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Evolutionary Insights into IL17A in Lagomorphs
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4000-055 Porto, Portugal
4Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
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In leporids, IL17A had been implicated in the host defense against extracellular pathogens, such as Francisella tularensis that infects
hares and rabbits and causes the zoonotic disease tularemia. Here, we studied IL17A from five lagomorphs, European rabbit, pygmy
rabbit, brush rabbit, European brown hare, and American pika. We observed that this protein is highly conserved between these
species, with a similarity of 97–99% in leporids and ∼88% between leporids and American pika. The exon/intron structure, N-
glycosylation sites, and cysteine residues are conserved between lagomorphs. However, at codon 88, one of the interaction sites
between IL17A and its receptor IL17RA, there is an Arg>Pro mutation that only occurs in European rabbit and European brown
hare. This could induce critical alterations in the IL17A structure and conformation and consequently modify its function. The
differences observed between leporids and humans or rodents might also represent important alterations in protein structure and
function. In addition, as for other interleukins, IL17A sequences of human and European rabbit are more closely related than the
sequences of human and mouse or European rabbit and mouse. This study gives further support to the hypothesis that European
rabbit might be a more suitable animal model for studies on human IL17.

1. Introduction

Interleukin 17, first known as cytotoxic T lymphocyte asso-
ciated antigen (CTLA) 8, is originated from a T-cell derived
factor with cytokine-like activity [1, 2]. With a ubiquitous
expression in different tissues, this protein, nowadays known
as IL17A, has a sequence composition different from all the
other cytokine families [1, 3]. IL17A, along with five func-
tional homodimers (IL17B-F), one heterodimer (IL17A/F),
and 5 receptors (IL17RA-RE), composes the IL17 family,
which is important to adaptive immunity responses, namely,
as mediator of chronic inflammation and autoimmune dis-
eases [3–6]. There is a wide range of genes that are tar-
geted by IL17, such as proinflammatory and hematopoietic
cytokines, genes associated with acute phase response, and

antimicrobial substances [3, 7]. This protein is also part of a
subset of CD4 T helper (Th) cells known as Th17 which are
able to establish a connection between innate and adaptive
immune responses, being a complement to Th1 and Th2
defense mechanisms [8]. Furthermore, the production of
IL17A is important for host defense against extracellular
pathogens (fungi, viruses, bacteria, and parasites) assisting in
neutrophils recruitment and activation and also promoting
antimicrobial peptides [8–12]. Studies in mice [12–15] and
humans [16–18] highlighted the importance of IL17 express-
ing cells for immunity against several diseases, and low
expression levels of IL17 and IL17RA make organisms more
susceptible to disease, including those caused by extracellular
pathogens such as Francisella tularensis.
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F. tularensis is highly pathogenic Gram negative intra-
cellular bacteria included by the Center of Disease Con-
trol and Prevention (CDC) in category A of bioterrorism
(http://emergency.cdc.gov/agent/agentlist.asp). Able to cause
the zoonotic disease tularemia, this microorganism has sev-
eral known hosts, from mammals to protozoans; however
transmission to humans is normally associated with direct
contact with lagomorphs, rodents, and some arthropods [15,
20–22]. In lagomorphs and rodents, F. tularensis has the
ability to cause septicemia while in humans the outcome
of infection is a multisystem organ failure [23]. There are
several reports of F. tularensis infections in leporids,mainly in
rabbits (European rabbit and cottontails) [24–26] and hares
[24, 26, 27] and despite an apparent period of stasis (2006–
2010) there were some recently documented outbreaks of
tularemia in Europe [22, 28].

The order Lagomorpha includes two families, Leporidae
(rabbits and hares) with eleven genera and Ochotonidae
(pikas) with only one genus, Ochotona [29]. Together with
rodents, lagomorphs form the clade Glires, a sister group
of Euarchonta that includes primates [30, 31]. Along with
mouse, the European rabbit had been used as a research
model for several human diseases, development of therapeu-
tics and vaccines [32]. Several studies have suggested that the
European rabbit may be a better research model than mouse
[33–37]. With the exception of humans and mouse, there
is a big gap of information on IL17A in other mammalian
groups, including leporids. Thus, considering the important
biological role of the European rabbit immune response
against several diseases, including tularemia, we performed
a genetic characterization of IL17A in four leporid genera
(Oryctolagus, Brachylagus, Sylvilagus, and Lepus).

2. Material and Methods

Samples of European rabbit (Oryctolagus cuniculus cuniculus
and Oryctolagus cuniculus algirus), pygmy rabbit (Brachy-
lagus idahoensis), brush rabbit (Sylvilagus bachmani), and
European brown hare (Lepus europaeus) were provided by
the CIBIO Lagomorpha tissue collection. Genomic DNA
(gDNA) was extracted using the EasySpin Genomic DNA
Minipreps Tissue Kit (Citomed, Torun, Poland) according
to the manufacturer’s instructions. Total RNA was extracted
by using the RNeasy Mini Kit also according to the manu-
facturer’s instructions (Qiagen, Hilden, Germany) from one
specimen of European rabbit and one of European brown
hares. Complementary DNA (cDNA) was synthesized using
oligo(dT) as primers and SuperScript III reverse transcriptase
(Invitrogen, Carlsbad, CA, USA). The European rabbit and
American pika IL17A sequences were retrieved from public
databases (accession numbers are given in bold in Fig-
ure 1). PCR amplification was performed with the Multiplex
PCR Kit (Qiagen) by using two pairs of primers designed
according to the retrieved sequences (for genomic DNA F1-
CGTCCAACCTCAGTTGATC + R1-CACTGTACCATC-
TATCCTGC and F2-CCTTCATTTACTCCCATTCG + R2-
CATCCATCACATGGCCTAA; for cDNA the combination
of primers F1 + R2 was used). Sequencing was performed on
anABI PRISM 310Genetic Analyzer (PEApplied Biosystems,

Foster City, CA, USA) and PCR products were sequenced in
both directions. The sequences obtained were submitted to
GenBank with the following accession numbers: KU163611–
KU163619.

Haplotype phases of the sequences obtained were recon-
structed with the program PHASE, built into the soft-
ware DnaSP [38]. Multiple Sequence Comparison by Log-
Expectation (MUSCLE; http://www.ebi.ac.uk/) [39] was used
for sequence alignment. The putative N-glycosylation sites
were predicted using NetNGlyc 1.0 (http://www.cbs.dtu.dk/
services/NetNGlyc/) [40].

The number of nucleotide differences per site between
sequences was estimated in MEGA6 [41] with the following
options: bootstrap method (1000 replicates), p-distance as
model, and pairwise deletion for gaps/missing data treat-
ment. AMaximumLikelihood approachwas used to estimate
the phylogenetic relationships between the IL17A nucleotide
sequences by using MEGA6; the best-fit nucleotide substi-
tution model was predicted by the same software and 1000
bootstrap replicates were used.

The secondary structure of IL17A was predicted using
PsiPred (http://bioinf.cs.ucl.ac.uk/psipred/) [42, 43] and DiA-
minoacid Neural Network Application (DiANNA) (http://
clavius.bc.edu/∼clotelab/DiANNA/) [44]. Bothmethods pre-
dict protein cysteines that create disulfide bonds, but while
PsiPred uses Position Specific Iterated-BLAST (PSI-BLAST)
to obtain evolutionary information used to predict the sec-
ondary structure of the query protein, DiANNA is a neural
network that recognizes cysteines in an oxidized state (sulfur
covalently bonded) distinguishing them from those in a
reduced state.

3. Results and Discussion

In this study we amplified and sequenced the IL17A gene
for four leporids species (European rabbit, European brown
hare, brush rabbit, and pygmy rabbit). For European rabbit
(O. c. cuniculus) andEuropean brownhare, both genomic and
cDNAsequenceswere identical and only one of the sequences
is presented; however both sequences have been assigned
different accession numbers. These sequences were further
compared to sequences of IL17A from another lagomorph,
American pika (Ochotona princeps), and from representatives
of the most relevant mammalian groups (e.g., Artiodactyla,
carnivores, Chiroptera, Primates, rodents, etc.) available in
online databases. In the European rabbit, IL17A is located
in the forward strand of chromosome 12 and has a similar
structure to other mammals with three coding exons. The
IL17A cDNA sequence obtained in this work for Lepus
europaeus showed a similar structure.

In humans, IL17A codes for a protein with 155 amino
acids (aa) and has the ability to bind with high affinity to
IL17RA and IL17RC [6, 45, 46]. The interaction between
interleukins and their receptors is crucial for their function
and signaling and any changes in the amino acid composition
may induce alterations in the protein conformation. In
humans and rodents these interactions sites are described
[6, 45] and include Leu52, Ile54, Ser61, Ser70-Tyr72, Arg75,
Arg84, Arg88-Val94, Trp96, Leu103, His114, His115, Asn117,
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Figure 1: Alignment of IL17A for severalmammalian species. GenBank andEnsembl accession numbers are indicated in bold for the retrieved
sequences. Positively selected amino acids are boxed (according to [19]). N-glycosylation sites are shaded in light grey and cysteine residues
are shaded in dark grey. A black dashed box represents the Agr>Pro mutation between leporids. ∗ represents stop codons; − represents
indels; z above the numbering represents the sites important for IL17A-IL17Ra interaction. ∗1 and ∗2 represent different alleles. Numbering is
according to the European rabbit sequence (GenBank accession number XM 002714498.2) and the signal peptide and indels were included
in the numbering. Disulfide bonds between side chain cysteines are represented by a light grey dashed line.

Figure 2: 3D structures of the IL17A-IL17RA complex. IL17A
appears in blue while IL17RA appears in grey. Marked in yellow is
the 88Arg>Pro mutation described for leporids.

Ser118, Gln122-Glu124, Leu128, Arg130, Phe139, and Pro155-
Met160 (Figure 1). In leporids, IL17A codes for a protein with
153 aa and we observed that the sites that likely interact with
the receptors are quite conserved. Indeed, from the thirty-
three amino acids involved in the linkage between IL17A
and IL17RA, eighteen are conserved: twelve are maintained
between mammals and the other six, despite being different,
do not alter the charge or the polarity. For the remaining
fifteen amino acids, only three are differently charged, seven
have distinct polarity, and five have both different charge
and polarity (Table 1). Between leporids these sites are highly
conserved, but a mutation was observed that is located in
the external coil of the IL17A in a site where this protein
interacts with IL17RA (Figure 2). This mutation, 88Arg>Pro,
occurs in the European rabbit and in the European brown
hare, while in brush rabbit and the American pika the amino
acid present is a proline as in most mammals. Some studies
showed that Arg>Pro mutations have crucial effects in the



4 Mediators of Inflammation

Table 1: Characterization of the IL17A amino acids differences in the sites important for binding to IL17RA.

Amino acid position
Amino acids

Leporids Other mammals
European rabbit European brown hare Brush rabbit Pygmy rabbit

52 L# M#, S∗

54 I# V#, S∗, T∗

61 S∗ N∗, K∗+

70 S∗ T∗, L#

71 D∗−

72 Y∗

75 R∗+

84 R∗+ P#, V#

88 R∗+ P# P#, S∗

89 E∗− D∗−

90 R∗+

91 Y∗ F#

92 P# S∗

93 S∗, F# F# S∗ F#, P#, R∗+

94 V#

96 W# L#

103 L# Q∗, S∗, M#

114 H∗+ P#, Y∗, F#, L#

115 H∗+

117 N∗

118 S∗

122 Q∗ K∗+

123 Q∗

124 E∗−

128 L#

130 R∗+ K∗+

139 F#

155 P# S∗

156 I# M#

157 I# V#

158 H∗+ S∗, R∗+, Q∗, K∗+

159 H∗+ Q∗, Y∗, T∗

160 M# I#, V#, A, L#

The amino acid polarity (∗hydrophilic; #hydrophobic) and charge (+positive; −negative) are properly annotated. The amino acid present in the human IL17A
sequence is underlined. Numbering is according to the European rabbit IL17A sequence.

protein function [47–49]. Indeed, the 332Arg>Pro mutation
in human Trim5𝛼 restricts infection by HIV-1 (Human
ImmunodeficiencyVirus-1) [49]while the 132Arg>Promuta-
tion in the helicase protein of coronavirus infectious bronchi-
tis virus was lethal to infectivity in vitro [48]. Additionally,
this mutation alters the physiochemical properties of the
amino acid by changing from a basic polar and positively
charged arginine to a nonpolar and neutral proline.

Disulfide bounds and N-glycosylation sites (Asn-X-
Ser/Thr/Cys motifs where X can be any amino acid except
proline) are important for the protein structure, stability,
and function [50–52]. Disulphide bounds occur between
cysteines side chains and these linkages are also important

for protein protection [53]. In human and rodents, IL17A has
a cysteine knot fold characterized by two sets of paired 𝛽-
strands (1/2 and 3/4) interconnected by two disulfide bounds
between strands 2 and 4 linked between four conserved
cysteines (Cys100–Cys150 andCys105–Cys152) [45, 54, 55]. In
addition to these cysteines two other cysteines are common
to all mammals, Cys36 and Cys135. For the European rabbit,
the PsiPred predicted secondary structure and the DiANNA
predicted disulfide bonds results are in agreement with those
obtained and described for human and rodents [45, 54]. An
extra linkage is also predicted between Cys31 and Cys135.
When compared to othermammals, there is an extra cysteine
(Cys19) in leporids located in the signal peptide. The rat and
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Table 2: IL17A nucleotide distances (the lowest values are in bold and the highest values are underlined).

1 2 3 4 5 6 7 8 9
(1) European rabbit (O. c. cuniculus) —
(2) European rabbit (O. c. algirus) 0.002 —
(3) European brown hare 0.011 0.013 —
(4) Brush rabbit 0.011 0.013 0.013 —
(5) Pygmy rabbit 0.024 0.026 0.026 0.022 —
(6) American pika XM 004590436.2 0.112 0.115 0.120 0.112 0.112 —
(7) Human NM 002190.2 0.169 0.171 0.175 0.171 0.173 0.159 —
(8) Mouse NM 010552.3 0.251 0.251 0.249 0.249 0.245 0.240 0.236 —
(9) Rat NM 001106897.1 0.260 0.260 0.258 0.258 0.253 0.232 0.236 0.111 —

)European (O. c. algirusrabbit
European brown hare

Brush rabbit
Pygmy rabbit

American pika XM_004590436.2
Human NM_002190.2

Mouse NM_010552.3
R. norvegicus NM_001106897.1

0.05

95
99

94

100

100

) ∗1European (O. c. cuniculusrabbit

Figure 3: Maximum Likelihood (ML) tree of the IL17A nucleotide sequences. Only bootstrap values ≥ 94% are shown. In order to facilitate
visualization, only one sequence/allele of each species was used.

the European hedgehog also have an extra cysteine located in
different sites of the signal peptide (Cys11 and Cys3, resp.).
Given that the signal peptide is cleaved in order for the
protein to become active, this extra cysteine should not have
an impact on the IL17A structure.

N-glycosylation is a crucial factor for the modulation
of protein activity; therefore, alteration on these sites may
interfere with recognition of targets, including receptors, and
consequently affects the biological activity of the proteins and
also their ability to diffuse through the organism [56, 57].
Human IL17A is N-glycosylated at Asn68. Detection of puta-
tive N-glycosylation sites indicated that this N-glycosylation
site is present in the majority of mammals, including rodents
and lagomorphs. Other putative N-glycosylation sites were
detected and include Asn56 in lagomorphs, pig, and cattle,
Asn51 in American pika and armadillo, and Asn49 in the
lesser hedgehog tenrec. The killer whale and the African
bush elephant have no putative N-glycosylation sites. The
implications of the absence/presence of N-glycosylation sites
in IL17A are unknown; however some studies indicate that
presence/removal of glycans in some proteins do not alter
their folding or function, although a decrease in the protein
dynamics is observed [50, 52, 57].

Comparison of the nucleotide sequences (Table 2) indi-
cated that, in leporids, the European rabbit and the Euro-
pean brown hare IL17A sequences are the least divergent
(0.011) while the European rabbit and the pygmy rabbit IL17
sequences are the most divergent (0.026). Between the Euro-
pean rabbit andAmerican pika, the genetic diversity obtained
was 0.112–0.115. For the remaining mammals the highest
divergence occurs for the lesser hedgehog tenrec (0.312)

and the lowest divergence for the flying lemur (0.145). The
comparison of the nucleotide diversity of several interleukins
in the European rabbit suggested that it could represent a
better animal model for research [34]. For IL17A, similar
results were obtained, with the human sequence being more
closely related to the European rabbit (0.169) than to mouse
or rat IL17A sequences (0.236). This is further supported by
a Maximum Likelihood tree inferred for IL17A mammalian
sequences (Figure 3).

4. Conclusions

In the present study we sequenced and characterized IL17A
for four leporids. Overall, the genomic organization, the
location of the cysteine residues, and the presence of N-
glycosylation sites are highly conserved in leporids. Never-
theless, a single mutation was detected within the interaction
site with IL17RA which may induce crucial changes in IL17A
structure, function, stability, signaling, and conformation.
Further functional and structural studies should be per-
formed to fully understand the impact of this specific muta-
tion.The lowest divergence between the European rabbit and
human IL17A sequences reinforces the hypothesis that the
European rabbit might be a more suitable animal model for
studies in the human innate immunity.
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