 0.5856)
and 39 (with probability equal to 0.3814).

Considering the criterion maximizing the minimal PoP, alternative 39 is the one with highest probabil-
ity (0.6902). Alternative 38 (the really best alternative considering this criterion) presents a probability
equal to 0.1890. Once again we consider that given these results the mediator should suggest alternative
39.

4.4.2 Weights uncertain, value function assumed to be linear

Considering only the sequence of proposals it is possible to eliminate 58 alternatives (i.e, about 32%
of the initial number of alternatives are retained). The alternatives that in reality are better for both
parties than the compromise solution do not present high probabilities (between 0.4746 and 0.5848),
however these alternatives are the ones which present highest probabilities. Considering the criterion
maximizing the sum of the values, there are 23 alternatives that can be optimal considering this criterion
(but only 6 of them with probability higher than 0.05). The three alternatives with highest probabilities
are alternative 14 (with probability equal to 0.1276), alternative 28 (with probability equal to 0.1752)
and alternative 36 (with probability equal to 0.1637). Only in 24.08% of the cases alternative 14 is better
than the compromise solution for both parties. The corresponding percentage is equal to 51.26% for
alternative 28 and equal to 54.92% for alternative 36. The probabilities of alternatives 14, 28 and 36
being efficient are equal to 0.6644, 0.6644 and 0.5596, respectively. Note that, in reality, alternatives 14
and 36 are not better for both parties than the compromise solution, neither efficient. Alternative 28 is
better for both parties than the compromise solution but it is not efficient. If the mediator suggest these
alternatives, the negotiators will probably chose alternative 28 because it is the only one that is better
for both parties than the compromise solution.

Alternatives that appeared as being the best according to the sum of the values, and considering known
values, have probabilities lower than 0.05. Alternatives pointed here as the ones with highest probabilities
of being the best ones have probability equal to zero considering known values. This happens because
when we approximate the values using linear value functions we are using an inferior value in all the
cases except for the highest and lowest value in each issue. In Table 14 it is possible to see the difference
between the true value of each issue level and the linear value. Alternatives that have extreme levels
are the ones for which the loss of value caused by the linear approximation is smallest. The opposite
happens with alternatives with levels that are in the middle of the scale. Alternatives 25 (10.5; basic;
23) and 39 (11; basic; 23) lose a lot with this approximation, which does not happen for alternatives 14
(10; basic; 26), 28 ( 10.5; basic; 26) and 36 (11; basic; 20). Alternative 44 (the compromise) is one of the
alternatives that loses with the linear approximation. Hence, using the linear approximation, alternative
44 looks worse than what it really is.

Thus, the linear approximation of value functions creates a systematic bias in favor of alternatives
having extreme values in at least some attributes. However, it should be noted that this bias is a result
of our assumption that value functions are concave. For convex value functions, the bias would work in
the opposite direction and favor alternatives having values in the middle of the possible range.

Considering the criterion maximizing the minimal PoP, there are 14 alternatives that can maximize
the minimal PoP (8 of them with probability superior than 0.05). The four alternatives with highest
probabilities are alternative 28 (with probability equal to 0.1523), alternative 37 (with probability equal
to 0.1311), alternative 38 (with probability equal to 0.1441) and alternative 39 (with probability equal to
0.1406). The percentage of cases where these alternatives are better for both parties than the compromise
solution are 51.26%, 58.48%, 57.92% and 58.48%, respectively. The probability of alternatives 28, 37, 38
and 39 being efficient are equal to 0.7040, 0.6644, 0.7164 and 0.8510, respectively. All these alternatives
are, in reality, better for both parties than the compromise solution and only alternative 28 is not efficient.
Between these four alternatives it is not easy to known what alternative the mediator should suggest.

The results are not very different considering only constraints of type (6) and considering constraints
of type (6) + (7). So we will not comment on the second results.

27



Table 14: Difference between the true values and the linear values.

4.4.3 Weights uncertain, value function with unknown parameter

Considering only the constraints regarding the sequence of proposals, the set of the alternatives is reduced
to 25 alternatives (compared to 21 alternatives considering the values to be known). The probabilities
of the alternatives that in reality are better for both parties than the compromise solution, vary between
0.4696 and 0.6954. There are alternatives that are pointed as being better than the compromise solution
for both parties that did not appear considering known values, but these alternatives have low probabil-
ities. Between the 25 alternatives that have positive probability of being the best according the sum of
the values (8 of them with probability superior than 0.05), alternatives 25, 26 and 27 have the highest
probabilities (alternative 25 with probability equal to 0.1474, alternative 26 with probability equal to
0.1695 and alternative 27 with probability equal to 0.1703). The probability of these alternatives being
better than the compromise solution for both parties are equal to 0.5462, 0.6376 and 0.6954, respectively.
The probabilities of being efficient are 0.9156, 0.9006 and 0.8432, respectively. Remember that all these
alternatives have positive probability of maximizing the sum of the values considering known values, but
the probabilities are now quite lower. Alternatives 25, 26 and 27 are efficient but only alternative 27 is
better for both parties than the compromise solution. If the mediator suggest these three alternatives
to the negotiators they probably will agree and chose alternative 27 because it is the only one that is
better for both parties than the compromise solution. Note that alternative 39, pointed as being the best
considering known values, has in this case a very low probability equal to 0.0626. There are 17 alter-
natives that can maximize the minimal PoP (8 of them with probability superior than 0.05). Between
these alternatives, alternative 27 is the one with highest probability (probability equal to 0.2482). This
alternative also has a positive probability considering known values.

Considering the constraints regarding the sequence of proposals and the equivalence of alternatives,
there are 19 alternatives with positive probability of being better for both parties than the compromise
solution (comparing with the 15 considering known values). The probabilities of alternatives 27-28, 37-40
being better for both parties than the compromise solution, vary between 0.6448 and 0.8192. If the
objective is to maximize the sum of the values, there are 18 alternatives with positive probability (7 of
them with probability superior than 0.05). The alternatives with highest probabilities are alternatives
26 and 27 (with probabilities equal to 0.2240 and 0.2583, respectively). Note that alternative 27 has
probability equal to zero of maximizing the sum of the values, considering known values. Alternative
26 has probability equal to 0.7154 of being better for both parties than the compromise solution, and
probability equal to 0.9550 of being efficient. The corresponding probabilities for alternative 27 are
0.8192 and 0.9140, respectively. Alternative 28 is the one which has highest probability of maximizing
the minimal PoP (with probability equal to 0.3067), between the 14 alternatives with positive probability
(6 of them with probability superior than 0.05). Alternative 28 has probability equal to zero considering
known values. The probability of alternative 28 being better for both parties than the compromise
solution is 0.8058 and the probability of being efficient is equal to 0.6636. In reality this alternative is
better for both parties than the compromise solution but it is not efficient. Alternatives 27, 38, 39 and
40 also appear with high probabilities of maximizing the minimal PoP.
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4.4.4 Some comments

Considering the domains approach the results are very different according to the type of the (incomplete)
information used. Considering known values, it was always possible to advise negotiators with an efficient
alternative better for both parties than the compromise solution. Considering an approximation of the
values using linear value functions, the suggestions obtained are different from the true optimal alterna-
tives, mainly considering the criterion maximizing the sum of the values. Considering value functions
with unknown parameters, the results are better than the ones obtained using linear value functions
but not so good (obviously) as the ones obtained considering known values. In this last case, it may
happen that the suggested alternative is not efficient, or that the set of the suggested alternatives contain
alternatives that are not better for both parties than the compromise solution. Considering the two
types of constraints at the same time the results are improved (e.g., minimizing the number of suggested
alternatives), but not by much. In all the cases, the sets of the retained alternatives are very similar
considering the extreme parameters approach and considering the domains approach. However, in the
domains approach it is always possible to recommend one alternative, which does not happen considering
the extreme parameters approach. If one, or both, negotiators do not agree with the suggested alternative
it is possible to include new constraints and to calculate again the probabilities.

4.5 Comparison of the recommendations provided by the different approaches

In Tables 15 and 16 it is possible to compare the results of the three approaches considering known
values and considering value functions with unknown parameters, respectively, and using the constraints
of type (6)+(7). We do not present the results using linear value functions because, as we have already
explained, the results were not very promising. We choose to present the results using the two type
of constraints at the same time because the results are better than the ones obtained considering only
constraints regarding the sequence of alternatives. The results presented in the tables are the ones which
we obtain without using the approaches interactively.

Considering known values, in all the approaches, the mediator should recommend alternative 39. With
the central parameters approach and the centroid weights it is possible to come to this conclusion after
using the approach interactively. Alternative 39 is in reality better for both parties than the compromise
solution and it is efficient.

Considering value functions with unknown parameters, and using the extreme parameters approach
it is only possible to recommend a set of 25 alternatives that can be better for both parties than the
compromise solution, can be efficient and can maximize the sum of the values. Considering the central
approach and solving the LPs it is possible to recommend alternative 38 (after using the approach
interactively), both in the criterion maximizing the sum of the values and the criterion maximizing the
minimal PoP. This alternative is in reality better for both parties than the compromise solution and
efficient. Using the centroid values and weights if the objective is to maximize the sum of the values the
mediator should suggest alternatives 38, 39 and 40, if the objective is to maximize the minimal PoP the
mediator should suggest alternative 39 (after using the approach interactively). All these alternatives are
efficient and better for both parties than the compromise solution. Considering the domains approach,
if the objective is to maximize the sum of the values the mediator should suggest alternatives 26 and 27
(both alternatives are efficient, but alternative 26 is not better for Nelson than the reservation level), if
the objective is to maximize the minimal PoP the mediator should suggest alternative 28 (but in reality
this alternative is not efficient).

4.6 No compromise is reached (yet)

If a compromise has not been reached, the minimum defined by the last offers from each negotiator will
be considered as the reference level. In this subsection we illustrate how the approaches can be used
before reaching a compromise, using the domains approach and considering known values.

We consider that the last two offers on the table are alternative 32, for Amstore and alternative 46, for
Nelson. The reference point used instead of the compromise is a fictitious alternative yielding V N (x(32)),
for Nelson and V A(x(46)), for Amstore. Alternatives that in reality are better for both parties than the
reference point are alternatives: 24-28, 33-41 and 44-45. In Table 17 it is possible to see the sum of the
values and the minimal PoP of the alternatives better than the reference point for both parties.

29



Table 15: Comparison of the three approaches considering known values and using constraints of type
(6)+(7).

Table 16: Comparison of the three approaches considering the value functions with unknown parameters
and using constraints of type (6)+(7).

Considering that the sequence of proposals is the same considered previously (see Table 18). We
obtain the following restrictions of type (6):

V N (x(70)) > V N (x(67)) > V N (x(53)) > V N(x(42)) > V N (x(32)), (26)

V A(x(1)) > V A(x(8)) > V A(x(17)) > V A(x(20)) > V A(x(31)) > V A(x(46)). (27)

We also have:

V N (x(32)) > V N (x(31)),
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Sum of the values PoP

x(24) 135 0.08

x(25) 136 0.21

x(26) 134 0.29

x(27) 131 0.38

x(28) 125 0.33

x(33) 124 0.08

x(34) 121 0.17

x(35) 115 0.15

x(36) 125 0.21

x(37) 132 0.48

x(38) 135 0.44

x(39) 136 0.37

x(40) 134 0.22

x(41) 131 0.04

x(44) 117 0.11

x(45) 120 0.07

Table 17: Values of the alternatives that are better for both parties than the reference point, considering
the different criteria.

Amstore Nelson

x(1) x(70)

x(8) x(67)

x(17) x(53)

x(20) x(42)

x(31) x(46)

x(32)

Table 18: Sequence of proposals - compromise not yet reached.

V N (x(32)) > V N (x(20)), (28)

V N (x(32)) > V N (x(17)),

V N (x(32)) > V N (x(8)),

V N (x(32)) > V N (x(1)),

V A(x(46)) > V A(x(42)), (29)

V A(x(46)) > V A(x(53)),

V A(x(46)) > V A(x(67)),

V A(x(46)) > V A(x(70)).

Table 19 refers to the probability of each alternative being better than the reference point for Nelson,
for Amstore and for both parties, the probability of each alternative being the best according the criterion
sum of the values, the probability of each alternative being the best according the criterion minimal PoP
and the probability of each alternative being efficient. As it is possible to see, the results before the
compromise are very interesting, as they are similar to the corresponding results after the compromise.
This indicates that our methods are not very sensitive to the choice of a reference level.

5 Conclusions

In this paper, we have looked at three ways to deal with incomplete information in the context of
negotiations:

1. the extreme parameters approach,

2. the central parameters approach, and
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Table 19: Probability of each alternative being better than the reference point (eliminating the alter-
natives for which the probability of being better, for both parties, than the reference point is inferior
than 0.05), probability of being efficient, probability of being the best according the criterion sum of the
values, probability of being the best according the criterion minimal PoP (reference point as reference) -
values known.

3. the domains approach,

and analyzed how they can be applied to different levels of information that might be available about
the preferences of negotiators.

The three methods we have discussed reflect two important trade-offs in dealing with incomplete infor-
mation. The first trade-off, which can best be illustrated by comparing the extreme parameters approach
to the domains approach, can be labeled as ambiguity vs. lack of universality. The domains approach
generates only probability statements, which sometimes can be rather vague and might be hard to inter-
pret. This contrasts with the very clear statements generated by the extreme parameters approach. If an
alternative is definitely better than another alternative according to the extreme parameters approach,
there is no doubt how the two alternatives are to be seen, while the domains approach might create
statements like there is a 55 percent probability that one alternative i is better than another alternative
j. However, the advantage of the extreme parameters approach in terms of lower ambiguity comes at a
price: The domains approach is able to generate a (probabilistic) statement about any two alternatives,
the extreme parameters approach might be unable to state whether one alternative is definitely better
than the other or vice versa.

The central parameters approach overcomes this dilemma. It will always deliver a unique result, but
does so by ignoring much of the information that is available and focusing on only one out of possibly
many possible parameter vectors. Thus, it illustrates another important trade-off between information

richness and uniqueness of results. Figure 5 illustrates this relationship.
The two dimensions represented in Figure 5 represent trade-offs, both ends of these axes have their

advantages and disadvantages. Consequently, there is no method which is clearly better than the others,
all methods have their particular strengths which make them suitable for some tasks. We therefore argue
for a mix of methods, which should preferably be implemented in the form of an interactive process. The
first step of such a process consists in a pre-selection of alternatives based on the extreme parameters
approach. Depending on the purpose of the analysis, further choice between these alternatives can be
based on the central parameters approach to obtain specific results, or on the domains approach to better
exploit the rich, but potentially ambiguous information available. This integration can probably best be
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Figure 5: Trade-offs between approaches to deal with incomplete information in negotiations.

achieved using simulation methods, which make it possible to follow a central parameters approach and
a domains approach simultaneously.

Incomplete information makes the ranking of alternatives uncertain. Our methods also represent
different ways of handling uncertainty. The domains approach in a way relates to decision criteria under
risk like the expected value, which explicitly take into account probabilities. The extreme parameters
approach can be compared to a pessimistic min-max criterion, which only looks at the baseline which
can be obtained under any circumstances.

When outcomes are uncertain, there are two kinds of errors which can be made: on one hand,
an alternative can be indicated as optimal or as better than another alternative while in reality it is
not, and on the other hand, the method might fail to identify an alternative which is good in reality.
All methods might lead to the second kind of error. The first kind of error, declaring an alternative
erroneously as optimal, is a particular problem for methods which focus on particular elements of the
available information. This is the case for the central parameters approach. The same risk also exists
when marginal utility functions are replaced by linear functions. The example has shown that this
approximation can introduce distortions which could lead to a positive evaluation of alternatives which
in reality are inferior.

When information is incomplete, there is also the possibility to obtain additional information to
improve the quality of results. In particular from the examples, we can draw two conclusions with
respect to this topic. On one hand, the results indicate that the information which can be inferred from
choices made during the negotiation is not enough for reliable results, and the results can significantly
be improved by adding at least a few preference or indifference statements directly obtained from the
negotiators. On the other hand, just a few equivalence statements are sufficient to obtain results which
are very close to the true preferences of negotiators. Thus it seems that one need not obtain much
additional information from the decision makers.

While our study has led to some interesting results concerning the advantages and disadvantages
of the methods we studied, it also has several limitations which indicate the need for future research.
First, and perhaps most importantly, we have only applied our methods to one single case for illustrative
purposes. An important next step in our research will therefore consist in creating a larger empirical
basis, both by applying the methods to real data from (experimental) negotiations and perhaps by using
more comprehensive simulations to study our methods in a wider range of settings. Such studies could be
particularly useful to clarify the relationship between observed preference information and information
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which is explicitly provided by the negotiators and the impact of additional preference information.
Apart from broadening the empirical basis, there are also some interesting topics for theoretical

improvements of our methods. So far, we have assumed that all information obtained from negotiators
either implicitly or explicitly is consistent and reflects the same true utility function of a negotiator. But in
reality, negotiators might make mistakes during the negotiation by proposing incorrect offers or incorrectly
accepting or rejecting offers from their opponents, or they might provide inconsistent information when
explicitly asked about their preferences. It is therefore necessary to extend our methods to deal with
such inconsistencies.

Inconsistencies in the responses of negotiators might be the result of an error, but they might also be
the result of deliberate manipulation. In particular when our methods are used by a mediator to suggest
potential agreements to negotiators, or even by an arbitrator to calculate a binding solution, there are
incentives for parties for strategic misrepresentation of their preferences. While the complexity of the
calculations involved would make it difficult for negotiators to manipulate their answers in an optimal
way, parties could nevertheless successfully try to improve their situation even by simplistic methods [29].
These possibilities and their impact on the quality of results could also be analyzed in computational
studies.

Apart from these theoretical and empirical developments, further work is needed to enable the practical
application of our methods. This includes the development of actual scenarios for their use. While we
have discussed the use of the proposed methods mainly as tools for a mediator or arbitrator in the present
paper, this is not the only setting in which our proposed methods could be useful: they could also be
applied as tools in an asymmetric setting for the support of one party in a negotiation. Of course, in such
a setting the quality of information available about the preferences of the two parties will be different,
since a negotiator could provide quite exact information about his or her own preferences, but would be
restricted to information implicitly obtained from observed behavior concerning the preferences of the
opponent. Application of our method in such a setting would also require different objective functions to
pursue the interests of one party rather than to provide fair solutions in terms of the concepts discussed
here. However, the general methodology could also be applied in such a setting.

Another important topic which needs to be clarified before application is acceptability of the proposed
methods by users. There is some empirical evidence that negotiators are reluctant to accept solutions
proposed by an automated system, even if it would improve their situation [13, 14]. Thus it is not clear
how negotiators would react to the proposals generated by our methods. This could also be a topic of
future empirical research aimed at transforming the theoretical concepts introduced here into practical
tools for actual negotiations.
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A Some notes

This appendix illustrates why it is not a good idea that a mediator suggests the alternative that maximizes
the sum of the values considering the constraints regarding the parameters values. The alternative which
maximizes the sum of the values can be obtained solving the following linear problem:

maxV 1(x) + V 2(x)
(w1, v1, w2, v2) ∈ (W1, M1, W2, M2)

(30)

We will show what happens using the example presented in section 4, and approximating the values
using linear value functions. We chose this case to better explain some results obtained in subsection
4.4.2 (results of the domains approach). Remember that alternatives that are better for both parties
than the compromise solution (alternative 44) are alternatives 27, 28, 37, 38, 39 and 40. Between these
alternatives, only the alternative 28 is not efficient.

Considering that negotiators have linear value functions and using the constrains of type (6), and also
the constraints of type (6)+(7), solving the LP (30) the alternative that the mediator should recommend
is the alternative 28. To better explain why the recommended alternative is the 28 one, which is not
efficient neither maximizes the sum of the values using the true values, we will make a graphical analysis.

To study the problem we transformed the inicial 3 dimensions problem in a 2 dimensions one. For
Nelson let us fix wN

2 = 0.2 (so wN
3 = 1 − 0.2 − wN

1 ), and for Amstore let us fix wA
2 = 0.1 (so wA

3 =
1 − 0.1 − wA

1 ). We can now draw some pictures varying wN
1 and wA

1 (for simplicity we used weights
between 0 and 100). Figure 6 refers to Nelson, varying wN

1 (which is a value between 0 and 80) and to
Amstore varying wA

1 (which is a value between 0 and 90). In the left side of the figure we indicate real
values and the right side is constructed supposing that value functions are linear. The objective of this
figure is only to see the differences between the values for Nelson and for Amstore considering real values
and considering approximated values using linear value functions.

In Figure 7 we depict the sum of the values of both parties. In each picture we varied the value of wN
1 .

For wA
1 equal to 0, 10 and 20, the alternative which maximizes the sum of the values is the alternative

37. For wA
1 ≥ 40 the alternative which maximizes the sum of the values is the alternative 28. Remember

that the real weights are wN
1 = 60 and wA

1 = 70. Neither alternative 28 nor alternative 37 maximize the
sum of the values considering true values. Figure 7 also enables us to see why alternative 28 has high
probability of maximizing the sum of the values when we consider unknown weights and approximate the
values using linear value functions (subsection 4.4.2).

In the presented example, solving the linear problem (30), and approximating the values using linear
values functions, does not guarantee the achievement of a good alternative. Thus, as it is possible to see,

36



suggesting the alternative that maximizes the sum of the values may not be a good idea. Remember that
using approximated values, the extreme approach (subsection 4.2) enables the mediator to suggest a set
of alternatives that can be better for both parties than the compromise solution, can be efficient and can
maximize the sum of the values. The central parameters approach (subsection 4.3.2) enables the mediator
to suggest one efficient alternative better for both parties than the compromise solution based on inferred
weights. Using the domains approach (subsection 4.4.2) the mediator can suggest the alternative with
highest probability of maximizing the sum of the values (alternative 28) but can conjugate this result
with the probability of this alternative being efficient and the probability of being better for both parties
than the compromise solution.

Figure 6: Real values and approximation of values using linear functions, for Nelson and Amstore.
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Figure 7: Sum of the values.
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