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Multiattribute Choice With Ordinal Information:
A Comparison of Different Decision Rules

Paula Sarabando and Luís Cândido Dias

Abstract—In the context of additive multiattribute aggregation,
we address problems with ordinal information, i.e., considering
a ranking of the weights (the scaling coefficients). Several rules
for ranking alternatives in these situations have been proposed
and compared, such as the rank-order-centroid weight, minimum
value, central value, and maximum regret rules. This paper com-
pares these rules, together with two rules that had never been stud-
ied (quasi-dominance and quasi-optimality) that use a tolerance
parameter to extend the concepts of dominance and optimality.
Another contribution of this paper is the study of the behavior
of these rules in the context of selecting a subset of the most
promising alternatives. This study intends to provide guidelines
about which rules to choose and how to use them (e.g., how many
alternatives to retain and what tolerance to use), considering the
contradictory goals of keeping a low number of alternatives yet not
excluding the best one. The comparisons are grounded on Monte
Carlo simulations.

Index Terms—Imprecise/incomplete/partial information, Multi-
attribute utility theory (MAUT)/multiattribute value theory
(MAVT), multicriteria decision analysis, ordinal information,
simulation.

I. INTRODUCTION

THIS WORK concerns the multicriteria selection problem,
i.e., the problem of choosing one alternative from a list

(a finite set) of alternatives that have been evaluated based on
multiple and independent criteria. A large number of models/
methods have been proposed to support a decision maker
(DM) dealing with such a problem, including the Multiattribute
Value Theory (MAVT)/Multiattribute Utility Theory (MAUT),
analytic hierarchy process, and outranking methods. (Recent
comprehensive reviews are presented in [1] and [2].) Among
these, we focus on the additive aggregation model in the con-
text of MAUT/MAVT. In this model, the performance of an
alternative on a given evaluation axis (which is usually called
an attribute or a criterion) is measured by a value (or utility)
function. The values (or utilities) attained by each alternative
at the multiple functions are then summed and weighed by
the scaling coefficients (which are usually known as weights)
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attached to those functions. This is one of the most well-known
methods among practitioners and researchers, as it is simple to
understand and its theoretical properties are well studied (e.g.,
see [1]–[6]). The same type of aggregation is used in other
contexts, such as the computation of expected values, given the
probability values (the seminal work of Fishburn [7] on impre-
cise information considers this context), and the aggregation of
probabilities from experts using a linear opinion pool (e.g., [8]).
Note, however, that many scholars do not endorse this type of
additive aggregation, favoring alternatives, such as Surrogate
Worth Tradeoffs or the use of reference points. (For a review of
these approaches, see, e.g., [9].)

Building the value or utility functions for each criterion and
setting the value of the weights require eliciting the preferences
of a DM, which is often problematic. For him or her, value
judgments are naturally easier to express through words than
through numbers. Furthermore, preferences may evolve, as they
are often unstable outcomes of unresolved internal conflicts in
the DM’s mind. Parameters such as the weights are artifacts
whose semantic may be difficult to understand for the DM
(which is related to the critical mistake of confusing these
weights with importance; see [3]), and it is known that the way
questions are posed (e.g., the questioning technique and the use
of hierarchies) has a behavioral effect on the weights that are
elicited [10]–[12]. In addition to these difficulties, other con-
straints of a more pragmatic nature may be present, e.g., the DM
is reluctant in divulging precise parameter values about his pref-
erences in public, his time and patience is rather limited, or the
DM is, in fact, a group or an organization’s representative who
is unable to commit to precise values due to lack of consensus.

A related concern, according to Edwards et al. [13], [14],
is that trying to elicit precise numerical values for the DM’s
preferences yields less reliable answers than trying to base
the dialog on easier elicitation methods requiring less precise
information. Furthermore, these authors argue that the decision-
aiding process will be easier to understand and to be accepted
by the DM, and also confirm that, due to a “flat-maxima”
principle [5], the outcome of the analysis will not be much
inferior to that of an analysis based on a rigorous elicitation
of precise numerical values.

With the motivation brought by these considerations, a
stream of research has been developed on the topic of decision
making with imprecise (partial or incomplete) information,
when the requirement for precise values of the parameters
is replaced by constraints defining a set of parameter values
that was deemed admissible. Similar to this paper, previous
papers on this topic consider that only the weights are impre-
cise (e.g., [15]–[19]), address imprecise performance values
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(e.g., [20]), or are able to simultaneously deal with imprecise
weights and performance values (e.g., [21]–[23]). Some of pre-
vious research in this context addresses group decisions (e.g.,
[24]–[27]). Dealing with imprecise information is also a subject
of investigation in sorting problems (e.g., [28] and [29]).

Many approaches in dealing with imprecise information
focus on the concepts of dominance and potential optimality.
Dominance refers to a binary relation among alternatives: An
alternative dominates another alternative if it is equally good or
better for all the admissible values of the parameters and strictly
better for at least one instance of such values. (Weaker defini-
tions of dominance can also be used [30].) A nondominated
alternative is potentially optimal if there exists an instance of
admissible parameter values that makes it the best alternative.
The idea behind these approaches (for a review, see, e.g., [21])
is to either screen the alternatives (keeping only the nondomi-
nated or potentially optimal ones) or derive a partial order on
the set of alternatives based on the dominance relation. Among
recent research trends, Malakooti [30] focused on the concept
of preference strength and proposed an efficient simplex-based
algorithm to screen or partially rank the alternatives for several
types of linear constraints on global value. Ahn [31] extended
this approach to allow continued use of the simplex-based
algorithm when constraints are simultaneously placed on the
weights and values for the additive model and to propose an
algorithm for deriving a weak order based on the aggregation of
the net flows of the value differences. Later, Ahn [32] addressed
the problem of inferring weights, including the inference of the
DMs’ weights in group settings. Park [21] focused on computa-
tional efficiency, proposing mixed-integer formulations and the
concepts of weak and strong potential optimality when weights
and performances are imprecise. White and Holloway [23] con-
sidered a setting of progressive enrichment of information and
proposed how to select the best question–response policy, after
determining if there exists such a policy capable of identifying
a single winner.

A different type of approach proposes decision rules to
derive a complete ranking of the alternatives in the absence
of precise information, such as the maximin rule or the rank-
order-centroid (ROC) weight rule. (These and other rules are
presented in Section II.) This stream of research has focused
on assessing how good the proposed rules are, compared with
an ideal situation in which all the parameters have known
precise values. Usually, this is studied using Monte Carlo sim-
ulations: A large number of random problems (performances
and weights) is generated, and the results obtained using these
“true” values are compared with the results obtained by a rule
based on only part of the information. The seminal work of
Barons and Barrett [33] compared four rules based on surrogate
weights to see how often the best alternative according to the
rule coincided with the best alternative according to the “true”
values (hit ratio) and the average loss of value when these did
not coincide. Salo and Hämäläinen [18] used similar simulation
experiments and a study of the probability of dominance to
assess the effectiveness of eliciting imprecise information on
weights and performances in the form of ratios of preference
differences. The same type of experiments is used by Salo and
Punkka [34] to compare novel types of constraints. Ahn and

Park [15] proposed two new rules and compared them with
eight other rules in terms of both hit ratio and rank correlations,
assuming ordinal weights.

This paper also uses Monte Carlo simulations to compare
decision rules, with two innovative features. On the one hand,
besides considering the rules previously studied (ROC weights,
central value, maximin, and maximum regret), it includes two
rules used by the Variable Interdependent Parameters Analysis
(VIP Analysis) software [16] that have never been studied:
1) quasi-dominance and 2) quasi-optimality. On the other hand,
contrarily to most previous research, we do not focus on a single
best alternative according to the choice rule. Rather, we study
the role of each rule in the context of a progressive reduction of
alternatives (as suggested in [16] and [23]). Thus, our objective
is to test how well the different rules behave if they are used
to select a subset of alternatives (rather than a single one),
trying to devise good (on average) strategies that conciliate
the contradictory objectives of keeping a minimum number of
alternatives and assuring that the chosen subset contains the
best alternative. Our simulations cast some light on questions
of which rule to use and how many alternatives should be
kept (in the case of ROC weights, central value, maximin, and
maximum regret) or what tolerance should be considered (in
the case of quasi-dominance and quasi-optimality).

These experiments are designed to be comparable with previ-
ous studies. Hence, we test similar problem dimensions, and we
consider, as done in many of the cited papers, that the imprecise
information refers only to the weights of the additive model,
which are usually considered to be the most difficult parameters
to elicit. Furthermore, we restrict ourselves to the case where
the elicited information about these parameters is ordinal, i.e.,
a rank order. This is the information required, for instance, by
the SMARTER method [13], and it is often a first step when
other methods (swings and tradeoffs) are used. Hence, we will
also be able to relate our results to the theoretical analysis of
Baucells et al. [35] for this type of cases with ordinal weights
and known performances.

Section II introduces the mathematical notation and presents
the tested rules. Section III describes the simulation plan, with
the results being presented in Section IV. Section V con-
cludes the paper, summarizing and discussing the main findings.

II. NOTATION AND DECISION RULE

A. Notation

We will consider the evaluation of a discrete set of m al-
ternatives A = {a1, . . . , am}. The evaluation is first performed
according to each criterion, considering a set of n criteria
(attributes) X = {x1, . . . , xn}. Let vi(.) denote the value func-
tion (or utility function—the same would apply) corresponding
to attribute xi. Hence, vi(aj) ∈ [0, 1] denotes the value of
alternative aj according to criterion xi.

According to the additive aggregation model, the overall
(multicriteria) value of an alternative aj ∈ A is given by

v(aj) =
n∑

i=1

wivi(aj) (1)
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where wi is the weight (scaling coefficient) associated with vi.
These parameters are such that

w1, . . . , wn ≥ 0 and
n∑

i=1

wi = 1. (2)

As stated in the introduction, we are assuming that the
single-criterion evaluations vi(aj) are known (i = 1, . . . , n;
j = 1, . . . ,m), whereas the only information about the weights
is its rank order. Without loss of generality, we will consider
that the criteria indexes are coded such that the weights are
in decreasing order. Therefore, the set of weighing vectors
compatible with this information is

W ∗=

{
(w1, w2, . . . wn) :w1≥w2≥· · ·≥wn≥0,

n∑
i=1

wi =1

}
.

(3)

Given a set W ∗ of weighing vectors, it is possible to compute
three values.

1) Minimum value of an alternative aj ∈ A:

vmin(aj) = min
w∈W∗

v(aj). (4)

2) Maximum value of an alternative aj ∈ A:

vmax(aj) = max
w∈W∗

v(aj). (5)

3) Maximum difference of value of ak ∈ A over aj ∈ A:

mkj = max
w∈W∗

[v(ak) − v(aj)] . (6)

B. Presentation of the Compared Decision Rules

One of the possibilities described in the literature for dealing
with the type of imprecise information we are addressing is to
select a weighing vector from W ∗ to represent that set and then
use it to evaluate the alternatives. Examples of these are the use
of equal weights, rank-sum weights, and ROC weights, which
were compared in a simulation study by Barron and Barrett
[33]. They concluded that the ROC weighing vector consis-
tently provided better approximation than competing vectors.
These weights are computed as

w
(ROC)
i =

1
n

n∑
j=i

1
j
, i = 1, . . . , n. (7)

Another type of rules that has been proposed is based on
optimization, including three rules [18].

1) Maximin rule: This rule consists of evaluating each al-
ternative by its minimum guaranteed (i.e., worst case)
multicriteria value, choosing an alternative aj such that

vmin(aj) ≥ vmin(ak) ∀ak ∈ A. (8)

2) Maximum loss of value or minimax regret rule: This rule
consists of evaluating each alternative by the maximum

Fig. 1. Possibility of cycles in the quasi-dominance relation.

loss of value with respect to a better alternative (i.e., the
worst-case regret), choosing an alternative aj such that

max
ak �=aj

mkj ≤ max
ak �=al

mkl ∀al ∈ A. (9)

3) Central value rule: This rule consists of evaluating each
alternative by the midpoint of the interval of possible
multicriteria value, choosing an alternative aj such that

vmin(aj) + vmax(aj) ≥ vmin(ak) + vmax(ak) ∀ak ∈ A.
(10)

Finally, we have considered two new rules based on the
concepts of quasi-optimality and quasi-dominance [16].

1) Quasi-optimality rule: This rule consists of choosing the
subset of alternatives Ao

ε (which may be empty or may
contain more than one alternative) that are better than or
almost equal to all other alternatives when a tolerance
ε > 0 is taken into account, i.e.,

aj ∈ Ao
ε ⇔ mkj ≤ ε ∀ak ∈ A. (11)

A comparison of (9) and (11) shows that, if the max-
imum regret associated with an alternative is ε or less,
then it is quasi-optimal with tolerance ε. If ε = 0, then
condition (11) defines an optimal alternative.

2) Quasi-dominance rule: This rule consists of choosing the
subset of alternatives An

ε that are not quasi-dominated by
any other alternative. The definition of quasi-dominance
with tolerance ε > 0 is given as follows:

ai quasi-dominates aj(aiΔεaj)

⇔ mji < 0 ∨ (mji ≤ ε ∧ mij > ε). (12)

Hence, according to this rule, the set of alternatives that
should be selected is

An
ε = {aj ∈ A : ¬aiΔεaj ,∀ai ∈ A}. (13)

Note that An
ε may often contain more than one alternative,

but, in some rarer cases, it may be empty. This may occur
when there exist cycles, as shown in Fig. 1 for a case with
three alternatives x, y, and z. Also shown in the figure are
several lines (linear equalities) in weight-space-defining regions
A, B, C, and D. The region above line v(z) − v(x) = ε, which
includes the inner triangle C, represents the weighing vectors
that lead to a victory z over x by a margin greater than ε. The
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region below line v(z) − v(x) = −ε represents the weighing
vectors that lead to a victory of x over z by a margin greater
than ε. Hence, if the set W ∗ of acceptable weighing vectors
intersects the region above line v(z) − v(x) = ε without in-
tersecting the region below line v(z) − v(x) = −ε, then there
exist weighing vectors in W ∗ that make z clearly better than x,
whereas the reverse is not true; hence, z quasi-dominates x for
tolerance ε. Following an analogous reasoning for pairs (x, y)
and (y, z), one can conclude that, if W ∗ is contained in the
triangle A ∪ B ∪ C ∪ D and intersects each of the triangles A,
B, and C, then we have a cycle in the quasi-dominance relation:
zΔεx, xΔεy, and yΔεz. If ε = 0, then condition (12) basically
yields the (strict) dominance relation.

Other rules were also used in the simulations (the use of
equal weights and maximax rule) but consistently provided
worse results (see details in [36]); hence, they were omitted in
this paper.

III. PLANNING OF THE SIMULATION EXPERIMENTS

A sequence of experiments using Monte Carlo simulations
was conceived to compare the different rules presented in
the previous section in the context of selecting a promising
subset of alternatives, given ordinal information about the
weights of an additive model. We considered problems with
5, 10, and 15 criteria, and 5, 10, 15, 25, and 50 alternatives.
(These dimensions are similar to those considered in [15] and
[18].) Similarly to [18], we generated 5000 random problem
instances for each problem dimension, checking that the use of
a larger number of problem instances did not significantly affect
the results.

Single-criterion values vi(aj) were generated from a uniform
distribution in the interval [0, 1] and then normalized criterion-
wise such that the highest value in each criterion would be 1 and
the lowest value would be 0. For each criterion, suppose that vlo

i

and vhi
i were the lowest and highest values among the m values

generated, respectively. Then, the normalized value of vi(aj) is
equal to (vi(aj) − vlo

i )/(vhi
i − vlo

i ). The uniform distribution
was also considered in [15] and [18]. Barron and Barrett [33]
used both uniform and normal distributions to compare the
hit ratios and loss of value of four rules, concluding that
using the normal distribution did not significantly influence the
results.

The weights were also generated according to a uniform
distribution on W ∗ using the process described in [37]. To
generate the weights for the n-attribute case, we draw n − 1
independent random numbers from a uniform distribution on
(0, 1) and rank these numbers. Suppose that the ranked
numbers are r(n−1) ≥ · · · ≥ r(2) ≥ r(1). The following dif-
ferences can then be obtained: wn = 1 − r(n−1), wn−1 =
r(n−1) − r(n−2), . . ., and w1 = r(1) − 0. Then, the set of num-
bers (w1, w2, . . . , wn) will add up to 1 and will be uniformly
distributed on the unit simplex defined by the rank-order con-
straints (3) after relabeling. Note that, as confirmed in [33], if
the information set on the weights is specified entirely by a
complete ranking of the alternatives, then no point in W ∗ may
be considered more likely than another, and the density of the
weights is uniform over W ∗.

For each random problem instance defined by a table of
single-criterion values and a vector of weights, the additive
model yields the multicriteria value of each alternative. From
these global values, we derive what we may call the supposedly
true ranking, i.e., the ranking one would obtain if all this cardi-
nal information was used. On the other hand, the ROC weight,
maximin, minimax regret, and central value rules produce
rankings using only the ordinal information about the weights.
Our first set of experiments compared these rankings, whereas
the remaining experiments concerned quasi-dominance and
quasi-optimality.

A. First Set of Experiments

According to the problem dimensions and the problem gener-
ation process previously described, we computed, for each gen-
erated problem, the supposedly true ranking and the rankings
provided by the ROC weights, central value, minimax regret,
and maximin rules. Comparing the supposedly true ranking and
the rule’s ranking, we sought to compute two results.

1) The rank that the best alternative of the supposedly true
ranking attains in the ranking generated by the rule. This
allows us to know the minimum number of alternatives
that should be chosen, starting from the top of the rule’s
ranking to ensure that the supposedly best alternative
is included in the chosen set. Such results generalize
existing results [18], [33], [34] concerning the hit ratio,
i.e., the proportion of times that the best alternatives in
the two rankings coincide.

2) The rank that the best alternative of the ranking generated
by the rule attains in the supposedly true ranking. This
allows knowing how good the rule’s chosen alternative
is in terms of the supposedly true ranking. Such results
complement existing results [18], [33], [34] concerning
the “loss of value.”

B. Second Set of Experiments

According to the problem dimensions and the problem
generation process previously described, we computed, for
each generated problem, the number of optimal alternatives
(tolerance ε = 0) and the number of quasi-optimal alternatives
for different values of tolerance parameter ε. (We have con-
sidered tolerances of 0.03, 0.05, 0.1, and 0.2.) Furthermore,
to assess the quality of these alternatives with respect to the
supposedly true ranking, we determined the position of the best
ranked alternative kept if only the quasi-optimal alternatives
are retained.

C. Third Set of Experiments

In experiments analogous to the second set, we com-
puted, for each generated problem, the number of dominated
(tolerance ε = 0) and quasi-dominated alternatives for the same
values of ε; furthermore, we determined the position of the best
ranked alternative kept if all the quasi-dominated ones were
excluded.
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TABLE I
POSITION OF THE BEST ALTERNATIVE ACCORDING TO THE ROC WEIGHT RULE, MAXIMIN RULE, MINIMAX REGRET RULE, AND CENTRAL WEIGHT

RULE IN THE SUPPOSEDLY TRUE RANKING (n AND m DENOTE THE NUMBER OF CRITERIA AND THE NUMBER OF ALTERNATIVES, RESPECTIVELY)

IV. RESULT OF THE EXPERIMENTS

A. Ranking Rules

A set of experiments was performed to see how the different
rules compare. To assess a strategy for selecting the best alter-
native according to each rule, we looked at the position attained
by the alternative suggested by the rule in the supposedly
true ranking. Detailed results concerning the rank that the best
alternative, according to the ROC weight, maximin, minimax
regret, and central weight rules, attains in the supposedly true
ranking are presented in Table I, which indicates, for each
rule and each problem dimension, the mean position in the
supposedly true ranking (the minimum was always 1) and the
proportion of cases where the position was 1, 2, 3, 4, or higher.
Column %1 in Table I presents the hit ratio of the rules, i.e., the
proportion of cases where the rule selects the supposedly best
alternative, allowing us to draw some conclusions.

1) Results indicate that the ROC weight rule is the best
rule for this strategy, with a mean hit ratio of 0.8149,
which is greater than the mean ratios for the maximin
(0.6698), minimax regret (0.6421), and central weight
(0.6268) rules. We used paired t-tests to see if a significant
difference occurs in hit ratios produced between the ROC
rule and other rules. Comparing the ROC and maximin
rules, we obtained a t-statistic of 11.831 and a p-value of
0, meaning that the ROC rule significantly outperforms
the maximin rule for all significance levels. Comparing
the ROC rule with the minimax regret and central weight
rules, we obtained a t-statistic of 8.724 and 7.976, respec-
tively, and p-values of 0.

2) There is not much difference among the results for the
maximin, minimax regret, and central weight rules, all of
which offer reasonable results (but worse than the ROC
weight rule); for problems with five criteria, the central
weight rule was the best of the three, but it was the worst
for problems with 10 or 15 criteria.

3) Using ROC weights, the hit ratio moderately decreased
as the number of alternatives increased and slightly
increased as the number of criteria increased. For the
remaining rules, the hit ratio more steeply decreased as
the number of alternatives increased and decreased as the
number of criteria increased.

Table I is also useful in assessing how the different rules com-
pare when, rather than considering the probability of getting the
supposedly best alternative (which is given by the hit ratio),
we consider the probability of getting one of the top-ranked
alternatives of the true ranking. For instance, the alternative
suggested by the ROC rule is one of the two best alternatives
in at least 90% of the cases, whereas this probability would
noticeably be lower for the remaining rules (cf. the sum of
columns %1 and %2).

In a strategy for progressive reduction of the number of
alternatives, one would wish to retain as few alternatives as
possible for further analysis and yet not discard the best one.
To know how many alternatives should be kept, we need to
know the position of the supposedly best alternative in the
ranking induced by each rule. Table II indicates, for each
problem dimension, the mean position of the supposedly best
alternative in each rule’s ranking (the minimum was always 1)
and the proportion of cases where the position was 1, 2, 3, 4, or
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TABLE II
POSITION OF THE SUPPOSEDLY BEST ALTERNATIVE IN THE RANKING INDUCED BY THE ROC WEIGHT RULE,

MAXIMIN RULE, MINIMAX REGRET RULE, AND CENTRAL WEIGHT RULE

Fig. 2. Proportion of cases (in percent) where the best alternative is chosen as the number of retained alternatives increases.

higher. Fig. 2, which clearly shows the superiority of the ROC
rule, shows how the probability of keeping the supposedly best
alternative increases with the number of alternatives that were
retained.

• Using the ROC rule, for these problem dimensions, select-
ing two alternatives would suffice in 90% of the cases.
Selecting three alternatives would not suffice only in 5%
of the cases. For the other rules, we have to select more al-
ternatives, especially as the problem dimension increases.

B. Quasi-Optimality Rule

The second set of experiments was performed to study a
strategy for selecting a subset of alternatives. However, rather
than ranking the alternatives according to some rule and re-
taining a prespecified number of top-ranked alternatives, as in
Section IV-A, we will consider retaining an unknown number
of alternatives satisfying a given condition.

The first condition that we tested was quasi-optimality for a
given tolerance ε (recall from Section II-B that a quasi-optimal
alternative is an alternative that cannot be defeated by another
one by a difference greater than the allowed tolerance). Our
purpose was to observe whether there is a good value for the
tolerance such that it would allow to retain few alternatives
without discarding the supposedly best one. In these experi-
ments, we sought to know how many alternatives would be
retained, as well as the best position (in terms of the supposedly
true ranking) reached by the retained alternatives. Table III
indicates the mean number of optimal and quasi-optimal alter-
natives for different tolerances ε and the proportion of cases
with 0, 1, or more quasi-optimal alternatives. Conclusions are
summarized here.

1) There are many cases, particularly for low tolerance
values, with no quasi-optimal alternatives (Fig. 3).
However, when there exist quasi-optimal alternatives,
they are rather few, and there is a very high probability
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TABLE III
NUMBER OF OPTIMAL (TOLERANCE ε = 0) OR QUASI-OPTIMAL ALTERNATIVES (TOLERANCE ε = 0.05, ε = 0.1, AND ε = 0.2)

Fig. 3. Proportion of cases (in percent) with no quasi-optimal alternatives. (Left) Five criteria. (Right) 15 criteria.

Fig. 4. Proportion of cases (in percent) where the best alternative is quasi-optimal (cases with 5 and 15 criteria).

TABLE IV
BEST POSITION ATTAINED BY THE QUASI-OPTIMAL ALTERNATIVES (TOLERANCE ε = 0.05, ε = 0.1, AND ε = 0.2)

that the supposedly best alternative is among them, as
shown in Fig. 4. The detailed results are presented in
Table IV.

2) Generally, as we increase the tolerance, we increase the
likelihood and number of quasi-optimal alternatives, but
we lose relatively to the best position attained. Results
show that it would take a very large value for the tolerance
value to ensure a near-certainty probability of keeping the
supposedly best alternative.

3) A tolerance of ε = 0.10 seems to be a good compromise,
as there exists a reasonable probability (17%–44% of the
cases) of obtaining one or two quasi-optimal alternatives,
which include the supposedly best one in more than 90%
of the cases for the dimensions tested. With a tolerance of
0.05, it is highly probable that there are no quasi-optimal
alternatives, whereas, with a tolerance of 0.2, there are
more quasi-optimal alternatives, but they become worse
in terms of the supposedly true ranking.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 7, 2009 at 10:25 from IEEE Xplore.  Restrictions apply.



552 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 3, MAY 2009

TABLE V
NUMBER OF DOMINATED (TOLERANCE ε = 0) OR QUASI-DOMINATED (ε = 0.05, ε = 0.1, AND ε = 0.2) ALTERNATIVES THAT MAY BE EXCLUDED

TABLE VI
BEST POSITION ATTAINED BY THE NONEXCLUDED ALTERNATIVES (TOLERANCE ε = 0.05, ε = 0.1, AND ε = 0.2)

C. Quasi-Dominance Rule

The third set of experiments studied the use of the quasi-
dominance relation for a given tolerance ε (recall Section II-B).
The idea now is to retain the alternatives that are not quasi-
dominated. As in the previous experiments, our purpose was
to observe whether there exists a good value for ε such that it
would allow retaining a few alternatives without discarding the
supposedly best one. In these experiments, we sought to know
how many alternatives would be retained, as well as the best
position reached by the retained alternatives. Table V indicates
the minimum, maximum, and mean number of dominated or
quasi-dominated alternatives (to be excluded), as well as some
particular quantiles, for different tolerance values. Conclusions
are summarized here.

1) As the tolerance increases, so does the number of alter-
natives that may be excluded (including, in rare cases,
the possibility of no alternative remaining, as stated in

Section II-B). On the other hand, Table VI indicates that
the proportion of cases where we exclude the supposedly
best alternative also increases (Fig. 5).

2) For a tolerance of 0.1, the number of alternatives that
can be excluded is high (more than three fourths of the
total number) in almost all the cases; often, only one
alternative remains (21%–45% of the cases), whereas the
proportion of cases where the best alternative is not quasi-
dominated is always above 90% (with an exception).

3) As the number of alternatives increases, the probability
of excluding more than three fourths of the alternatives
rapidly increases, although the probability of keeping just
one alternative also rapidly decreases.

Of interest in the last observation is that, under the rank-
order constraint (3), dominance coincides with cumulative
dominance [35]. According to the theoretical analysis of
Baucells et al., by guaranteeing that an alternative a is better
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Fig. 5. Proportion of cases (in percent) where the best alternative is not quasi-dominated (cases with 5 and 15 criteria).

ranked than another alternative b whenever a cumulatively
dominates b (see [35] for details), the ROC rule should be
particularly effective when cumulative dominance holds for
many pairs of alternatives. As Table V indicates that the
proportion of dominated alternatives (ε = 0) rapidly increases
with the number of alternatives, this helps in explaining the
superiority of the ROC rule in the experiments presented in
Section IV-A.

Comparing the strategies based on quasi-optimality and
quasi-dominance for the same tolerance value (ε = 0.10), the
strategy for keeping the quasi-optimal alternatives has a lower
probability of being usable (in many cases, there are no such
alternatives), but, when it is usable, it selects a very small
set (one or two alternatives most of the time) containing the
supposedly best alternative in the vast majority of the cases.
The strategy for keeping the nonquasi-dominated alternatives
results in larger subsets, but the probability of not being usable
is very low. A good combined strategy would then be to start
by testing if there are quasi-optimal alternatives and, if there is
none, to exclude the quasi-dominated ones.

V. CONCLUSION

We have performed a series of Monte Carlo simulations to
study and compare the behavior of different decision rules for
cases where there is only ordinal information about the weights
of the additive MAUT/MAVT model. These experiments ex-
tend those found in the literature in two ways: 1) They tested
strategies for selecting more than one alternative. 2) They tested
decision rules based on the concepts of quasi-optimality and
quasi-dominance.

For a strategy for selecting only one alternative, our results
corroborate those found in the literature [15], [33], stating that,
when we have a ranking of the weights, then the ROC weight
rule is the best rule to be used, particularly as the number
of criteria increases. Furthermore, this rule has the advantage
of being easy to understand and implement. This superiority of
the ROC rule would be expected when cumulative dominance
[35] occurs for many pairs, which our results confirm to be
the case, particularly as the number of alternatives increases.
If the top two or three alternatives according to the ROC
weights are chosen, the chances of selecting the supposedly
best one significantly increases to at least 90% and 95%,
respectively.

The drawback of the ROC weight rule is that it does not con-
vey any information about the potential loss of value associated
with selecting one or more of the top-ranked alternatives with
respect to the supposedly best one. To monitor this concern, the

minimax regret, quasi-optimality, and quasi-dominance rules
may be used. Our experiments indicate that the minimax regret
rule is clearly inferior to the ROC weight rule, but the quasi-
optimality and quasi-dominance rules can yield results that
are nearly as good as that of the latter. Thus, we suggested
a strategy of starting by testing if there exist quasi-optimal
alternatives and, if there is none, excluding quasi-dominated
ones. We also suggested using a tolerance of 0.10, which may
be decreased if such a potential loss of value is considered
excessive.

The conclusions from our experiments must be read with
caution since they pertain to the well-known problem of de-
ciding based on a ranking of the criteria’s weights. For a case
where the acceptable weights are defined by a general set of
linear constraints, then it is possible that the ROC weights will
lose some of their appeal, whereas the ideas of quasi-optimality
and quasi-dominance may maintain results that are as good as
the ones we have achieved. Investigating this conjecture seems
to be an interesting future research.

Future research is also needed for cases where there also
exists imprecise information on the performance value of each
alternative under each criterion. Some experiments not included
in this paper indicate that, if the information available is merely
a ranking of the alternatives under each criterion, then the tested
rules (adapted for these situations) naturally perform worse
[36]. The ROC weight rule still yields interesting results, but,
for instance, the hit ratio decreases from values in the range of
76%–88% to values in the range of 70%–78%.

Another issue that we did not deal with is the final selection
of one alternative from a subset of alternatives selected by a
rule. In some cases, this might not be necessary if the purpose
of the decision process is precisely to obtain a short list of
candidates or if the quasi-optimality or quasi-dominance rules
identify a single choice. In other cases, the process is continued,
but, since there are a few alternatives now, they can more
thoroughly be studied, reassessing their performances or even
refining the set of criteria. As a general guideline, however,
the process would continue by progressively eliciting more
information, as confirmed in [16] and [23].
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