Overview

• 96 % of breakfast cereals and 90 % of cereal based baby

foods analyzed presented mycotoxins;

• 92 % of breakfast cereals and 60 % of cereal based baby

foods revealed co-ocurrence of mycotoxins;

• 2 to 7 mycotoxins were found simultaneously in the same sample;

• 32 different combinations of mycotoxins were found in all

analyzed samples.

Assessment of mixtures of mycotoxins in cereal based foods available in Portuguese market

<u>Carla Martins^{a,b*}, Ricardo Assunção^{a,c,d}, Sara Cunha^e, Alessandra Jager^f, Tânia Petta^g, Larissa Franco^g, Paula Alvito^{a,d}</u>

^aFood and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, Portugal; ^bNational School of Public Health, NOVA University of Lisbon, Portugal; ^cUniversity of Évora, Portugal; ^dCentre for Environmental and Marine Studies, Faculty of Sciences, University of Lisbon, Portugal; ^eLAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Faculty of Pharmacy, University of Porto; ^fDepartment of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil;

⁹Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo; Brazil.

*carla.martins@insa.min-saude.pt

Introduction

Mycotoxins are secondary metabolites of fungi that cause toxic and carcinogenic outcomes in humans and their and their finished products, infant formula and baby foods². Cereals play a vital role in diet because they are not only providing humans with essential macronutrients for growth and maintenance but also supply other important vitamins, minerals, and micronutrients for optimal health³. Processed cereal samples that can be mixtures of different raw materials, are prone to contain various types of mycotoxins. A previous Portuguese study of the children food consumption revealed that about 50 % of children aged between 12 and 36 months consumes breakfast cereals⁴. This study, performed under the Mycomix project (PTDC/DTP-FTO/0417/2012), aims to determine the incidence and levels of 21 mycotoxins and metabolites (AFB₁, AFB₂, AFG₁, AFG₂, AFG₁, OTA, NIV, NEO, DAS, FUS-X, DON, 15-ADON, 3-ADON, HT-2, T-2, VER, T-2 TETROL, T-2 TRIOL, FB₁, FB₂ and ZEA), in breakfast cereals and cereal based baby foods, available in the Portuguese market.

	Materia	and M	lethods
--	---------	-------	---------

26 breakfast cereal samples: -Wheat, Maize, Oat, Rice, Multigrain, Chocolate;

-Breakfast cereals primarily marketed for children;

-1 Kg each sample;⁵

-Purchased in Lisbon, in 2014.

20 cereal based baby food samples:	
Wheat, Maize, Rice, Multigrain;	
- 1 Kg each sample; ⁵	
-Purchased in Lisbon, in 2015.	

GOVERNO DE **PORTUGAL**

Extraction with Methanol:Water (80:20) Purification with IAC VICAM® AflaOchra HPLC-FLD, with Kobra-cell derivatization	$AFM_1, AFB_1, AFB_2,$ $AFG_1, AFG_{2,} OTA$					
Extraction with Methanol:Water (75:25) Centrifugation, dilution and injection Internal Standard - ¹³ C ₁₈ -ZEA UPLC-MS/MS	ZEA					
Extraction with Methanol:Water (75:25) Centrifugation, dilution and injection UPLC-MS/MS	FB ₁ , FB ₂					
Extraction with QuEChERS Purification with dispersive SPE Derivatization: BSA+TMCS+TMSI GC-MS	DON, NIV, NEO, DAS, FUS-X, VER, T-2 TETROL, T-2 TRIOL 15-ADON, 3-ADON, T-2, HT-2					

Results and Discussion

Table 1 – Method performance for the determination of the analyzed mycotoxins by HPLC-FLD, UHPLC-MS/MS and GC-MS/MS.

	AFM ₁	AFB₁	AFB ₂	AFG ₁	AFG ₂	ΟΤΑ						
Linearity (µg kg ⁻¹)	0.100 – 1.000	0.040 - 0.400	0.030 – 0.300	0.045 – 0.450	0.030 - 0.300	0.200 - 2.000						
LOD (µg kg⁻¹)	0.011	0.003	0.001	0.006	0.010	0.006						
LOQ (µg kg⁻¹)	0.032	0.009	0.004	0.018	0.029	0.019						
Recovery (%)	83	73	57	87	57	71	-					
	FB₁	FB ₂	ZEA									
Linearity (µg kg ⁻¹)	2.5 - 800	2.5 - 800	0.24 – 10.00									
LOD (µg kg⁻¹)	0.06	0.12	0.12									
LOQ (µg kg⁻¹)	0.18	0.36	0.40									
Recovery (%)	70	68	*				_					
	DON	NIV	T-2	HT-2	NEO	DAS		FUS-X	FUS-X 15-ADON	FUS-X 15-ADON 3-ADON	FUS-X 15-ADON 3-ADON VER	FUS-X 15-ADON 3-ADON VER T2-Tetrol
Linearity (µg kg ⁻¹)	15 - 360	25 - 360	25 - 360	25 - 450	15 - 360	15 - 360		15 - 360	15 - 360 15 - 360	15 - 360 15 - 360 75 - 360	15 - 360 15 - 360 75 - 360 75 - 360	15 - 360 15 - 360 75 - 360 75 - 360 35 - 450
LOD (µg kg ⁻¹)	0.4	5.6	6.8	6.4	1.3	3.1		2.8	2.8 2.5	2.8 2.5 17.3	2.8 2.5 17.3 19.2	2.8 2.5 17.3 19.2 10.5
LOQ (µg kg ⁻¹)	1.2	18.4	22.3	21.1	4.2	10.1		9.2	9.2 8.3	9.2 8.3 57.0	9.2 8.3 57.0 63.3	9.2 8.3 57.0 63.3 34.6
Recovery (%)	93	46	44	93	103	117		99	99 131	99 131 92	99 131 92 135	99 131 92 135 84

Table 2 - Occurrence of mycotoxins (µg kg⁻¹) in 26 breakfast cereal samples and 20 cereal based baby foods, purchased in supermarkets in Lisbon region. AFG₂ NEO, DAS, FUS-X, DON, 15-ADON, 3-ADON, HT-2, T-2, VER, T-2 TETROL, T-2 TRIOL were not detected in breakfast cereal samples. DON, NIV, NEO, DAS, FUS-X, DON, 15-ADON, 3-ADON, HT-2, T-2, VER, T-2 TETROL, T-2 TRIOL analysis in cereal based baby foods are still in course.

		AFM ₁	AFB₁	AFB ₂	AFG ₁	AFG ₂	ΟΤΑ	FB ₁	FB ₂	DON	NIV	ZEA
Breakfast cereals	> LOD (n)	3	19	7	1	0	18	15	10	16	1	19
	> LOD (%)	12	73	27	4	0	69	58	38	62	4	73
	Maximum (µg Kg⁻¹)	0.024	0.130	0.011	0.014	ND	0.100	67.0	14.0	207.8	27.1	5.61
Cereal based baby foods	> LOD (n)	8	0	1	2	0	10	7	0	*	*	3
	> LOD (%)	40	0	5	10	0	50	35	0	*	*	15
	Maximum (µg Kg⁻¹)	0.190	ND	0.002	0.016	ND	0.263	0.860	ND	*	*	0.98

* Internal standard ¹³C₁₈-ZEA used. Recovery (%) not determined.

All these results, with the exception of nivalenol and T2 recoveries, were in agreement with the criteria mentioned in the Commission Regulation (EC) No. 401/2006 and showed that the analytical methods applied are adequate for mycotoxins determinations.

* Analysis still in course. ND = Not detected.

- All samples presented levels below the maximum limits established by the Commission Regulation 1881/2006⁶, when available.
- •96 % of the breakfast cereals samples and 90 % of the cereal based baby food samples were contaminated with mycotoxins (values > LOD).
- Cereal based baby foods with milk presented a maximum value of 0.190 µg AFM₁ kg⁻¹. There is no legislation for the presence of AFM₁ in cereal based baby foods and the maximum admissible level for AFM₁ in infant formulae is 0.020 μ g kg⁻¹.
- Breakfast cereals presented a maximum value of 0.130 µg AFB₁ kg⁻¹. There is also no legislation for the presence of AFB₁ in breakfast cereals and it should be noted that the maximum levels admissible for AFB₁ in cereal based baby foods is 0.100 μ g kg⁻¹.
- ZEA, AFB₁, OTA, DON and FB₁ were the most commonly detected mycotoxins in breakfast cereals, ranging between 58 % and 73 % of samples with contents above LOD.
- OTA, AFM₁ and FB₁ were the most commonly detected mycotoxins in cereal based baby foods with 50 %, 40 % and 35 % of the samples with contents above LOD, respectively.

W/O

Breakfast cereals Cereal based baby foods

Figure 1 – Co-occurrence of mycotoxins in breakfast cereal and cereal based baby food samples. The X-axis represents the number of mycotoxins determined in the same sample (W/O = no mycotoxins detected) and the Y-axis the respective percentage.

Co-occurrence of mycotoxins (2 to 7, simultaneously) was highly observed in the analyzed samples: 92 % in breakfast cereals and 60 % in cereal based baby foods.

Breakfast Cereals

22 different combinations of mycotoxins

The most frequent were:

 $AFB_1 + AFB_2 + OTA + ZEA$ (n=2) and

OTA+FB₁+DON+ZEA (n=2)

Cereal based baby foods

10 different combinations of mycotoxins

The most frequent was:

 $OTA+FB_1$ (n=3)

Conclusions

The present study evaluated for the first time the occurrence of mycotoxins mixtures in breakfast cereals and cereal based baby foods marketed in Portugal, with the analysis of 21 mycotoxins and their metabolites. These results contribute to increase the knowledge on mycotoxin contents in these food matrix and highlight an urgent need for further studies in order to overcome the absence of legislated limits for mycotoxins in breakfast cereals other than DON and FB₁ and also the absence of legislated limits for mycotoxin mixtures in food. The last issue assumes particular importance considering the potential interactions that could occur between mycotoxins and its potential impact on human and, mainly, children health.

Acknowledgments: This research was supported by the MYCOMIX project (PTDC/DTP-FTO/0417/2012, FCT, Portugal).

Poster presented on RAFA 2015 (3-6 November), Prague, Czech Republic .

¹Wu et al (2014) Annual Reviews of Food Science and Technology 5:351-372; ²Turner et al (2012) Nutrition Research Reviews 25:162-179; ³Collins et al (2010) Cereal Chemistry 87(4) 272–282; ⁴Presentation "Alimentação e crescimento nos primeiros anos de vida: a propósito do EPACI Portugal 2012", Lisbon, 01/11/2013; ⁵Commission Regulation (EC) Nº 401/2006 of 23 February 2006 ; 6Commission Regulation (EC) Nº 1881/2006 of 23 February 2006;